

Seriti Power (Pty) Ltd

IN-PIT DISPOSAL OF COAL DISCARD AND REJECTS AT NEW LARGO

Geochemistry Specialist Study

Seriti Power (Pty) Ltd

IN-PIT DISPOSAL OF COAL DISCARD AND REJECTS AT NEW LARGO

Geochemistry Specialist Study

FINAL REPORT CONFIDENTIAL

PROJECT NO. 41106340 OUR REF. NO. 41106340-REP-00005

DATE: OCTOBER 2024

Seriti Power (Pty) Ltd

IN-PIT DISPOSAL OF COAL DISCARD AND REJECTS AT NEW LARGO

Geochemistry Specialist Study

WSP

Building 1, Maxwell Office Park Magwa Crescent West, Waterfall City Midrand, 1685 South Africa

Phone: +27 11 254 4800

WSP.com

۱۱SD

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3		
Remarks	Draft for Comment	Final Draft for Comment				
Date	July 2024	October 2024				
Prepared by	Mpule Gloria Dube	Mpule Gloria Dube				
Signature						
Checked by	Shameer Hareeparsad	Shameer Hareeparsad				
Signature						
Authorised by	Shameer Hareeparsad	Shameer Hareeparsad				
Signature						
Project number	41106340					
Report number	41106340-REP- 00005					
File reference	"\\corp.pbwan.net\za\Central_Data\Projects\41100xxx\41106340 - Honingkrantz WULA resubmission\41 MW\01-Reports\01-Final\41106340-REP-00005_New Largo In-pit Disposal of Coal Discard and Rejects_Final Report_2024-10-10"					

EXECUTIVE SUMMARY

WSP Group Africa (Pty) Ltd (WSP) was contracted by Seriti Power (Pty) Ltd. (hereafter referred to as Seriti) to assist with environmental permitting processes for in-pit disposal of coal discard and rejects. Mining operations at New Largo have commenced in a phased manner with operations commencing in Pit D in 2020, followed by Pit F in 2022 and Pit Wilge in 2023. Seriti now plans to commence mining at Pit H and the Main Mine, which will consist of mining four pits - A&G, C, D-North. In-pit coal discard disposal is authorised for a certain areal extent; the proposed mining changes warrant additional permitting for in-pit disposal of coal discard and rejects to cover the full extents of the pits.

As part of the process, a geochemistry study was undertaken to assess the coal discard and destoning rejects material and its associated risks/impacts, especially on pit water quality. This report contains the factual findings and predictions of the geochemistry study, and a risk assessment for the in-pit disposal of coal discard and rejects at New Largo. It also interprets the results in the context of the Best Practice Guidelines of the Department of Water Affairs (BPG G4), specifically the guideline on Impact Prediction which has four questions to be answered at the stage of mine planning, for technically responsible impact prediction of a proposed mine residue disposal activity.

The static tests revealed that both samples, Welgelegen DMS Plant coal discard (SNL-Welge-CD-01) and Genet Destoning Plant rejects (SNL-PitD-Deston-02), are potentially acid generating (PAG).

In terms of the kinetic test results, this report presents the full 20-week kinetic results for the DMS Plant discard, while the cell for the Destoning Plant rejects, is still running at WSP Laboratory for the standard 20-weeks with a weekly evaluation of the leachate samples. Only the results until the 8th week are available and presented in this report. The DMS Plant discard sample (SNL-Welge-CD-01) had a pH ranging between 6.11 and 7.22 and the Destoning Plant reject sample also show neutral conditions with pH range between 7.37 and 7.73, in the 8 weeks so far which indicates some buffering capacity.

In terms of pit water qualities, all the pits are conservatively considered to have the potential to turn acidic, with long-term pH ranging between 4.5 and 6.0. This is partly influenced by the conservative laboratory method used in previous studies on the overburden, and should be revised when a geochemical assessment update is done for the pits. The DMS discard has a substantial effect on the sulfate and TDS load of pits into which it will be backfilled, with the predicted concentrations rising by between 20% and 36% in the medium-term (compared to the same pit without discard), but falling off to a lower increase (below 10% than the same pit without discard) in the long-term. The influence on the TDS is less substantial. The destoning rejects have a small influence on the sulfate concentration (10% increase or less over the same pit without rejects), except in the higher disposal scenarios of Pit D (if 10 to 15% of the material backfilled is discard). The source-terms for destoning rejects are preliminary source-terms, based on 7 of 20 weeks humidity cell data, and an update memorandum will be provided in mid-November, when the cell is completed.

It should also be noted that effect of the waste backfilling is naturally influenced by the proportion that the waste makes up of the backfill, ranging from 0.03% at Pit F to 11% at Pit A&G. In some cases, this may have a greater influence than the difference in material properties between discard and rejects.

۱۱SD

The risk assessment indicates that in-pit disposal of the New Largo coal residue is a suitable option if the discard/reject is disposed below the final water level where no or little oxidation of pyrite will take place. This allows that, wherever possible, at least some of the discard and rejects will be lower than the post mining ground water re-charge/decant elevation, although in some pits parts of this disposal zone will be above the water table. This is done prior to dumping of overburden spoils from the next mining strip in the direction of mining. The discard/rejects which will be below the in-pit water table will have limited availability of oxygen: the maximum dissolved oxygen availability is some thirty times less than under atmospheric conditions. However, several of the pits have final inpit water levels which are low, leaving much of the pit open to atmospheric conditions, and in other pits, the quantity of discard/rejects will result in at least some of the discard/rejects being above the in-pit water table. This does not have the geochemical advantages of sub-agueous disposal, but still consolidates dirty water of the discard/rejects, and of the pit, into one system, managed by the same dirty water management system that the pit requires. It also decreases the amount of mined land and waste exposed at any point in time. This means that rainfall that falls onto the mineral residue does not also fall onto the pit (as it would if the two were separate) which implies that less rainfall in total is converted into dirty water, which lowers the environmental impact.

The overall effect of these risks and mitigations is summarised below:

- The highest level of geochemical risk is in Pits A&G and D North, where DMS discard will be disposed in pits with limited storage below the final in-pit water level, resulting in long-term oxidation of the discard and high sulfate and TDS concentrations.
- Pit C has moderate risk as there is more storage below the final in-pit water level for the DMS discard. Pit F also has a moderate risk due to a lower sulfate and TDS load from destoning rejects, but little disposal space below the final in-pit water level.
- Pits H and D have moderate/low risk, due to a lower sulfate and TDS load from destoning rejects, and some disposal space below the final in-pit water level.
- Pit Wilge will not have discard or rejects co-disposed with the spoils.

A backfilling plan should be developed, documenting the planned co-disposal of discard and rejects, following the below principles:

- Discard/rejects should be preferentially placed in the deepest part of the pit, and the mined-out section should then be backfilled, compacted and rehabilitated as soon as possible.
- The Discard/rejects should be placed a few meters below the decant water level (final pit water level) meaning that no or little oxidation of pyrite will take place.
- The discard/rejects should have a neutral (paste) pH when backfilled else it would immediately acidify interstitial water before being covered with water. This could be done by backfilling these coal residues while they are still fresh and ensuring they are covered promptly, ideally within a year.

The mining blocks and elevations for disposal of discard and rejects need to be marked out in the mine plan for each pit, and these should be updated as the mine plan is updated – as should the backfilling plan document itself. Furthermore, a pathway control will be required, to capture mine water before or at the decant point: dirty water from the pit must be pumped out of the pit to prevent decant post-closure. The safe operating level of the decant management system should be to keep the in-pit water level at least 2 m below the decant elevation. The water which is pumped out of the pit should be treated for reuse or discharge.

CONTENTS

EXEC	UTIVE SUMMARY	1
1	BACKGROUND AND INTRODUCTION	7
2	PROJECT CONTEXT	9
3	SCOPE OF WORK	10
4	INFORMATION REVIEW	11
4.1	GEOLOGY	11
4.1.1	COAL SEAM STRATIGRAPHY	12
4.2	GEOHYDROLOGY	14
4.3	PREVIOUS GEOCHEMISTRY STUDIES	16
4.3.1	JMA (2009)	16
4.3.2	JMA (2011)	19
4.3.3	GEOSTRATUM (2011)	21
4.3.4	CSIR (2009)	23
4.3.5	AATC (2012)	26
4.3.6	SERITI (2017)	30
4.3.7	GOLDER (2009)	30
4.3.8	GOLDER PFS (2011)	31
4.3.9	JONES & WAGNER (2013 & 2014)	35
4.3.10	GOLDER BFS (2019)	36
5	FIELD AND LABORATORY PROGRAMME	39
5.1	SAMPLING	39
5.2	STATIC TESTING	39
5.3	KINETIC TESTING	39
5.3.1	INTRODUCTION	39

5.3.2	PRINCIPLES	40
5.3.3	METHOD	40
5.4	ADDITIONAL SAMPLE AND TESTING	41
6	GEOCHEMICAL ASSESSMENT	41
6.1	STATIC TEST RESULTS	41
6.1.1	MINERALOGY	41
6.1.2	ELEMENTAL COMPOSITION	43
6.1.3	ACID BASE ACCOUNTING	44
6.1.4	NET ACID GENERATION (NAG)	48
6.2	KINETIC RESULTS	49
6.3	SOURCE TERM	52
6.3.1	APPROACH	52
6.3.1.1	DMS Plant Discard Final Drainage Quality	53
6.3.1.2	Preliminary Source-term for Genet destoning plant (air plant) rejects drainage quality	53
6.3.1.3	Overburden/spoil drainage quality	53
6.3.1.4	Mix Model for Opencast Pits Source Terms	54
6.3.2	RESULTS	55
6.3.3	COMPARISON WITH PREVIOUS FINDINGS	56
7	RISK ASSESSMENT	63
7.1	CONCEPTUAL UNDERSTANDING	63
7.1.1	MINING METHOD	63
7.1.2	IN-PIT DISPOSAL	63
7.1.3	WATER MANAGEMENT	65
7.2	BGP QUESTION 1	66
7.3	BGP QUESTION 2	67
7.4	BGP QUESTION 3	67
7.5	BGP QUESTION 4	68
7.6	SUMMARY	69
8	CONCLUSIONS	70

9	RECOMMENDATIONS	72
10	REFERENCES	73
11	AUTHORSHIP AND REVIEW	75

TABLES

Table 2-1 - In-Pit Disposal Project Context	9
Table 4-1 – Groundwater Background Quality (JMA, 2012)	15
Table 4-2 – ABA Summary for New Largo coal, interburden, and overburden (JMA, 2009	ə).
	17
Table 4-3 – First Order Mine Water Qualities at Different Life Cycles for New Largo (JMA 2009)	۹, 18
Table 4-4 – Predicted Mine Water Quality (JMA, 2011)	20
Table 4-5 – Potential for Lithologies to Generate Acidic Drainage (Geostratum, 2011)	23
Table 4-6 - Summary of Leachate Quality from Kinetic Shake Flask Tests over 14 days (CSIR, 2009)	24
Table 4-7 - New Largo Raw Coal Quality (AATC, 2012)	26
Table 4-8 - New Largo Raw DMS Pilot Tests (AATC, 2012)	27
Table 4-9 - Combined Dewatered Sludge Flow (Golder, 2009)	30
Table 4-10 - Water Qualities from Boreholes Sampled During 2009	32
Table 4-11 - Basis of Design Water Qualities for Desalination – Prior to 2027	33
Table 4-12 - Basis of Design Water Qualities for Desalination – South Mine or Combined North/South Plant – Operational Phase post 2027	1 34
Table 5-1 - Parameters measured in the leachate	40
Table 6-1 - Mineralogical Composition of New Largo Coal discard and rejects samples a weathering rates of individual minerals.	nd 43
Table 6-2 - Geochemical Abundance Index (GAI) values and enrichment factors	44
Table 6-3 - Geochemical Abundance Index for New Largo samples	44
Table 6-4 - Acid generation potential assessment criteria, based on guidelines from (Prical, 1997) and (Soregaroli et al, 1997)	e et 45

vsp

Table 6-5 - Acid generation potential assessment criteria, based on guidelines from (Mori et al, 1997) and (MEND., 2009)	n 46
Table 6-6 - Summary of ABA results for New Largo coal discard samples	46
Table 6-7 - Summary of Net Acid Generation (NAG) results for New Largo samples	48
Table 6-8 – Groundwater Quality Limits (Table 9, WUL No.04/B20G/ACFGIJ/2538, 2015)	50
Table 6-9 – Lithological Proportions (%) of the different overburden/spoil material expecte in the pits	ed 54
Table 6-10 – Backfill material to be expected in the New Largo pits	55
Table 6-11 - Proportioned lithological units used in the mix model for opencast pits	55
Table 6-12 - Predicted Mine Water Quality (2024 Final or Preliminary Findings) Compared to JMA 2011 Predictions	d 57
Table 6-13 - Predicted final source terms for New Largo open cast pits with DMS Plant discard over medium and term post-closure	59
Table 6-14 - Predicted preliminary source terms for New Largo open cast pits with Destoning Plant rejects over medium and term post-closure	60
Table 6-15 - Predicted final source terms for New Largo open cast Pit Wilge over short te post-closure	rm 62
Table 7-1 Summarised geochemical risk assessment for each pit	69

FIGURES

Figure 1-1 – Locations of New Largo Pits	8
Figure 4-1 - Schematic Section through Geological Profile of the New Largo Coal Reserv (Golder, 2019)	ve 11
Figure 4-2 - Simplified Column for New Largo Colliery (AATC, 2012)	12
Figure 4-3 – Generalised Sedimentological Sequence for the No.2 Seam and its Inter-Se Partings (AATC, 2012)	eam 13
Figure 4-4 – Generalised sedimentological Sequence for the No.4 Seam and its Inter-Se Partings (AATC, 2012)	eam 14
Figure 4-5 – New Largo Geohydrological Investigative Boreholes Locations and Pit Delineations (JMA, 2012)	15
Figure 4-6 – Borehole Locations Used to Collect Geochemical Samples (Geostratum, 20)11) 21

vsp

Figure 4-7 – Classification of Samples in terms of %S and NP/AP (Samples with NP/AP < shown) (Geostratum, 2011)	< 6 22
Figure 4-8 – Kinetic Shake Flask Results for a) pH and b) sulfate (CSIR, 2009)	25
Figure 4-9 – PSD for New Largo Raw Coal (AATC, 2012)	26
Figure 4-10 – pH versus Time for Seam 4 Coal and Discard (AATC, 2012)	29
Figure 4-11 – pH versus Time for Blended Seam 4 and Seam 2 (AATC, 2012)	29
Figure 4-12 – Sulfur Values (CSU) from 2017 Coal Wash Test (Seriti, 2017)	30
Figure 4-13 – Mine Water Make for the North Mine, South Mine, Far South Mine and Tota Mine (Golder, 2011)	al 31
Figure 4-14 – Surface Water Monitoring (J&W, 2014) Indicating Two Large Pans Pan 1 (Located on the Farm Honingkrantz 536 JR) and Pan 2 (Located on Farm Klipfontein 566 JR) (J&W, 2013 and 2014)	; 36
Figure 6-1 - Mineralogical Composition of New Largo Coal discard and rejects samples	42
Figure 6-2 - Carbonate NP vs Bulk NP for New Largo Samples	46
Figure 6-3 - SNPR (BulkNP/SAP) vs %Sulfur for New Largo samples	47
Figure 6-4 - Paste pH vs SNPR (BulkNP/SAP) for New Largo samples	47
Figure 6-5 - NAG pH vs. Paste pH for New Largo samples	48
Figure 6-6 - NAG pH vs SNPR (BulkNP/SAP) for New largo samples	49
Figure 6-7 - kinetic results showing the evolution of pH for New Largo Coal residue samp	les 51
Figure 6-8 - kinetic results showing the evolution of TDS for New Largo Coal residue samples	51
Figure 6-9 - kinetic results showing Electrical Conductivity for New Largo Coal residue samples	51
Figure 6-10 - kinetic results showing the evolution of sulfate for New Largo Coal residue samples	52
Figure 7-1 - N-S cross section through Pit A and C (WSP, 2024)	64
Figure 7-2 - NNE-SSW cross section through Pit A, C, D-North, D, and H (WSP, 2024)	64
Figure 7-3 - W-E cross section through Pit D, and F (WSP, 2024)	65
Figure 7-4 – A Conceptual model of in-pit disposal during rollover mining, rehabilitation, a post-closure (WSP, 2024A)	nd 66
Figure 9-1 Comparison of in-pit pumping (A is recommended) and scavenger wells (B is r recommended)	not 73

APPENDICES

APPENDIX A GEOLOGICAL LOGS (JMA, 2012) APPENDIX B NAG LEACH DATA (JMA, 2009) APPENDIX C PIT DECANT ELEVATION MAP APPENDIX D KINETIC LEACH RESULTS APPENDIX E KINETIC LEACH TRENDS APPENDIX F ACRONYMS APPENDIX G DOCUMENT LIMITATIONS

1 BACKGROUND AND INTRODUCTION

Seriti Power (Pty) Ltd. (hereafter referred to as Seriti) owns and operates New Largo colliery, an opencast coal mine located close to the N4 and N12 highways between Bronkhorstspruit and eMalahleni. Mining operations at New Largo have commenced in a phased manner with operations commencing in Pit D in 2020, followed by Pit F in 2022 and Pit Wilge in 2023. Seriti now plans to commence mining at Pit H and the Main Mine, which will consist of mining four pits - A&G, C, D-North (see Figure 1-1 for locations of the pits).

In-pit coal discard disposal is authorised for a certain areal extent; the proposed mining changes warrant additional permitting for in-pit disposal of coal discard and rejects to cover the full extents of the pits. There are, or will be, two different types of plants contemplated for coal processing at New Largo, the destoning (air) plant and DMS (washing) plant. These plants produce mineral residues: destoning rejects and DMS discard, respectively. The disposal of fines has not been included in the project description.

WSP Group Africa (Pty) Ltd (WSP) is contracted by Seriti to assist with the permitting process. As part of the process, a geochemistry study is required to assess the coal discard and destoning rejects material and its associated risks/impacts, especially on pit water quality, and the study will also support the site-wide geohydrological model update.

This final report provides an update of the geochemistry specialist study, following a Preliminary Report dated 01 July 2024 (which was based on pre-kinetic test results and 13 weeks of kinetic leach tests), and provides the final source-terms for the New Largo backfilled pits, based on a larger kinetic data set.

Figure 1-1 – Locations of New Largo Pits

2 PROJECT CONTEXT

According to the National Water Act, the disposal of mineral residues qualifies as a water use under Section 21(g), which addresses the disposal of waste or water containing waste in ways that could negatively affect water resources. A 2016 memorandum from the Department of Water and Sanitation (referred to as the "DWS 2016 memorandum") emphasizes the importance of a risk-based approach for each specific case. This approach allows for the consideration of alternative barrier systems, contingent upon a risk assessment. The memorandum clarifies that approval for such alternatives will depend on demonstrating that the proposed barrier system can effectively prevent the pollution of water resources.

Additional guidance on this approach is provided in the Best Practice Guideline series issued by the Department, particularly the guideline on Impact Prediction (referred to as "the BPG" from (DWAF, 2008). This guideline recommends a risk-based approach, as detailed in section 3.1, for conducting source-pathway-receptor analyses, covered in sections 3.2 to 3.5. It also advocates for the use of geochemical and geohydrological models, as discussed in section 6.0, to evaluate how contaminants move through the pathway and to assess the associated risks to receptors.

Under the National Environmental Management: Waste Act of 2008, the guidelines for pollution control measures related to mineral residues, including the design of barriers, are specified in regulations 3(3) and 3(5). These are part of the Regulations Regarding the Planning and Management of Residue Stockpiles and Residue Deposits from Prospecting, Mining, Exploration, or Production Operations (known as the "Residue Stockpile Regulations"), initially published as GNR.632 on 24 July 2015 and later amended by GN 990 on 21 September 2018.

The Best Practice Guideline (BPG), in section 5.1, outlines four key questions that must be addressed during the mine planning phase for a technically sound impact prediction of proposed mine residue disposal activities. These questions are also aligned to meet the criteria set forth in the Residue Stockpile Regulations, ensuring a risk assessment.

This report is intended to be reviewed together with the hydrogeology report (WSP, 2024), which discusses groundwater flow, contamination, and containment issues.

Question 1	BPG: Will any waste material be generated that has a potential to generate acid, neutral or saline drainage?				
	Residue Stockpile Regulations: Characterise chemical characteristics that must include the propensity to oxidise the pH and chemical composition of the water separated from the solids, the reactivity and rate thereof, acid generating and neutralising potential. 4(2)(b)				
Approach of this study: static and long term kinetic tests on the discard and rejects to fill the gaps in understanding of short-term and long-term geochemic by these mineral residues.					
Question 2	BPG: Is there a potential to separate and manage waste streams in accordance to their acid, neutral or saline drainage potential?				
	Residue Stockpile Regulations: Characterise chemical characteristics that must include the propensity to oxidise the pH and chemical composition of the water separated from the solids, the reactivity and rate thereof, acid generating and neutralising potential. 4(2)(b)				

Table 2-1 - In-Pit Disposal Project Context

	Approach of this study: This study considers the disposal of discard and destoning rejects, by backfilling into the opencast pits with the spoils. As the spoils (waste rock backfill) are already known to be acid-generating, there is no opportunity to separate acid vs neutral materials.							
Question 3	BPG: Are there any positive or negative consequences of storing and/or disposing of							
	these waste materials in a specific manner on their own or in any combination?							
	Residue Stockpile Regulations: The classification of residue deposit must be							
	undertaken on the basis of the characteristics of the residue, locations & dimension							
	of the deposit. 5(3)							
	Approach of this study: This study considers the positive or negative consequences of in- pit disposal of the coal discard and destoning rejects, in the context of the predicted pit water chemistry from the spoils (waste rock backfill).							
Question 4	BPG: How would proposed alternative mining techniques and layouts (backfill into							
	opencast pits) affect the potential impact on the identified receptor water resource							
	(surface and groundwater balance and quality)?							
	Residue Stockpile Regulations: The classification of residue deposit must be							
	undertaken on the basis of the characteristics of the residue, locations & dimension							
	of the deposit. 5(3)							
	Approach of this study : This study considers the opportunities for selective placement of discard to minimise potential acidic drainage, and the role of a decant management system to avoid decant.							

3 SCOPE OF WORK

The geochemistry assessment component of the work entailed the following:

- Conducting a review and gap analysis of existing information related to the project to identify key geochemical parameters and potential data deficiencies.
- Characterising the risk of acid rock drainage and metal leaching (ARDML) from the coal discard and destoning rejects to assess the potential environmental impacts and risks to surrounding ecosystems (fines were not included in the project description).
- Developing accurate and reliable source terms* of predicted mine water/seepage chemistry for pits backfilled with the discard and destoning rejects, to be utilized in the groundwater model to better understand the hydrochemical processes and potential contaminant transport.
- Performing a risk assessment based on the findings of the study. Formulating a mitigation plan to address identified risks and potential adverse effects, aiming to minimize environmental impacts and provide actionable recommendations for sustainable geochemical management and responsible mining practices, to support long-term environmental protection and compliance with relevant regulations.

*Source-terms for other sources at New Largo Colliery, such as stockpiles, pollution controls dams and other dirty areas were not included in the scope.

4 INFORMATION REVIEW

4.1 GEOLOGY

The Karoo Supergroup hosts all the South African coal deposits (Snyman, 1993) and the lithostratigraphy for New Largo is typical Ecca Group, Vryheid Formation. This Formation in the north-eastern Witbank Coalfield ranges from 80 m to 90m (Cairncross, 1986) and contains 5 coal seams, numbered from No. 1 at the base to No. 5 at the top. The lithological units consist of shale, shale- sandstone, grit, sandstone, conglomerate and coal, and cover most of the southern and south-eastern extent of the study area.

A northwest-southeast trending pre-Karoo palaeoridge (Figure 4-1) in the northern part of the resource area divides the coalfield into two discrete palaeovalleys creating a northern better-quality domain and the central and southern parts of the resource. The depth of weathering is generally between 7 m and 15 m and has a substantial influence on resources limits. In the north, No. 4 seam is prone to weathering along the subcrop owing to the high permeability of the coarse-grained, pebbly sandstone which overlies the seam in the area.

Figure 4-1 - Schematic Section through Geological Profile of the New Largo Coal Reserve (Golder, 2019)

Previous mining indicates that the southern portion of the deposit has the most structural complexity. The dyke shown detected to the south east of the New Largo deposit was suggested to be pre-Karoo in age clue to its depth of approximately 55 m relative to an average pre-Karoo depth of 30 m (AATC, 2012).

Of the five coal seams in the Vryheid Formation, only the No. 2 and No. 4 seams are relevant at New Largo (Figure 4-2). Coal seam No. 4 is found 8 to 47 m below natural ground level and is ~4.5 m thick. Coal seam No. 2 is located ~13 m below seam No. 4 and varies in thickness, from ~4.6 to ~8.2 m. Both the No. 5 seam, which occurs only sporadically in the higher lying areas and the No. 3 seam (at less than 0.5 m thick) are currently considered to be uneconomic. The No. 1 seam is considered uneconomic due to the thickness of the parting between the No. 1 and No. 2 seams (AATC, 2012).

4.1.1 Coal Seam Stratigraphy

The No. 2 Seam ranges from a maximum of 9.21 m where plastic partings are developed (central) to an average of 5.14 m where no parting occurs. Figure 4-3 shows the stratigraphy within the Seam 2 as well as the different combination in which this seam occurs. In some cases, the P2 parting can be up to 5.30 m thick but averages 1.09 m. The PU and PL partings (above and below the P2 respectively) have also been found to attain thicknesses of up to 4.7 m and 3.9 m respectively. The average thicknesses of these partings are 0.99 m for the PU and 0.57 m for the PL and thicken in the central body portion of the deposit thereby having a profound effect on the total seam quality. The P2 consisting of predominantly sandstone and the PU and PL mudstone or shale. The Seam 2 occurs at an average depth to roof of 31.7 m.

Pyrite, in the form of nodules and lenses or a disseminated network, is developed throughout the seam and predominates in association with bright coal. Siderite invariably occurs in well-defined layers or as discrete nodules up to 2 mm in diameter but is less common than pyrite. Joints and cleats are generally filled with calcite.

Figure 4-3 – Generalised Sedimentological Sequence for the No.2 Seam and its Inter-Seam Partings (AATC, 2012)

The No. 4 Seam is on average 4.23 m thick, varying in thickness up to 8.27 m in the east of New Largo Mine. The seam occurs at a depth of predominantly 30 m but ranging up to 50 m in the central portion where previous mining has already taken place. The No. 4 seam can be physically subdivided into a No. 4 Lower (S4L) and No. 4 Upper (S4U) sub-seam by a mudstone parting with an average thickness of 0.57 m as shown in Figure 4-4. The S4L generally consists of bands of mixed dull-lustrous and bright coal, intercalated with broad bands of dull lustrous coal with minor mud rock and sandstone partings. The average thickness for this sub-seam is 4.2 m. The upper zone (S4U) is more variable due to the number of mudrock and sandstone partings and effect of weathering.

Despite the numerous partings within Seam 4, as they consist of mudstone and/or carbonaceous material, they have not greatly decreased the quality of the total seam. Seam 4 displays a consistent trend, thinning to northwest, and then sharply at the basin edges. Seam 2 displays a less noticeable trend, thickest in the central, west and north of the deposit, thinning in between, in an isolated area to the south and then sharply at the basin edges.

Figure 4-4 – Generalised sedimentological Sequence for the No.4 Seam and its Inter-Seam Partings (AATC, 2012)

4.2 GEOHYDROLOGY

According to (JMA, 2012), the predominant aquifer type present within the study area is the laterally extensive shallow weathered zone aquifer (average thickness of 20.77 m) which occurs within the weathered and weathering related fractured zone, within the Ecca Group, Dwyka Group and Pretoria Group host rock matrices. Localized fractured aquifers are restricted to the contact zones between the intrusive diabase bodies and the host rock within the study area. Although these semiconfined fractured aquifers may be high yielding, they will have limited storage capacities and recharge characteristics. The bulk of the water supplied by these aquifers will be drained laterally from storage within the shallow weathered zone aquifers neighbouring onto them. Table 4-1 and Figure 4-5 provides the groundwater background quality and boreholes locations, respectively (JMA, 2012).

۱۱SD

Element /Parameter	Unit	SANS 241:2006			Statistics from a population of 103 sampling points			g points
		Class I	Class II	Min Value	Mean Value	Max Value	Standard Deviation	Max Value +1 Std Dev
рН		5.0-9.5	4.0-10	3.16	6.75	9.20	0.91	-
EC	mS/m	150	370	1.52	18.88	233	29.87	263
Total Dissolved Solids (TDS)	mg/L	1000	2400	10.00	119.23	1840	221.76	2062
Calcium (Ca ²⁺)	mg/L	150	300	0.01	17.69	404	43.87	448
Magnesium (Mg ²⁺)	mg/L	70	100	0.46	7.15	74.50	10.96	85
Sodium (Na ⁺)	mg/L	200	400	0.57	10.15	111	16.28	127
Potassium (K ⁺)	mg/L	50	100	0.25	2.85	33.50	3.91	37
Total Alkalinity	mg/L	-	-	0.00	52.10	249	49.07	298
Chloride (Cl ⁻)	mg/L	200	600	0.11	8.19	407	33.58	441
Sulfate (SO ₄ ²⁻)	mg/L	400	600	<0.01	28.29	1279	139.21	1418
Nitrate (NO ₃)	mg/L	10	20	<0.01	2.37	35.60	4.35	40
Fluoride (F ⁻)	mg/L	1.0	1.5	<0.01	0.39	7.46	0.97	8.43
Aluminum (Al ³⁺)	mg/L	0.3	0.5	<0.01	0.24	17.10	1.47	18.57
Iron (Fe)	mg/L	0.2	2.0	<0.01	2.00	109	10.36	119
Manganese (Mn)	mg/L	0.1	1.0	<0.01	0.18	15.30	1.13	16.43

Table 4-1 – Groundwater Background Quality (JMA, 2012)

Figure 4-5 – New Largo Geohydrological Investigative Boreholes Locations and Pit Delineations (JMA, 2012)

4.3 PREVIOUS GEOCHEMISTRY STUDIES

The following reports have been reviewed and are summarised in the subsections below:

- JMA (2009). Technical Memo. Expected In-pit water qualities at the New Largo Mining Section.
- JMA (2011). Technical Memo. Expected water qualities based on additional ABA samples and latest mining schedule.
- Geostratum (2011). Geochemical Assessment of the New Largo Colliery.
- CSIR (2009). Leachate studies for acid mine drainage and prediction from coal samples a kinetic test investigation.
- AATC (after CSIR 2012). Feasibility study Section 6 Process metallurgy report.
- Seriti (2017). Coal washing data excel spreadsheets (received 06 August 2019).
- Golder (2009). New Largo PFS Study for Gypsum Sludge Waste.
- Golder (2011). PFS Mine Water Management Study New Largo Project.
- Jones & Wager (2013 & 2014). Water Monitoring Reports.
- Golder (2019). Geochemistry Specialist Report New Largo Coal Bankable Feasibility Study. Report No. 18111929-329260-1.

4.3.1 JMA (2009)

As input into the 2012 environmental impact assessment (EIA) and water use licence (WUL) application, JMA conducted standard static geochemical test work on coal and overburden samples collected from five geohydrological boreholes (LGW-B2, B6, B9, B13, B20) drilled at the proposed mining area (JMA, 2009). The geochemical samples (36 samples) included:

- Slightly carbonaceous sandstone and shale.
- Carbonaceous sandstone and shale.
- Coal seams.

Some of the geochemical samples were and characterised for total composition by XRF, minerology by XRD and acid generation and acid neutralisation potential by modified Sobek (ABA test) and NAG. The following conclusions were made from the study:

- Minerology (18 samples):
 - Kaolinite and quartz were mostly present as dominant or major minerals in the coal seams and the carbonaceous shale samples.
 - Calcite (CaCO₃) was present as a trace (0.08%) to minor (10%) mineral in the coal seams and the carbonaceous shale. However, calcite might have been absent in some samples (especially the No. 4 coal seam samples) because of the weathering.
 - Siderite (FeCO₃) was found to be frequently present as a trace to minor mineral (0.15-5.5%).
 - Pyrite (0.14- 7.6%) was detected in 17 samples.
- Acid Base Accounting (ABA) results for 36 samples are summarised in Table 4-2 Appendix B:
 - Paste pH levels ranged from 3.48 to 8.16 (average pH = 6.66) and is indicative of the initial drainage the lithological units. Carbonaceous shale, sandstone and seam 4 coal materials were recorded with acidic paste pH.
 - Low to high total S concentration (0.001% 2.89 S%, average = 0.63 S%) resulted in Acid Generation Potential (AGP) between 0.03 kg/t CaCO₃ and 90.28 kg/t CaCO₃ with an average

vsp

value of 19.8 kg/t CaCO₃. The recalculated pyrite %S was determined as 0.0 - 5.4 wt.% (average =1.2 wt.%).

- The samples were found to have moderate NP (10.29 74.76 kg/t CaCO₃, average value of 10.7 kg/t CaCO₃), with 44% of the classified as "Potentially Acid Forming" using Net Potential Ratio (NP/AP).
- The carbonaceous sandstone and shale units overburden/spoil material was classified) as follows:
 - Shale (non/slightly carbonaceous) Not Potentially Acid Generating (Non PAG) based on low Tot S 0.05 0.15% and average NPR = 2.7.
 - Sandstone (non/slightly carbonaceous).
 - The weathered sandstone above the No. 4 coal seam in the northern part of the coal reserve has low pyrite and carbonate content and is Non PAG.
 - Two sandstone samples below the No. 4 coal seam and below the No. 2 coal (Tot S = 0.29 and 0.20 respectively) is PAG based negative NNP -6.93 and -4.86 respectively.
 - Sandstone and shale (moderate to highly carbonaceous) is PAG based average negative NNP - 11.03 kg/t and average NPR = 0.83. The Tot S ranged from 0.06% to 1.60%.
- The average coal seams NPR (NP: AP) ratio was determined as follows:
 - Coal Seam 1 NPR = 0.45 (PAG).
 - Coal Seam 2 NPR = 1.54 (Uncertain).
 - Coal Seam 4 NPR = 0.47 (PAG).

Based on the NPR, the coal seams have a high potential to create acidic drainage. The portions of the coal seams that will not be mined out, will together with the adjacent carbonaceous units could result in local acidic drainage from the backfilled spoils.

Nett Acid Generation (NAG) pH for 36 coal/carbonaceous shale samples ranged between 1.90 and 6.10 (average NAG pH = 2.64), implying a risk of acidic drainage in the long-term. The ABA and NAG were used to provide initial /first order mine water qualities presented in Table 4-3.

Table 4-2 – ABA Summary for New Largo coal, interburden, and overburden (JMA	 2009)
--	---------------

		Paste pH	Oxidised pH	Total % S	AP (kg/t)	NP (kg/t)	NNP (kg/t)	Ratio NP:AP	Rock Type
Shale (4 Samples)	Min	6.30	2.40	0.05	1.59	1.98	0.14	1.03	Ш
	Max	8.16	3.70	0.15	4.56	11.66	9.10	4.55	
	Avg	7.17	3.18	0.09	2.90	7.44	4.54	2.70	
Sandstone (4 Samples)	Min	4.35	2.20	0.00	0.03	-0.99	-6.93	0.12	l to III
	Max	7.68	2.80	0.29	9.19	2.26	-1.02	31.60	
	Avg	6.04	2.45	0.16	4.91	0.57	-4.35	8.05	
Carbonaceous Shale	Min	4.31	1.90	0.06	1.72	-10.29	-43.35	0.08	I
and Sandstone (12 Samples)	Max	8.04	6.10	1.60	50.1	39.19	16.19	4.15	
	Avg	6.58	2.73	0.53	16.4	5.41	-11.03	0.83	
	Min	3.48	1.90	0.23	7.09	-1.73	-36.17	0.05	I

۱۱SD

		Paste pH	Oxidised pH	Total % S	AP (kg/t)	NP (kg/t)	NNP (kg/t)	Ratio NP:AP	Rock Type
No. 4 Coal Seam (5 Samples)	Max	7.38	2.40	2.69	84.2	74.76	-2.64	0.89	
	Avg	5.86	2.16	1.23	38.4	22.33	-16.06	0.47	
No. 2 Coal Seam (10 Samples)	Min	5.55	2.00	0.10	2.97	0.00	-76.54	0.00	l to ll
	Max	8.00	4.70	2.89	90.3	41.41	32.96	5.57	
	Avg	7.09	2.66	0.89	27.94	18.46	-9.40	1.54	
No. 1 Coal Seam (1Sample)	Avg	7.85	2.30	0.45	14.16	-6.43	-20.59	0.45	I

Table 4-3 – First Order Mine Water Qualities at Different Life Cycles for New Largo (JMA, 2009)

Chemical Constituent	Unit	Operational Phase	Post Closure Discard Backfill		
		Short Residence (no discard)	In-pit Quality (no discard)	3%S Discard	5%S Discard
рН		8.5 - 6.5	6.5 - 5.5	3 - 4	2-4
Total dissolved solids (TDS)	mg/L	600	2 000-4 000	3 000-6 000	4 000-8 000
Calcium (Ca ²⁺)	mg/L	32-80	100-200	550-1 100	600-1 200
Magnesium (Mg ²⁺)	mg/L	20	60-120	200-700	200-800
Sodium (Na ²⁺)	mg/L	30	60 -150	400 -100*	400 -100*
Potassium (K+)	mg/L	5-10	50-80	50-100	50-150
Total Alkalinity	mg/L	250	<150	0	0
Sulfate (SO ₄ ²⁻)	mg/L	80-150	600-1 400 Average 1 000	1 500-6 000 Average 3 000	2 000-8 000 Average 4 000
Aluminum (Al)	mg/L	0	5	>20	>20
Manganese (Mn)	mg/L	<1	5	>10	>10
Total Iron (Fe)	mg/L	<1	>5	>19	>10

Note: Na species deplete in 25 years

The following assumptions were made by JMA (2009) for the first order mine water qualities:

- The low-residence scenario assumes an in-pit contact time of less than 14 days and is based on CSIR (2009) shake flask kinetic test duration.
- The operational phase scenario assumes the total release of bicarbonate species for neutralisation.
- The 3%S and 5%S discard options assumes optimal placement of discard below decant levels no mixing or spoiling below final decant elevation. A maximum of 80 million tons spread evenly over the total facility.
- A maximum of 10% discard disposal was assumed.

Changes in the first order pit water qualities estimates (Table 4-3) was revised by JMA, due to changes in mine scheduling, rate of spoiling/rehabilitation, pumping of water in and out of different

۱۱SD

pits for water management purposes, discard material placement and discard material leaching characteristics.

4.3.2 JMA (2011)

Predicted expected water qualities were done by (JMA, 2011), based on Version 5 mining schedule and additional ABA results collected by (Geostratum, 2011) comprising 79 samples from 2010 drill cores that including Seam 3 &5 and thin carbonaceous layers. The pit water quality for the following six scenarios were predicted by (JMA, 2011):

- 1) Short residence time for mining sequence 2014-2025 (prior to UG dewatering).
- 2) Long residence time for mining sequence 2014-2025 (prior to UG dewatering).
- 3) Combination of waste streams post 2027 (north and UG).
- 4) In-pit qualities long residence time post 2030 (south).
- 5) In-pit qualities with selective discard disposal.
- 6) In-pit qualities for isolated cells with 50% discard blend.

It should be noted that the Groundwater Impact Assessment Report (JMA, 2012) documents the first five scenarios only. The long-term ground water quality prediction for discard disposal ~90Mt, indicated in-pit acidification of all discard cells and is the poorest quality water to be expected in isolated areas (the first mining sections, combined with the in-pit storage of discard). The excess water make from the temporary 10Mt surface discard dump was added to this water make. This waste steam adds 5% to the total water make from 2017, gradually increasing to 25% at LOM. The short-residence time due to pump and treat water management prevents acidification of the final pit water as predicted for Scenario 5 (Table 4-4).

According to (JMA, 2011), a high level of confidence (>85%) is attached to the qualities predicted for Scenario 1 and 2. Uncertainties of static and kinetic modelling for the phases past the year 2027 included water balance changes due to change in mine plan, water use, rainfall patterns, rehabilitation rates and treatment rates, Volumes and placement position of discards and final geochemical composition of in-pit discards.

Table 4-4 – Predicted Mine Water Quality (JMA, 2011)

Scenario/ Chemical Constituent	Unit	Short Resi Time	dence	Long Resi Time	dence	Combinatio Streams Po (North & UG	n of Waste st 2027 GM)	In-Pit Qualities Long Residence Time Post 2030 (South)		In-Pit Qualities with Selective Discard Disposal		In-Pit Qualities for Isolated Cells With 50% Discard Blend	
		Range	Average	Range	Average	Range	Average	Range	Average	Operational Range	Post Closure Average	Operational Range	Post Closure Average
рН		7.3 - 6.5	7.1	7.3 - 6.3	6.8	6.5 - 4.5	5.8	5.5 - 4.0	5.0	5.0	4.5	4.5	2.5
Total Dissolved Solids (TDS)	mg/L	450 - 590	520	650 - 880	745	800- 1 100	950	1 100 – 1 500	1 250	1 700	2 400	3 900	6 800
Calcium (Ca ²⁺)	mg/L	35-55	44	70 - 110	95	120 - 180	160	220 - 400	280	450	550	800	800
Magnesium (Mg ²⁺)	mg/L	15-22	17	25 - 65	40	40 - 90	65	120 - 200	165	180	220	200	250
Sodium (Na⁺)	mg/L	15-30	20	40 - 60	52	40 - 60	50	80-120	100	120	100 - 0 (Depleted)	140	150 – 0 (Depleted)
Potassium (K)	mg/L	5-10	8	5 -16	10	35 - 45	40	35-45	40	50	50	80	80
Total Alkalinity	mg/L	180 - 285	225	300 - 450	360	140 - 180	160	0-120	0	0-50	0	0	0
Sulfate (SO ₄ ²⁻)	mg/L	40 - 110	80	100 - 220	170	400-750	630	700-1 100	900	1 050	1 200	2 000	3 600
Aluminum (Al)	mg/L	0	0	0	0	1-5	2	10	10	10	10	10	10
Manganese (Mn)	mg/L	<1	<1	<1	<1	1-5	3	>3	>3	>3	>3	>3	>3
Total Iron (Fe)	mg/L	<1	<1	<1	<1	>5	>5	>5	>5	>5	>5	>5	>5

\\SD

4.3.3 GEOSTRATUM (2011)

Laboratory certificates available from the study done by (Geostratum, 2011) was used as input data for the (JMA, 2011) prediction of expected pit water quality. Figure 4-6 provides the 14 borehole locations within the pit areas that were used to collect geochemical drill core samples.

Figure 4-6 – Borehole Locations Used to Collect Geochemical Samples (Geostratum, 2011)

According to (Geostratum, 2011), 79 samples of different lithological units that were submitted for geochemical testing, were spatially distributed with the "future" New Largo open cast mine and were representative of the material for the purpose of determining its environmental geochemical character.

(Geostratum, 2011) used screening criteria as proposed by (Price et al, 1997) based on NP:AP ratio to classify the rock in terms of its potential for acid generation, and (Soregaroli et al, 1997) for samples with <0.3 % sulfide/Total sulfur that are regarded as having insufficient oxidisable sulfides to sustain long term acid generation. Material with a <0.3 %S is classified as Rock Type IV (No Potential for acid generation), and >0.3 S% is classified as Rock Type I (Likely acid generation potential).

Figure 4-7 provides the ARD classification for the 79 samples. The following conclusions were made from the Geostratum study:

Most non-carbonaceous samples have no potential to produce acid drainage, whereas the coal and some carbonaceous shale/sandstone will generate acidic drainage over the long term.

- Table 4-5 indicates that 79% of coal will be likely/possibly acid generation. All coal seams have a substantial potential to generate acid mine drainage and coal left in the pit (e.g. uneconomical coal seams) will increase the potential of the backfill to generate acid drainage.
- The clastic rocks have a smaller potential to generate acidic drainage due to lower sulfur content with ~15% of sandstone and ~9% of the shale samples have a substantial potential to generate acid mine drainage. About 31% of sandstone and shale interlayered rock will have a substantial potential to acidify.
- Some parts of the backfill is expected to be neutral pH based on the average NP/AP=2.2 and other parts (where carbonaceous rock is dominant) will become acidic NP/AP=0.63.

The study concluded that the actual pit water quality will depend on volume of carbonaceous rock that will be present above the decant elevation (oxidation will occur) and mixing between the various rocks are present.

Figure 4-7 – Classification of Samples in terms of %S and NP/AP (Samples with NP/AP < 6 shown) (Geostratum, 2011)

۱۱SD

	-		• ·	. ,	
ARD Classification		Rock Type I > 0.3 S%		Rock Type IV < 0.3 S%	
Lithology	No. Samples	Rock Type (NP/AP) I or II	Rock Type (NP/AP) III or IV	Rock Type (NP/AP) I or II	Rock Type (NP/AP) III or IV
Coal	14	79	0	7	14
Sandstone	20	15	0	70	15
Shale	22	9	0	59	32
Shale/Sandstone	13	31	15	31	23
Siltstone	3	0	0	67	33
Mudstone	5	0	0	80	2
Clay	1	0	0	0	100
Potential for acid mine drainage		Likely/possibly acid generation. High salt load (Over short and long term)	Low potential for acid generation over short and long term. Low to medium salt load	Low potential for acid generation over short term. Low salt load	No potential for acidic drainage. Very low/no salt load

Table 4-5 – Potential for Lithologies to Generate Acidic Drainage (Geostratum, 2011)

4.3.4 CSIR (2009)

Kinetic test work was conducted by CSIR in 2009 by shake flask kinetic tests to determine acid leaching from the coal samples over a period of two weeks.

Drainage quality parameters such as pH, acidity, alkalinity, sulfate and Fe (II) were monitored over the two- week period (CSIR, 2009). The 6 samples that were tested included:

- Seam 4 samples. 0777D-Raw coal; 0777D- Product F@1.8 and 0777D-Discard S@2.0.
- Seam 2 samples. Raw; Product F@1.8 and Discard S@2.0.

The methodology for the laboratory shake flask test involved oxidation of a 0.5 kg pulverised coal sample with 1.5 L distilled water to assess temporal variation in weathering characteristics of the sample. The tests were placed in an open Erlenmeyer flask on the shaking apparatus at room temperature. Aliquots of the liquid fraction was collected (and filtered) at regular intervals of 0, 15, 60, 120 and 420 minutes during the first day, and daily thereafter for a period of 2 weeks. The samples were analysed for pH and temperature acidity, alkalinity, sulfate and Fe (II).

The Seam 4 coal sample, raw product (float at 1.80 S.G.) and discard (sink at 2.00 S.G.) were found to leach out acid (1 750-8 550 mg/L CaCO₃), sulfate (1 650-7 200 mg/L), Fe (II) (28-445 mg/L) and zero alkalinity over the 2 weeks (Table 4-6). The Seam 2 samples (raw, product float at 1.80 S.G., and discard sink at 2.00 S.G.) leached out moderate acid, sulfate, Fe (II) and alkalinity concentrations.

The results also indicated that Seam 4 discard material SO₄ concentration increases over time to a maximum concertation of ~7 000 mg/L after 14 days, see Figure 4-8. The CSIR study concluded that Seam 4 samples undergo substantial pyrite oxidation in the absence of carbonate giving rise to AMD compared Seam 2 that has a surplus of NP from dissolving carbonates.

Material Type	Sample ID	Leachate Qual	ity	Experiment Deductions/Notes	
		Acidity	Alkalinity	Sulfate	
Coal Seam 4	0777D-Raw	P-Raw High Negligible		High	pH 1.7-3.5 and Fe (II) 28-445 mg/L
	0777D-Product F@1.8	1 750 - 8 550 mg/L CaCO₃		1 650 - 7 200 mg/L	Indicating pyrite oxidation in absence of
	0777D-Discard S @2.0	-			duration
Coal Seam 2	Raw	Moderate < 500 mg/L CaCO ₃	Moderate 50 - 80 mg/L CaCO ₃	Moderate <500 mg/L	pH ~6 (day 0 -12) increased to pH >6.5 (days 13 & 14),
	Product F@1.8			Low <100mg/L	indicating subsequent neutralisation reactions (Ca, Mg carbonate
	Discard S@2.0			High 550 - 1 600 mg/L	dissolution) to buffer acidity from pyrite oxidation

Table 4 C	C	· of I acabata	August from	· Kinetie Ch	also Electra	Fasta aver			2000
1 able 4-6 -	• Summarv	/ of Leachate	QUALITY TROP	i Ninetic Sh	аке назк т	ests over	14 davs (LOSIR.	ZUUSI
		oi Ecacitato	a damey non					, ,	

vsp

Figure 4-8 – Kinetic Shake Flask Results for a) pH and b) sulfate (CSIR, 2009)

4.3.5 AATC (2012)

Process and Metallurgy, provided in Section 6 of the Feasibility Study, provided raw coal average particle size distribution (PSD) curves (Figure 4-9) and indicates that the average raw coal has 80% particles passing 3 mm. Table 4-7 provides the PSD and Total S values for the coal sample used for coal washability test work. The slightly weathered sample was the worst coal quality in the New Largo deposit basin i.e. Seam 2 coal on the southern reserve basin associated with sub-outcrop.

Figure 4-9 – PSD for New Largo Raw Coal (AATC, 2012)

Table 4-7 - New Largo F	Raw Coal Qu	ality (AATC, 2012)
-------------------------	-------------	--------------------

Size Fraction (mm)	CV (MJ/kg)	Ash (%)	V.M (%)	F.C (%)	S (%)
-300+150	13.6	44.1	29.1	24.8	1.4
-150+70	15.2	44.2	21.2	32.4	2.2
-70+50	15.3	43.9	20.1	33.4	1.3
-50+31.25	16.1	42.1	20	35.3	1.6
-31.25+25	15.7	42.7	18.6	36.1	0.7
-25+16	15.7	42.8	17.9	36.8	0.6
-16+12.5	15.4	43.3	17.8	36.6	0.4
-12.5+6	16.5	40.7	17.9	38.9	0.4
-6+3	16.6	39.9	18.1	39.5	0.3
+3-1	17.3	36.9	18.3	41.9	0.3
+1-0.85	16.7	37.2	18.5	40.6	0.3
-0.85	15.45	43.8	17.1	26.2	0.35

Simulations of the plant washing process was conducted by (AATC, 2012) for three variables which include: fractions size, contact time and water to coal ratio to determine the residual acidity generated. The New Largo bulk sample DMS pilot plant results is indicated in Table 4-8 (highlighted). It was concluded that bulk sample (S=0.88%) should be blended with either Seam 2 or 4 to achieve product quality of 18.80 MJ/kg.

	New Largo Bulk Sample LIMN Simulation Results (Cumulative)											
DMS D50	1.3000	1.4000	1.5000	1.6000	1.7000	1.8000	1.9000	2.000	2.1000	2.2000	Raw Coal	
Yield %	42.35	44.39	45.39	52.88	61.86	74.25	83.10	87.78	90.30	91.74	100.00	
Ash %	40.28	39.23	38.82	36.90	36.17	36.84	37.96	38.76	39.38	39.78	42.04	
CVMJ/kg	16.46	16.88	17.04	17.80	18.10	17.87	17.48	17.17	16.92	16.78	15.83	
S%	0.33	0.34	0.35	0.41	0.52	0.60	0.63	0.64	0.64	0.65	0.88	
IM%	2.73	2.75	2.75	2.77	2.75	2.71	2.69	2.67	2.66	2.64	2.52	
Vol%	17.88	18.28	18.43	19.14	19.51	19.54	19.29	19.12	19.02	18.96	19.38	
FC%	39.11	39.74	39.99	41.18	41.55	40.87	40.02	39.40	38.90	38.57	36.05	

Table 4-8 - New Largo Raw DMS Pilot Tests (AATC, 2012)

Furthermore, (AATC, 2012) feasibility report documents kinetic column characterisation results as conducted by CSIR. This study was a follow up study of the CSIR (2009) six kinetic shake flask studies (Section 3) that concluded that Seam 4 samples tested leached out substantial acidity, whilst samples from Seam 2 seam leached out substantial alkalinity. Therefore, the (AATC, 2012) study assessed the possibility of utilising the Seam 2 surplus NP to neutralise Seam 4 acidity by blending the coal samples.

Thirty-six (36) samples of different fraction sizes (100-30 mm; 30-3 mm; 3-0.15 mm and 0.15-0 mm) were prepared from Seam 4, a 50-50 mixture and a 70-30 mixture of Seam 2 & 4 samples to generate raw, product and discard were received from Anglo Coal Central Laboratory (ACCL). The 70-30 sample was based on the coal resources available in the two seams. The sample fractions / mixtures investigated included:

- 50-50 mixture of Seam 2 & 4.
- 70-30 mixture of Seam 2 & 4.
- Seam 4 samples to give raw, product and discard samples for each fraction size.

Leaching was carried out in PVC columns ranging in size from 9 cm diameter by 45 cm high (small columns) up to 18 cm diameter by 90 cm high (big columns). The leachate collected after 1 minute and at 5-minute intervals before analysing for parameters of interest; pH, acidity, alkalinity, SO4 and Fe (II) for fraction sizes 100- 30 mm; 30-3 mm, 3-0.15 mm and 0.15-0 mm. The leaching for the fraction 0.15-0 mm was conducted over 150 minutes, with sampling of leachate at 10 min, 30 min, 60 min, 90 min, 120 min and 150 min. The recommended water: coal ratios for each particle size based on Brian Watters recommendations is as follows:

- 100-30 mm 2:1 water: coal ratio, time spent with water 1.5 min.
- 30-3 mm 5:1 water: coal ratio, time spent with water 4.5 min.
- 3-0.15 mm 10:1 water: coal ratio, time spent with water 21.5 min.
- 0.15-0 mm 30:1 water: coal ratio, time spent with water 141.5 min.

The larger fraction sizes with lower surface area was expected to generate alkaline/higher pH. However the pH results (Figure 4-10 and Figure 4-11) were unexpected and indicated the that as the water to coal ratio increases, the pH of sample aliquots collected from the columns increased and that dilution effects found to be less significant compared to surface area effects. From Figure 4-10 (C), the pH for coal fraction sizes 100-30 mm and 30-3 mm were acidic pH (3.5-4.0 and 5.5-7.5) for the Seam 4 discard. The relative influence three major variables, coal fraction size, time spent with water and water to coal ratio was deemed to be significant.

From the previous (CSIR, 2009) kinetic shake flask study, Seam 4 generated pH of 1.70-3.5 over a 2 week study period for a 3:1 water to coal ratio using sample size of 75 m. Based on the pH results and other water quality parameters, it was concluded that Seam 4 is acid generating.

For this study, (AATC, 2012), substantial changes in parameters such as fraction size, water to coal ratio and washing time have significantly changed the trend of data compared to the previous study (CSIR, 2009). Hence, the coal fraction sizes 100-30 mm and 30-3 mm for 4 seam- raw and the 100-30 mm and 30-3 mm for Seam 4 discard have pH values suggesting acid generation potential. However, all coal fraction sizes for the Seam 4 product have pH values > 4.5 and are not likely to generate substantial acidity during washing.

Based on the 2012 column test results, acidity generation was found to have potential significance in coal fraction sizes 100-30 mm and 30-3 mm compared to coal fraction sizes 3-0.15 mm and 0.15-0 mm over the washing period used. Although the data is unexpected based on surface area considerations and suggests that dilution effects become more significant as the water to coal ratio changes from 2:1; 5:1; 10:1 and 30:1 for the coal fractions 100-30 mm; 30-3 mm; 3-0.15 mm and 0.15-0 mm respectively. Overall, the acid generation potential for the 36 samples is not as significant as previously reported for Seam 4.

Figure 4-11 – pH versus Time for Blended Seam 4 and Seam 2 (AATC, 2012)

۱۱SD

4.3.6 SERITI (2017)

Coal washing tests work was conducted on for different blocks for a wash density of 1.5 to 1.85 cut point RD (Seriti, 2017). According to Seriti these blocks were ran on 2017 Kusile Coal Quality Spec (Seriti email communication, 02 August 2019), The coal/ash sulfur values (CSU) for Seam 4 &2 are presented in Figure 13. The average and maximum CSU values is 0.89 % and 4.0 % for Seam 4, and 0.46 % and 4.8% for Seam 2.

4.3.7 GOLDER (2009)

The estimated sludge produced by the pre-treatment and desalination of the excess mine water is based on the treatment process design which was done during the 2009 Prefeasibility study (PFS) by Golder Associates and Keyplan (Golder, 2009). A summary of the waste sludge production estimates is given in Table 4-9. The sludge production is based on the treatment of a poor water quality, similar to the post closure water quality. It is not anticipated that the different sludge streams produced will be separated. The combined sludge stream (moisture content ~29%) will be predominantly gypsum sludge (~ 61%) and 0.29% SiO₂. It was assumed that the combined sludge produce by the plant will have a hazard rating of 2, according to the Department of Water Affairs' Minimum Requirements.

No brine stream is anticipated to be produced. The estimated sludge production assumes that mine water pre- treatment and desalinated treatment would take place on the site of the New Largo Mine.

Planning Year	Treatment Plant Flow (m3/d)	Sludge Solids (t/h)	Sludge Cake Flow (m ³ /h)	Sludge Cake Volume (m ^{3/} d)
2015	4 000	1.3	2.1	51
2021	8 000	2.6	4.2	102
2026	12 000	4	6.4	153
2031	16 000	5.3	8.5	204
2041	20 000	6.6	10.6	256
2049	24 000	8	12.8	307

Table 4-9 - Combined Dewatered Sludge Flow (Golder, 2009)
4.3.8 GOLDER PFS (2011)

The following conclusions and recommendations were made for the PFS mine water managements and New Largo Water Reclamation Plant (NLWRP) (Golder, 2011):

Go-Forward Case

The selected Go-Forward Case is treatment and discharge to the Saalklapspruit and supply of potable water to Phola/Ogies as a later refinement to the project. The selected water treatment technology for the first phase of the NLWRP is based on membrane desalination. Ion exchange (IX) treatment required investigation during feasibility studies (trails and a demonstration plant recommended).

Water Management

Initially, the North Mine will be mined, and excess water will be pumped from the pit. The annual water make from the North Mine will stabilise at approximately 6.7 Ml/d. The South Mine old workings (Seam 2) will be dewatered (Figure 4-13) before mining can commence in that area.

Figure 4-13 – Mine Water Make for the North Mine, South Mine, Far South Mine and Total Mine (Golder, 2011)

According to the study, the estimated stored volume of water in old underground workings is 2.19 million m³ in Seam 2 and 5.1 million m³ in Seam 4. As the area is mined, the rate of water makes from the South (central section) will increase and stabilise at 12.7 Ml/d after closure. The far southern portion that will be mined thereafter (year 2038) will add to the overall water make and will stabilise at 3 Ml/d after closure. The total water from New Largo Colliery at closure is estimated at approximately 22.3 Ml/d.

The optimisation of balancing storage dam size, in-pit storage, and emergency water discharge to the environment was recommended by Golder during feasibility studies.

Water Treatment Technology:

Confirmation of the waste types (volumes & quality) produced was required. Golder indicated that based on the Go-Forward case the final water quality may prove difficult to achieve no brine.

Potable water treatment:

The NLWRP first phase/ initial technology selected for potable water use at the mine, is based on RO-membrane treatment since the process is proven and the brine production is limited.

• Water Quality:

Groundwater collected from the project area (Table 4-10) indicated variance in mine water qualities based on exposed to air and contact with different stratigraphic/ lithology rock units.

Table 4-10 - Water Qualities from Boreholes Sampled During 2009

Parameter	Units	North Mine Wate	South Mine Water Quality	
		BH03	BH04	M04 (Old Workings)
Temperature	°C	22.3	22.2	22.5
рН		5.7	5	7.7
Electrical Conductivity (EC)	mS/m	3.97	15.4	290
Suspended Solids	mg/L	10	0.0	0.0
Total Dissolved Solids (TDS)	mg/L	40	110	3 309
Ammonia (NH ₃ +)	mg/L	0.0	0.0	0.06
Phosphate (PO ₄ ³⁻)	mg/L	0.01	0.0	0.06
Chloride (Cl ⁻)	mg/L	3.9	3.7	3.7
Sulfate (SO ₄ ²⁻)	mg/L	15.1	58.9	2 130
Aluminum (Al ³⁺)	mg/L	1.29	0.01	0.0
Calcium (Ca ²⁺)	mg/L	1.97	11.7	568
Iron (Fe)	mg/L	0.19	0.06	0.13
Potassium (K+)	mg/L	0.00	0.01	0.0
Magnesium (Mg ²⁺)	mg/L	0.95	5.70	196
Manganese (Mn)	mg/L	0.08	0.09	2.4
Sodium (Na ⁺)	mg/L	1.4	3.6	32

Predicted mine water qualities by JMA Consulting in 2012 (Table 4-11) were based on borehole samples, ABA and leachate results for the period prior to 2027, including dewatering of North Mine and initial dewatering of old underground workings in the South Mine.

Water Quality Variable	Units	Predicted Water Quality – Prior to 2027 (JMA, 2012)	Design Water Quality – Prior to 2027
рН		6.0 - 7.5	5.0 – 7.5
Acidity as CaCO ₃	mg/L	0	0 - 300
Suspended Solids	mg/L	100	100
Total Dissolved Solids (TDS)	mg/L	800	1 000
Nitrate (NO ₃)	mg/L	2.5	2.5
Calcium (Ca ²⁺)	mg/L	35 - 110	300
Magnesium (Mg ²⁺)	mg/L	15 - 65	1 501
Fluoride (F ⁻)	mg/L	0.8	0.8
Sodium (Na ⁺)	mg/L	15 - 60	80
Potassium (K ⁺)	mg/L	5 - 20	20
Sulfate (SO ₄ ²⁻)	mg/L	< 200	360
Chloride (Cl ⁻)	mg/L	80*	100*
Total Alkalinity as CaCO ₃	mg/L	180 - 450	20 - 450
Silica (Si)	mg/L	10	10
Iron (Fe)	mg/L	<10	<10
Manganese (Mn)	mg/L	<10	<10
Aluminium (Al)	mg/L	<10	<10

Table 4-11 - Basis of Design Water Qualities for Desalination – Prior to 2027

Notes: * Ionic balance adjustment

The deterioration of the mine water qualities (post 2027) when mining commences at the South Mine was predicted by JMA (Table 4-12). The following assumptions were made in predicting the operational phase water qualities from the North Mine, South Mine and underground dewatering and the design water qualities:

- Partial in-pit storage in the North Mine for the area covered by Dragline No. 1.
- Progressively total water increasing make of 4 100 11 500 m³/day (2027-2044).
- Dewatering of the old underground workings at a rate of 3.5 Ml/day and at an average TDS of 1 100 mg/L for 4 years. This will influence the quality for a limited period only.
- Nett neutralization potential of shallower sandstone/siltstone units and massive bioturbated sandstone units will be depleted around 2035.
- Storage of water in all potential storage areas covered by Dragline No. 2.
- Progressively increasing total water make for the South of 1 500 13 000 m³/day (2030-2070).
- Complete depletion of Neutralization Potential after 2045.

\\SD

 Table 4-12 - Basis of Design Water Qualities for Desalination – South Mine or Combined North/South
 Plant – Operational Phase post 2027

Water Quality Variable	Units	Predicted Water Quality – Post 2027	Design Water Quality – Post 2027
рН		4.0 - 5.5	3.5 – 5.5
Acidity as CaCO ₃	mg/L	300	300
Suspended Solids	mg/L	100	100
Total Dissolved Solids (TDS)	mg/L	1 500 - 2600 ¹	3 300 ²
Nitrate (NO ₃)	mg/L	2.5	2.5
Calcium (Ca ²⁺)	mg/L	220 - 400	500
Magnesium (Mg ²⁺)	mg/L	120 - 200	250
Fluoride (F ⁻)	mg/L	0.8	0.8
Sodium (Na ²⁺)	mg/L	80 – 120	120
Potassium (K ⁺)	mg/L	35 – 45	45
Sulfate (SO ₄ ²⁻)	mg/L	700 – 1 100 ¹	2 200
Chloride (Cl ⁻)	mg/L	80 ¹	100
Total Alkalinity (CaCO ₃)	mg/L	0	0
Silica (Si)	mg/L	10	10
Iron (Fe)	mg/L	> 5	10
Manganese (Mn)	mg/L	> 3	10
Aluminium (Al)	mg/L	10	25
Total Organic Carbon (TOC)	mg/L	TBD	TBD
Chemical Oxygen Demand (COD)	mg/L	TBD	TBD

Notes: ¹Ionic balance adjustment, ²Calculated, TBD – To be determined

Additional water quality data to define the organic content e.g. total organic carbon (TOC) and organic carbon content and microbiological data was required to prevent biofouling of the RO membranes.

Waste Facility

A preliminary, first order assessment of the waste facility requirements needed to deal with the waste streams from the proposed WRP at New Largo Colliery indicated sizing, phasing and methodology of disposal of the sludge waste disposal facilities to be constructed. A formal site selection process was recommended for the feasibility study (FS).

The sludge produced from the water treatment process is based on the post-closure type water quality that is of poor quality and conservative since lower sludge production rates is anticipated earlier during the LOM. The design of the sludge facility liner based on the waste produced from predicted excess mine water needed to be reviewed during FS.

Alternative sludge handling and disposal options recommended to be investigated during the Feasibility Study included; in-pit co-disposal with discard material; utilisation of the sludge as

rehabilitation material during mine rehabilitation for closure and sludge marketability and selling as a valuable by-product/ beneficial use of Gypsum sludge as a resource.

Low chloride and sodium levels required in excess mine water to be discharged is expected to result in waste brine from the membrane treatment plant, implying brine pond(s) required for the disposal of brine. Alternative water treatment technologies, alternative brine reduction techniques and pilot trails to eliminate/minimise brine waste stream and reduce post-closure liabilities was recommended by Golder.

4.3.9 JONES & WAGNER (2013 & 2014)

Jones and Wagner (J&W) conducted the baseline surface water quality as part of the Environmental Impact Assessment (EIA) and subsequent annual monitoring in 2013 (one sampling event during low flow conditions) and 2014 (sampled during low and high flow conditions in March and August 2014). The following was noted on water quality:

- Surface water quality in and the ecological integrity of the Wilge River catchment is generally better than in the Saalklapspruit catchment. Within the Wilge River catchment, an existing impact has been observed upstream from the New Largo project at NL1 and NL2. This is attributed to mining activities in the upper reaches of the catchment. The water quality downstream of the New Largo mine area in the Wilge River is generally of better quality than upstream.
- The high levels of sulfate measured at NL4 on the Klipfonteinspruit (Figure 4-14), a tributary of the Wilge River and upstream points NL1 and NL2, showed poor water quality associated with mining related activities since baseline monitoring commenced in October 2010. Improvement in the water quality was noted since April 2012 and was attributed to uncontrolled decant from the underground workings of the old (closed) New Largo Colliery reporting to the Klipfonteinspruit that has greatly reduced and is no longer present.
- The large pan on the farm Klipfontein 566 JR (Pan 2) had an EC level of 298 mS/m and sulfate concentration measured as 1 983 mg/L during October 2013. This pan has been used for the storage of water pumped from the old underground workings and therefore poor water quality typical of impacted mine water is expected.
- Both the pan systems reflect impaired conditions following the November 2013 survey. The Honingkrantz pan, which was previously considered in a relatively un-impacted state. The pan was dry during the October 2013 surface water quality sampling. Adjacent sand mining activities therefore has a substantial impact on this pan.
- At the furthest downstream point, NL9, which is representative of the cumulative impact up to that point in the sub-catchment, the sulfate level is slightly elevated above the RWQO (minimum of 18.74 mg/L, maximum of 94.41 mg/L and an average of 49.77 mg/L).
- Majority of the surface water samples in the Wilge River catchment show a Ca-HCO₃ character, typical of fresh water with exception of Pan 2 which shows a Ca-SO₄ character that is typical of impacted water from the coal mining area. This pan has been used for the storage of water from the old underground workings, which explains the characteristics of the water.

Figure 4-14 – Surface Water Monitoring (J&W, 2014) Indicating Two Large Pans Pan 1 (Located on the Farm Honingkrantz 536 JR) and Pan 2 (Located on Farm Klipfontein 566 JR) (J&W, 2013 and 2014)

4.3.10 GOLDER BFS (2019)

A Geochemistry specialist report was compiled by (Golder, 2019) in support of a bankable feasibility study. The contents of the report, in terms of the documented historic review forms part of the current study. The report highlighted mine residue material characteristics, mine water quality predictions and mine water management for New Largo project. Additionally, a preliminary waste classification and assessment was conducted on New Largo coal material (based on available data) and was included in the report.

The following were concluded from the study:

- Material Movement:
 - The 2012 EIA stated that spoils (overburden/interburden) from the box-cuts will be placed on an overburden stockpile to the west of the mining operation. After the initial box-cuts, spoils will be rolled-over.

- The total estimated discards generated is 74 116 308 Mt based on an average of 1.6 million tons/a and is less than the ~94 Mt anticipated for the 2012 feasibility study. A small discard dump is intended for placement of the discard material due to in-pit space constraints, and until the two designated backfilled sections of pit becomes accessible.
- Coal Wash Plant process design is based on the coal, product and discard material quality generated for the 2012 feasibility study that meets the revised Kusile /Eskom coal specifications. Therefore, the available characterisation results for New Largo residue materials (spoil and discard) is valid.
- Approximately 79% of coal was classified as likely/possibly acid generating. Coal left in the pit (e.g. uneconomical coal seams e.g. Seam 1/3/4A/5) and adjacent carbonaceous units will increase the potential of the backfill to generate acid drainage (local acidic drainage from the backfilled spoils).
- The combined sludge waste stream produced by the pre-treatment and desalination of the excess (poor) mine water will be predominantly gypsum sludge (~ 61%) and 0.29% SiO₂ with a moisture content of ~29%).
- Material characteristics
 - The average particle size distribution of the raw coal indicated 80% passing 3 mm.
 - Minerology results indicated the pyrite proportions in the coal seam and carbonaceous shale sample tested ranging from 0.14 to 7.6%.
 - The calcite and kaolinite are expected to contribute to the NP of the coal and carbonaceous shale samples. The mineralogical results confirmed the presence of calcite (0.1 to 10%), and trace to minor amounts of siderite (0.15 – 5.5%) in the coal/ carbonaceous shale samples. The ANP depletion rate of the neutralising minerals needs to be confirmed by kinetic tests to determine the onset of acidity.
 - The clastic rocks have a smaller potential to generate acidic drainage due to lower sulphur content with ~15% of sandstone and ~9% of the shale samples have a substantial potential to generate acid mine drainage. 31% of sandstone and shale interlayered rock will have a substantial potential to acidify.
 - Some parts of the backfill is expected to be neutral pH based on the average NP/AP=2.2 and other parts (where carbonaceous rock is dominant) will become acidic NP/AP=0.63.
 - Nett Acid Generation (NAG) pH for coal/carbonaceous shale samples ranged between 1.90 and 6.10 (average NAG pH = 2.64), implying a risk of acidic drainage in the long-term.
 - Based on the coal/ carbonaceous shale NAG results, the following parameters are leachable at concentrations exceeding DWAF (1996) criteria and the Saalklapspruit objectives:
 - Saalklapspruit. pH (acidic), SO₄²⁻, TDS, Al, Ca, Fe and Mn.
 - Aquatic AEV. pH (acidic), AI, Ca, Fe, Mn, Cu, Fe, As (WT Seam 2 sample only).
 - Domestic acceptable water quality. pH (acidic), AI, Mn, Fe and Zn.

A summary of the key ABA parameters and findings for the New Largo coal, spoils and discard materials based on the previous characterisation results is summarised below:

- Coal
 - Seam 1 /pit floor: One sample with Total S =0.45% that classified as PAG since NPR calculated as 0.45 (<1).

- Seam 2 Coal: Total S content ranged from 0.10 to 2.89 %. The Seam 2 coal has TNPR ratios of 0.03 to 5.5 and paste pH circum-neutral (paste pH 4.4-7.9) except for one sample with acidic paste pH. Seam 2 coal has likely ARD potential predominantly (46 % or 6 of 13 samples) whist the remaining classifies as Non-PAG.
- Seam 4 Coal: Total S and Paste pH ranged from 0.23 to 2.7 %S and pH =3.4 to 7.4 respectively. Seam 4 coal is predominantly acid generating (86% with likely ARD potential).
- Coal Seam 4A (Total S =1.1%) classified as PAG due to TNPR<0.01.
- Seam 3 Coal: Total S content ranged from 0.76 to 2.7 %. The Seam 4 coal has TNPR ratios of <0.01 to 0.42 and paste pH circum- neutral (paste pH 4.49 -6.5) All four sample (100%) classify as likely ARD potential
- Seam 5 Coal: Total S ranged from 0.29 to 1.7 %S and pH =5.0 to 6.1 respectively. Both samples are likely acid generating based on TNPR <0.01.
- Spoils
 - Non-carbonaceous shale: Sulphide sulphur content ranged from 0.05 to 0.40% Total (overburden/ (Bulk) NP ranges from <0.1 - 10 kgCaCO₃ eqv/tonne. Predominantly Non-PAG (99% of the interburden) 23 samples) due to low total S and average paste pH of pH 6.6.
 - Carbonaceous shale/sandstone: Low to likely potential to generate acidic drainage due to varying total S (0.05 1.9%S). Bulk NP = 0.02 kgCaCO₃ eqv/tonne resulting in TNPR ranging from <0.01 to 4.0. Five (5) of 11 samples classified as PAG. ARD and ML potential expected to be, as a lower than that of the coal material.
- DMS Plant Discard
 - Seam 2 discard: Initial batch kinetic pH was mildly acidic (pH~5.5) and increased to pH 6 (day 9) and pH 7 on the final day (day 14 indicating available neutralising minerals (calcite) in the sample to buffer acid generation from pyrite oxidation Alkalinity. Fe and sulphate concentrations (day 2 to day 14) ranged from 30-80 mg CaCO₃ eq/L. 28-69 mg Fe/L and 500-1600 mg SO4/L respectively.
 - Seam 4 discard: Acidic pH range (pH = 3.5 to 1.7) observed from the over 2 weeks indicated acidity is realised in the short-term term for the unblended Seam 4 discard material. Leached acidity, Fe and sulphate concentrations (day 2 to day 14) ranged from 1 400 to 8 550 mg/L CaCO₃ equiv. 28-445 mg Fe/L and 600-7 200 mg SO4/L.
 - Seam 4 and Seam 2/4 discard mixtures: Small (9 cm x 45 cm) and large (18 cm x 90 cm) column tests at various contact time, and water to coal weight ratio indicated Seam 4 is acid generating (pH ~4.5). The 50:50 Seam 2 and Seam 4 mixture follows the same trend as Seam 4 with no evidence that alkalinity from the Seam 2 portion of the mixture is realised. The pH ranges for the 50-50 mixture coal fractions for raw, product and discard were recorded as 3.0-8.5. 4.0-8.5 and 4.0-7.5 respectively
 - The 70-30 raw coal and product mixture had slightly elevated pH values for the 100-30 mm and 30-3 mm fractions implying increased in alkalinity available from Seam 2. The pH ranges for raw, product and discard during the column washing were 4.0-8.5. 5.0-9.0 and 3.0-7.5 respectively. The 70-30 mixture-discard for 100-30 mm and 30-3 mm size fractions had acid pH range (pH = 3.0-4.0).
- Summary of the preliminary waste classification and type (based on peroxide leach results):

- The sludge waste streams, and combined sludge produce by the plant has been classified as hazard rating of 2 according to DWAF (1996) and based on major chemical constituents (Golder, 2012).
- Coal classified non-hazardous (preliminary classification) based on the low leachable concentrations (peroxide leach results) for Seam2/4 coal, for major metals and metalloids. Non-hazardous classification assumed for New Largo discard materials.
- Coal and discard materials are assessed as Type 3 waste based on As; Ba; Ca; Cu; Ni; and Pb exceeding TCT 1 thresholds, and TDS; As, Cd; Cr; Mn; Ni; Pb; and SO₄²⁻ exceeding LCT 0 thresholds.
- Based on the available data form New Largo and Golder's experience with Highveld coal discard, it is likely that New Largo discard will be Type 3.

5 FIELD AND LABORATORY PROGRAMME

The geochemical characterisation of the sampled materials involved the material characterisation together with static tests, that were used to develop preliminary and final source terms for the pits at New Largo. The kinetic test was recommended to determine the long-term reactivity and leachability of the in-pit discard.

5.1 SAMPLING

Samples of coal discard and destoning rejects were collected by the New Largo personnel from the 19th to 21st of February 2024. These comprised the following residues:

- Genet destoning plant (air plant) rejects: three discrete samples, composited into sample SNL-Deston-CD-01.
- Welgelegen dense medium separation (DMS) plant (wet coal washing plant) coal discard: 3 discrete samples, which were composited into sample SNL-Welge-CD-01.
- Phola DMS plant dewatered coal discard from mixed Klipspruit and New Largo coal: 3 discrete samples, composited into sample SNL-Ph-CD-01.

5.2 STATIC TESTING

The composite samples were submitted to an accredited laboratory for static tests including Acid Base Accounting (ABA) and Net Acid Generation (NAG) tests which gives an indication of the overall potential for generation of acidic leachate and determines the balance of acid generating and acid neutralising capacity of a sample. Mineralogical analysis by X-ray diffraction (XRD) and Whole rock analyses to determine total concentrations on inorganic potential constituents of concern (PCOCs).

5.3 KINETIC TESTING

5.3.1 INTRODUCTION

SNL-Welge-CD-01 and SNL-Deston-CD-01 samples were then submitted for Kinetic testing which is used to estimate the longer-term potential of mine residue materials to generate/consume acid, produce contaminated leachate, estimate rates of oxidation and dissolution of materials (ASTM, 2018a). This is required to understand long term environmental impacts and surface and groundwater risks (ASTM, 2018b).

The two kinetic cells SNL-Welge-CD-01 and SNL-Deston-CD-01 were setup up at WSP Environmental Laboratory.

5.3.2 PRINCIPLES

Kinetic testing is carried out over a 20-week period at the WSP Earth and Environment Laboratory. According to the Word Bank Environmental Health and Safety (EHS) Guidelines, accelerated weathering tests are required from feasibility stage onwards to assess and manage potentially Acid Generating (PAG), Acid Rock Drainage (ARD) and Metal Leaching (ML) characteristics to protect the local environment (IFC, 2007). Additionally, kinetic tests are set-up to allow on-going measurements of weathering and leaching rates and/or the resulting drainage chemistry (MEND., 2009). The objectives for executing kinetic tests include:

- Determination of the rate of sulfide oxidation/acid generation.
- Determination of the rate of neutralisation potential consumption.
- Time to the onset of ARD and time taken for acid and neutralising consumption.
- Prediction of final mine residue facility seepage quality and pit water quality (ASTM, 2018b).

The kinetic test method is not a direct indication of on-site drainage chemistry but simulates accelerated material weathering rates. The difference between actual field conditions and kinetic test by humidity cells can differ by at least an order of magnitude.

5.3.3 METHOD

For each cell, a 1 kg sample was placed in each humidity cell (HC) and initial week test conducted by soaking the sample in 1000 mL of distilled water for approximately 2 hours before draining the leachate. Thereafter, the following repetitious seven-day cycle was employed:

- Pumping of dry air for the first three days.
- Pumping of humid air for the following three days (from the fourth to the sixth day).
- Rinsing of the sample with 500 mL of distilled water and collection of leachates on the seventh day.

The next cycle started on the eighth day and the tests were run over a minimum (standard) 20 weeks. The parameters that were measured in the leachate for each week cycle to facilitate analysis and interpretation of the results are presented in Table 5-1.

Material Type	Parameter Analysed	Frequency of measurement
Coal Discard and Rejects Samples	Volume of leachate added and collected	Every week from first leach (0-20)
	Humidifier temperature	Every week from first leach (0-20)
	pH, EC, TDS, alkalinity, major cations and anions	Every week from first leach (0-20)
	Trace elements	Week 0-7, 10, 15 and 20

Table	5-1 -	Parameters	measured	in t	he lead	chate
Table	J-1 -	i arameters	measureu		ne iea	Juace

5.4 ADDITIONAL SAMPLE AND TESTING

Once early results from SNL-Deston-CD-01 were reviewed, the sulfate load in the leachate was found to be low, and this was discussed with the New largo and Genet metallurgists. It was agreed that the Genet destoning plant (air plant) rejects sample supplied in February were not representative, having a low total sulfur and sulfate content, and hence using these samples would bias the study.

Therefore, additional discrete samples of Genet destoning plant (air plant) rejects were collected by the Client between 22nd and 26th May 2024 and sent to the Laboratory on the 28 May 2024 for the screening analysis (i.e., total sulfur). The discrete samples were then composited based on the daily total sulfur measurements recorded at the Genet plant to produce composite sample (SNL-PitD-Deston-02) which was set up and started running on the 13th of June 2024. The laboratory procedure is still on-going, and the full results presented in this report include 8 out of 20 weeks of procedure, with pH and EC available to week 13. Static tests were also carried out on composite sample SNL-PitD-Deston-02.

6 GEOCHEMICAL ASSESSMENT

6.1 STATIC TEST RESULTS

This section presents the static results of the DMS discard and destoning rejects samples, including the replacement destoning reject composite sample (SNL-PitD-Deston-02), and excluding the unrepresentative SNL-Deston-CD-01. The overburden static results forms part of the literature review presented in Section 4.

6.1.1 MINERALOGY

The mineralogical composition of the New Largo discard and rejects samples are presented in Figure 6-1 and Table 6-1. The purpose of the mineralogical analysis was to identify minerals with potential for generating acidity (i.e., sulfides and sulfates) and neutralisation potential (i.e., carbonate and silicate minerals).

The results of the mineralogical assessment are as follows:

- The XRD analysis detected nine crystalline mineral phases in the New Largo coal residue samples overall.
- The dominant mineral phases identified were kaolinite and quartz.
- Pyrite, the principal sulfide mineral linked to ARD generation, was detected in all the samples with the DMS plant discard from Phola Plant (SNL-Ph-CD-01) having higher percentage (3.2 wt.%) compared to the DMS plant discard from Welgelegen Plant (SNL-Welge-CD-01) which had 0.8 wt.%. The destoning rejects (SNL-PitD-Deston-02) had 2.9 wt.% of pyrite.
- Fast-reacting carbonates such as calcite (CaCO₃) and dolomite [CaMg(CO₃)₂], which contribute to buffering, were detected in the samples, with calcite detected in all the samples at 0.4 wt.%, 1.52 wt.%, and 1.6 wt.% for SNL-Welge-CD-01, SNL-PitD-Deston-02, and SNL-Ph-CD-01 respectively. Dolomite was only detected in SNL-Welge-CD-01 (0.1 wt.%) and SNL-Ph-CD-01 (1.1 wt.%) samples.

- Siderite FeCO₃ was detected in all the samples, even though it is a carbonate mineral which is supposed to add to the buffering capacity, siderite does not generate net alkalinity due to the generation of acidity when iron hydrolyses and forms, for instance, ferrihydrite.
- Silicate mineral, kaolinite, was the dominant phase in all the samples with 37.3 wt.%, 54.5 wt.%, and 42.1 wt.% for SNL-Welge-CD-01, SNL-PitD-Deston-02, and SNL-Ph-CD-01 respectively. Only SNL-PitD-Deston-02, had muscovite present at 4.99 wt.%. These silicate minerals are expected to provide buffering in the pH range of 2.2-5.1 as it slowly weathers (Blowell et.al., 2000).

• The other mineral phases in the samples are inert (i.e., quartz, anatase, and microcline).

Figure 6-1 - Mineralogical Composition of New Largo Coal discard and rejects samples

 Table 6-1 - Mineralogical Composition of New Largo Coal discard and rejects samples and weathering rates of individual minerals.

Weathering rate	Mineral	Chemical formula	SNL-Welge-CD-01	SNL-PitD-Deston-CD-02	SNL-Ph-CD-01
Material Type			DMS Coal Discard	Destoning Rejects	DMS Coal Discard
very fast weathering	Pyrite	FeS ₂	0.8	2.9	3.2
Dissolving	Calcite	CaCO₃	0.4	1.5	1.6
Dissolving	Dolomite	CaMg(CO ₃) ₂	0.1	0	1.1
fast weathering	Siderite	FeCO ₃	1.1	2.1	0.5
slow weathering	Kaolinite	$AI_2Si_2O_5(OH)_4$	37.3	54.6	42.1
Inert	Quartz	SiO ₂	11.3	27.1	8.9
Inert	Anatase	TiO ₂	0.3	0	0.4
slow weathering	Microcline	KAISi ₃ O ₈	0	6.8	0
Slow Weathering	Muscovite	KAI ₂ (Si ₃ AI)O ₁₀ (OH) ₂	0	4.99	0
Organic C	Coal macerals	various	48.9	0	42.2

6.1.2 ELEMENTAL COMPOSITION

Total metal and semi-metal concentrations in mining waste materials can be compared to the median crustal abundance for unmineralised soils (Bowen, 1979) and (INAP, 2010). The extent of enrichment is expressed as the Geochemical Abundance Index (GAI), which relates the actual concentration in a sample to the median or average crustal abundance. The GAI is calculated using the equation:

$$GAI = log2 [Cn/1.5 \times Bn]$$

where Cn is the concentration of the element in the sample and Bn is the crustal abundance of that element.

The GAI is expressed in integer increments from 0 through to 6, where a GAI of 0 indicates the element is present at a concentration similar to or less than the crustal abundances; GAI of 3 corresponds to a 12-fold; and so forth, up to a GAI of 6, which indicating approximately 100-fold or greater enrichment above the median crustal abundances (Table 6-2).

The elements, according to their enrichment, in the New Largo samples are shown in Table 6-3. Based on the GAI, Silver (Ag), Selenium (Se), arsenic (As), bismuth (Bi) were found to be enriched (i.e., a GAI \geq 3) in SNL-Welge-CD-01 (DMS plant discard) while boron (B), mercury (Hg), molybdenum (Mo), Se, cadmium (Cd) and tellurium (Te) were enriched in SNL-PitD-Deston-02 (destoning reject), and Ag, Se, Te, and Bi were enriched in SNL-Ph-CD-01 (Phola plant discard) sample.

It should be noted that a high concentration of elements determined by the GAI does not imply that these elements will be easily mobilized in the environment thereby resulting in environmental or health impacts, however it does give an indication of the potential source of contaminants which requires further investigation (INAP, 2010).

GAI	Enrichment Factor
0	Less than 3-fold enrichment
1	3 – 6-fold enrichment
2	6 – 12-fold enrichment
3	12 – 24-fold enrichment
4	24 – 48-fold enrichment
5	48 – 96-fold enrichment
6	Greater than 96-fold enrichment

Table 6-2 - Geochemical Abundance Index (GAI) values and enrichment factors

Table 6-3 - Geochemical Abundance Index for New Largo samples

Sample ID	Elements with GAI = 0	Elements with GAI = 1	Elements with GAI = 2	Elements with GAI = 3	Elements with GAI = 4	Elements with GAI = 5	Element s with GAI = 6
SNL-Welge-CD-01	Al, Ba, Be, C, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Mg, Mn, Mo, Na, Nb, Ni, P, S, Sb, Sc, Si, Sr, Ta, Th, Ti, Tl, U, V, Zn, and Zr	B, Hf, Li, Pb, Sb, Sn, Te, and W	None	Ag and Se	As	None	Bi
SNL-PitD-Desto-02	Al, Ba, Be, C, Ca, Co, Cu, Fe, Ga, Ge, Hf, K, Mg, Mn, Na, Nb, Ni, P, S, Sc, Si, Sr, Ta, Ti, Tl, U, V, Y, Zn, and Zr	Pb, Th, and W	As and Sb	B, Hg, and Mo	Cd and Se	None	Те
SNL-Ph-CD-01	Al, Ba, Be, C, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Mg, Mn, Na, Nb, Ni, P, S, Sc, Si, Sr, Ta, Th, Ti, TI, V, Zn, and Zr	B, Hf, Mo, Pb, Sb, Sn, U, and W	As and Li	Ag, Se, and Te	None	None	Ві

6.1.3 ACID BASE ACCOUNTING

The screening criteria used in this memorandum to assess the acid generation potential of the New Largo coal discard samples is based on the guidelines from (Price et al, 1997) in conjunction with (Soregaroli et al, 1997), shown in Table 6.4, (Morin et al, 1997) and (MEND., 2009), shown in Table 6.5.

Table 6-6 presents the ABA results of New Largo samples. A brief discussion of the results is presented below:

- The results indicate that all samples had high concentrations of total sulfur at 1.25% (SNL-Welge-CD-01), 2.82% (SNL-PitD-Deston-02), and 2.74% (SNL-Ph-CD-01). High sulfur concentrations are expected in the samples since pyrite is common in coal bearing formations.
- Paste pH and sulfide sulfur content results can be used as screening tools to determine the potential for acid generation. Low potentials for acid generation are indicated by paste pH values greater than 5.5 and sulfide contents less than 0.3%. Conversely, paste pH values less than 5.5 and sulfide contents greater than 0.3% indicate a potential for acid generation. Referring to the sulfide sulfur content, all the samples exhibit a higher potential for acid generation with values at 1.09%, 2.77%, and 2.37% for SNL-Welge-CD-01, SNL-PitD-Deston-02, and SNL-Ph-CD-01 respectively. The neutral paste pH of all the samples (SNL-Welge-CD-01 pH 6.76, SNL-PitD-Deston-02 pH 7.03, and SNL-Ph-CD-01 pH 7.18) indicates the presence of reactive neutralisation potential (NP).

- Two forms of neutralization potential (NP) were determined, and these are Bulk NP and carbonate NP (or CaNP). A comparison of the Bulk NP and CaNP is shown in Figure 6-2. The difference between the two is that the Bulk NP method includes the consumption of acid by both readily soluble carbonate minerals and less soluble silicate minerals, while CaNP quantifies the neutralization potential based solely on the dissolution of soluble carbonate minerals. CaNP values for the New Largo samples were generally higher than Bulk NP values, suggesting that the CaNP is an overestimate. Referring to the bulk NP, SNL-PitD-Deston-02 (43.47 kg CaCO₃/t) and SNL-Ph-CD-01 (35.2 kg CaCO₃/t) exhibits a higher NP compared to SNL-Welge-CD-01 (11.37 kg CaCO₃/t). This shows that SNL-Welge-CD-01 sample had less acid neutralizing minerals.
- Acid potential (AP) was calculated using sulfide sulfur (SAP) as it represents the reactive sulfur component. Total sulfur was not used as it includes the non-reactive sulfur component such organic sulfur and sulfate sulfur, which would overestimate AP. Figure 6-3 shows the SNPR (BulkNP/SAP) vs. %S (Sulfide-Sulfur) for the New Largo samples based on sulfide content. Based on the SNPR values, all samples are classified as "likely" to generate acid rock drainage (ARD).
- The paste pH vs. SNPR (BulkNP/SAP), which is based on sulfide content shown in Figure 6-4, show that all the samples are potentially acid generating (PAG).
- The Neutralisation Potential Ratio (NPR) which is defined as NP/AP was also calculated. All values, as presented in
- Table 6-6, are <1.00. Referring to assessment criteria in Table 5-4, all samples are assessed as "likely" to be acid generating, while assessment criteria set in Table 5-5, classify all samples as "acid generating".

Table 6-4 - Acid generation potential assessment criteria, based on guidelines from (Price et al, 1997) and (Soregaroli et al, 1997)

Sulfide Sulfur	NPR (Neutralising Potential Ratio) (Bulk NP/AP)	Potential for ARD	Comments
<0.30%		None	No further ARD testing required provided there are no other metal leaching concerns. Exceptions: host rock with no basic minerals, sulfide minerals that are weakly acid soluble.
>0.30%	<1.00	Likely	Likely to be ARD generating
	1.00-2.00	Possibly	Possibly ARD generating if NP (Neutralisation Potential) is insufficiently reactive or is depleted at a rate faster than that of sulfides.
	2.00-4.00	Low	Not potentially ARD generating unless substantial preferential exposure of sulfides occur along fractures or extremely reactive sulfides are present together with insufficiently reactive NP.
	>4.00	None	No further ARD testing required unless materials are to be used as a source of alkalinity.

Table 6-5 - Acid generation potential assessment criteria, based on guidelines from (Morin et al, 1997) and (MEND., 2009)

Paste pH	NPR (Bulk NP/AP)	Potential for ARD	Comments
<6.00	<1.00	Acid generating	Net acid generating, and already acidic
>6.00	<1.00	Potentially acid generating	Potentially acid generating unless sulfide minerals is non-reactive. Thus, samples are net acid generating, but not yet acidic.
<6.00 and >6.00	1.00≤NPR≤2.00	Uncertain	Possibly acid generating if NP is insufficiently reactive or is depleted at a rate faster than sulfides.
>6.00	>2.00	Not potentially acid generating (non-PAG)	Not expected to generate acidity i.e., samples are net acid neutralizing.
<6.00	>2.00		Theoretically not possible

Table 6-6 - Summary of ABA results for New Largo coal discard samples

Sample ID	Paste pH	Total Sulfur (%)	Sulfur- Sulfide	Sulfur- Sulfate	¹ Bulk NP	² CaNP	³ SAP	⁴ SNNP	⁵ SNPR	⁶ NPR
SNL-Welge-CD-01	6.76	1.25	1.09	0.00	11.37	476.82	33.97	-22.60	0.33	0.29
SNL-PitD-Deston-02	7.03	2.82	2.77	0.05	43.47	188.47	86.56	-43.10	0.50	0.50
SNL-Ph-CD-01	7.18	2.74	2.37	0.01	35.20	289.86	74.13	-38.93	0.47	0.41

Note: ¹Bulk NP - NP measured by the modified Sobek titration and is used for the NPR calculation. ²CaNP - carbonate neutralisation potential. ³SAP – acid potential based on sulfide sulfur. ⁴SNNP - Sulfide Net Neutralisation Potential = BulkNP - SAP. ⁵SNPR – is the ratio of SAP and bulk NP. ⁶NPR – is the ratio of NP and AP.

Figure 6-2 - Carbonate NP vs Bulk NP for New Largo Samples

Figure 6-3 - SNPR (BulkNP/SAP) vs %Sulfur for New Largo samples

Figure 6-4 - Paste pH vs SNPR (BulkNP/SAP) for New Largo samples

6.1.4 NET ACID GENERATION (NAG)

In addition to the ABA, a NAG test was undertaken to determine the ARD potential of the New Largo coal residue samples and are presented in Table 6-7. Figure 6-5 and Figure 6-6 illustrates the NAG pH to SNPR and Paste pH respectively. In general, a NAG pH threshold of 4.5 is used to identify potentially acid-generating material. As such, NAG pH values below 4.5 indicate a potential for acid generation. The following is deduced from the NAG test results:

- Referring to Figure 6-5 which illustrates the NAG pH versus paste pH the samples, all samples plot below the NAG pH threshold of 4.5, indicating that the coal discard samples are acid generating. Furthermore, a comparison of the NAG pH and Paste pH, indicates that over the short term all the coal discard samples will have a neutral pH (between 6.76 and 7.18), as reflected by the paste pH, but under extreme oxidising conditions, as reflected by the NAG pH the pH is likely to be closer to be below 3.
- Based on SNPR (BulkNP/SAP), which considers bulk neutralisation (BulkNP) and acid potential from sulfide (SAP) to the NAG pH (Figure 6-6), all samples classify as being potentially acid generating (PAG).
- The nett acid generation potential of the DMS discard samples (SNL-Welge-CD-01 and SNL-Ph-CD-01) is consistently higher than for the destoning rejects (SNL-PitD-Deston-02).

Sample ID	NAG pH: (H ₂ O ₂)	NAG at pH 4.5	NAG at pH 7.0
		kg H ₂ SO ₄ /t	kg H ₂ SO ₄ /t
SNL-Welge-CD-01	1.88	25.43	43.48
SNL-PitD-Deston-02	2.79	14.50	27.05
SNL-Ph-CD-01	2.88	29.35	39.72

Table 6-7 - Summary of Net Acid Generation (NAG) results for New Largo samples

Figure 6-5 - NAG pH vs. Paste pH for New Largo samples

vsp

Figure 6-6 - NAG pH vs SNPR (BulkNP/SAP) for New largo samples

6.2 KINETIC RESULTS

The kinetic cell experiment was set-up to allow for the on-going measurements of weathering / leaching rates and the resulting drainage chemistry expected from the New Largo coal residue samples. Only DMS plant coal discard from Welgelegen and destoning plant rejects were set up in the two kinetic cells.

For the DMS Plant discard, weekly concentrations and rinse water volumes collected were used to determine weekly leach rates, with weekly fluctuations in volume collected (250-500 mL) occurring after leaching with 500 mL deionised water, and dissolution of minerals/salts. The 20-week kinetic results are presented in Table 11-1 in Appendix D.

In terms of the Destoning Plant rejects, the cell is still running at WSP Laboratory for the standard 20-weeks with a weekly evaluation of the leachate samples. Full results were only available until the 8th week, with EC and pH available to the 13th week. The results are presented in Table 11-2, Appendix D.

As an indication of potential environmental hazard and to put the results into context, the kinetic leach results have been compared to the water use license (WUL) limits for groundwater quality, see Table 6-8. A WUL No.04/B20G/ACFGIJ/2538, File No: 16/2/7/B200/C528) was issued to New Largo Colliery by the Department of Water and Sanitation (DWS) on 11 January 2015.

Substance/parameter	Unit	Limit
рН		7.7
Calcium (Ca ²⁺)	mg/L	568
Chloride (Cl ⁻)	mg/L	3.7
Fluoride (F ⁻)	mg/L	0.8
Iron (Fe)	mg/L	0.13
Magnesium (Mg ²⁺)	mg/L	196
Manganese (Mn)	mg/L	2.4
Potassium (K ⁺)	mg/L	0.0
Sodium (Na ²⁺⁾	mg/L	32
Sulfate (SO ₄ ²⁻)	mg/L	2 130
Total dissolved solids (TDS)	mg/L	3 309

Table 6-8 – Groundwater Quality Limits (Table 9, WUL No.04/B20G/ACFGIJ/2538, 2015)

Only the trends for selected constituents such as pH, TDS, electrical conductivity, and sulfate are discussed, presented in Figure 6-7 to Figure 6-10, and the rest of the trends are presented in Appendix E. From the trends and screening against the groundwater WUL limits, the following is deduced:

- Referring to Figure 6-7, the DMS Plant discard sample (SNL-Welge-CD-01) had a pH = 6.91 at the start of the kinetic leach test (week 0), after which it remains within the range (pH 6.11 7.22), which indicates some buffering capacity. The discard sample paste pH values are within the pH ranges with the DMS plant discard paste pH of 6.76. The Destoning Plant reject sample show neutral conditions with pH range between 7.37 and 7.73, and the paste pH (7.03) within the range in the 8 weeks test period. Both the coal residue samples had pH levels that were close to the groundwater WUL limit of 7.7.
- DMS plant discard sample had the highest TDS concentrations measured (764 mg/L) in week 9, (see Figure 6-8). The TDS is shown to increase from week 0 until week 2, and decreased from week 3 until week 7, and then increased from week 8 until week 11, and a decrease from week 12 to 16. Lastly, a slight but stable increase until week 20. A similar trend can be seen in (Figure 6-9), in terms of the conductivity. Furthermore, DMS plant discard sample had the highest conductivity in week 12 (1 080 µS/cm) and showed to be variable until week 13 ranging from 81 µS/cm to 1 080 µS/cm. Destoning Plant reject sample had the highest TDS recorded in week 0 (745 mg/L), but fluctuates with the weeks with the lowest concentration (378 mg/L) recorded in week 2. Moreover, variable conductivity is observed during the 8 weeks of the experiment, ranging between 449 to 981 µS/cm. Both Samples had TDS levels that were below the specified WUL limit of 3 309 mg/L.
- Sulfate concentrations are shown to have a similar trend to TDS and conductivity for both the DMS Plant discard (range from 236 to 652 mg/L) and Destoning Plant reject (237.5 to 505 mg/L). Both the samples had concentrations that are lower than the specified WUL limit of 2 130 mg/L.
- Only chloride and iron were found to be above the specified WUL limits of 3.7 mg/L and 0.13 mg/L, respectively, in negligible number of samples. DMS plant discard had exceedances for iron concentrations during week 11 (1.38 mg/L) and 12 (0.49 mg/L), while the Destoning Plant reject

had the chloride exceedance during the initial flush (14.8 mg/L), but thereafter was below the laboratory detection limit.

Figure 6-7 - kinetic results showing the evolution of pH for New Largo Coal residue samples

IN-PIT DISPOSAL OF COAL DISCARD AND REJECTS AT NEW LARGO Project No.: 41106340 | Our Ref No.: 41106340-REP-00005 Seriti Power (Pty) Ltd

vsp

6.3 SOURCE TERM

6.3.1 APPROACH

The laboratory kinetic testing has run to completion (i.e. 20 weeks) for the DMS Plant discard sample (SNL-Welge-CD-01) and still on-going for the Destoning Plant rejects (SNL-PitD-Deston-02).

Therefore, final source-term predictions are completed for the New Largo opencast pits with DMS Plant discard, however, preliminary source term predictions are provided after 7 weeks of the experiment for the pits with Destoning Plant rejects, and a final source-term will be provided once the experiment has run to completion (November 2024).

The predictions were based on kinetic cell data for the DMS plant discard and destoning plant reject. For spoils, the historic short term leach test results for the overburden (JMA, 2009), were used as inputs.

Assumptions on field conditions for all sources were made to upscale the input water data from laboratory results to mine facilities. The assumptions for scaling factors were based on WSP's understanding of the project, together with an approach based on international literature on scaling factors and their application.

It should be noted that while the preliminary (i.e. Destoning Plant rejects), predictions in this document were made using the same approach as for the DMS discard, they are using results from incomplete kinetic testing (results up to week 7 were available when the modelling was done). The spoils chemistry is based on short term leach results documented by (JMA, 2009) and the available understanding of the lithologic composition of the various pits.

A description of the approach used for determining the preliminary/interim source terms for the pits is presented below:

Initial step was to acquire source terms for all the geological material or lithologies that were likely to be found in the opencast pits. These included the DMS plant discard and destoning plant rejects in terms of in-pit disposal, and the overburden/spoil material.

6.3.1.1 DMS Plant Discard Final Drainage Quality

Kinetic cell SNL-Welge-CD-01 leach data for full 20 weeks, was used to prepare a final source term. In the prediction of drainage chemistry, an important aspect is the upscaling of the results of laboratory scale kinetic test work to conditions typical of full-scale mine site components. The Scaling Factor (SF) applied to laboratory concentration results can be prepared by a number of different methods. According to (Morin, 2013), SF values are typically between 0.05 and 0.60. In other words, concentrations in discharges from mine facilities are typically 5 to 60% of those reported from kinetic testing leachates. For the wet plant discard, the solid to liquid ratio was the scaling factor used, based upon the recharge used for pits in the groundwater model (WSP, 2024), discard density and surface area.

6.3.1.2 Preliminary Source-term for Genet destoning plant (air plant) rejects drainage quality

- Kinetic leach data, average, for week 0 to week 7 of SNL-PITD_Deston-02 was used to approximate the drainage expected from the destoning plant reject material.
- Once early results from SNL-Deston-CD-01 were reviewed, the sulfate load in the leachate was found to be low, and the reason for this was confirmed when static tests became available. This sample contained pyrite as determined by the mineralogical analysis, to be present in a smaller quantity (0.7% FeS₂). Hence the drainage concentrations were likely to be underestimated given the general higher pyrite concentrations expected in the rejects, compared to nearby analogue sites from the same coalfield. This was discussed with the New Largo and Genet metallurgists. It was agreed that the destoning plant rejects sample supplied in February 2024 and used in SNL-Deston-CD-01 was unrepresentative, having too low total sulfur content and too low sulfate production, and this would unacceptably bias the study.

Therefore, additional destoning plant discard samples were collected by the Client between 22nd and 26th May 2024 and sent to the Laboratory on the 28th May 2024 for the screening analysis (i.e. total sulfur). Subsequently, a new kinetic cell for the destoning plant rejects, SNL-PitD-Deston-02, was setup and started running on the 13th of June 2024. Data up to week 7 as available at the time hat modelling was done.

6.3.1.3 Overburden/spoil drainage quality

- The lithological data for the New Largo pits was reviewed with reference to the information obtained from boreholes LGW-B1, LGW-B2, LGW-B3, LGW-B4, LGW-B7, LGW-B11, LGW-B15, LGW-B16, LGW-B17, LGW-B18, LGW-B19 LGW-B20, LGW-B21, LGW-B22 and LGW-B23. These boreholes had complete geological logs available in JMA 2012 report (JMA, 2012).
- From these geological logs (attached in Appendix A), lithologies representing shale, sandstone, carbonaceous shale, and grit were identified together with their thickness, which was used to determine the proportion of these lithologies present in the overall stratigraphic sequence in each pit (Table 6-9).
- (JMA, 2009) conducted standard static geochemical test (including NAG Leach Test) work on coal and overburden samples collected from five geohydrological boreholes (LGW-B2, B6, B9, B13, B20) (JMA, 2009). The geochemical samples (36 samples) included sandstone, shale, carbonaceous sandstone and shale, and coal seams. This data (supplied in Appendix B) remains the most recent data with complete leachate chemistry for overburden at new Largo, and so was scaled and used as the overburden/spoil drainage chemistry.

		Lithological Proportions (%)							
Source	Borehole/s	Shale	Sandstone	Sandstone and shale	Grit	Total			
Pit F	LGW-B8 LGW-B9	83.3	16.7	-	-	100.00			
Pit A & G	LGW-B2 LGW-B21 LGW-B2 LGW-B7	34.2	22.8	-	43.0	100.00			
Pit C	LGW-B22	22.7	27.3		50.0	100.00			
Pit D NORTH	LGW-B13	76.5	-	11.8	11.8	100.00			
Pit D	LGW-B26 LGW-B27	52.3	20.5		27.3	100.00			
Pit H	LGW-B28	52.3	20.5	0.0	27.3	100.00			
Pit Wilge	LGW-B22	22.7	27.3	0.0	50.0	100.00			

Table 6-9 - Lithological Proportions (%) of the different overburden/spoil material expected in the pits

6.3.1.4 Mix Model for Opencast Pits Source Terms

A mixing model was developed that represented the geological material that was likely to be found in the opencast pits, summarised in Table 6-10, using PHREEQC. The geochemical modelling code selected for this modelling is PHREEQC (Version 3), that was developed by the United States Geological Survey (USGS). PHREEQC (freeware) can simulate "chemical reactions and transport 'processes in natural or polluted water, in laboratory experiments, or in industrial processes" (Parkhurst & Appelo, 2013). The model is based on "equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid solutions, exchange phases and sorption surfaces in which minerals and soluble species are equilibrated simultaneously" (Parkhurst & Appelo, 2013).

The PHREEQC versions 1-3, written in the C programming language capabilities include (Parkhurst & Appelo, 2013):

- Ion exchange
- Surface-complexation
- Advective transport
- Inverse modelling
- Kinetic reactions
- Solid solution reactions
- Variation of the number of exchange or surface sites in proportion to a mineral kinetic reactant
- Diffusion or dispersion in 1D transport
- ID transport coupled with diffusion into stagnant zones
- Isotope mole balance in inverse modelling

The coal seams lithology was not considered for the source term calculation, with the assumption that the coal would not be present in the open cast pits as it would be mined and removed. The lithological proportions that were used in the Geochemical models for the opencast pits is summarised in Table 6-11.

PIT	Backfill
Pit A&G	DMS plant discard and overburden
Pit C	DMS plant discard and overburden
Pit D	Destoning plant rejects and overburden
Pit D-North	DMS plant discard and overburden
Pit F	Destoning plant rejects* and overburden
Pit H	Destoning plant rejects and overburden
Wilge Pit	Overburden only

Table 6-10 – Backfill material to be expected in the New Largo pits

*The current destoning plant at Pit F has been included in the model based upon on mine plan sheet for Pit F which was supplied to WSP. Should a decision be made to change the coal processing and residue disposal at Pit F from destoning to DMS, a new model for Pit F will be required.

		Lithological Proportions (%)										
Source	Shale	Sandstone	Sandstone and shale	Grit	DMS Discard	Destoning Rejects	Total					
Pit F	71.08	14.22	-	-	-	14.70*	100.00					
Pit A & G	30.50	20.33	-	38.41	10.75	-	100.00					
Pit C	20.28	24.34	-	44.62	10.75	-	100.00					
Pit D NORTH	68.25	-	10.50	10.50	10.75	-	100.00					
Pit D	44.59	17.45	-	23.26	-	14.70	100.00					
Pit H	50.32	19.69	-	26.25	-	3.74	100.00					
Pit Wilge	22.7	27.3	-	50.0	-	-	100.00					

Table 6-11 - Pro	portioned lithological u	inits used in the mix	model for opencast pits

*If a change for Pit F from destoning rejects to DMS discard is required, this will need to be remodelled and updated in the next draft of this report.

6.3.2 RESULTS

The modelling results for the New Largo pits source terms are presented in Table 6-13 (Pits with DMS Plant discard), Table 6-14 (pits with Destoning Plant rejects), and Table 6-15 (Pit Wilge) and represents the immediate and long term post closure scenario. Overall, the post closure pit water qualities predicted for the open pits, suggest lower pH levels, representing acidic conditions. Predictions were completed for the pits with the discard (in-pit disposal), and without the discard. From the results, the following is summarised:

- All pits are conservatively considered to have the potential to turn acidic, with long-term pH ranging between 4.5 and 6.0. This is partly influenced by the conservative laboratory method used in previous studies on the overburden, and should be revised when a geochemical assessment update is done for the pits.
- Referring to Table 6-13, the DMS discard has a substantial effect on the sulfate and TDS load of pits into which it will be backfilled, with the predicted concentrations rising by between 20% and

36% in the medium-term (compared to the same pit without discard), but falling off to a lower increase (below 10% than the same pit without discard) in the long-term. The influence on the TDS is less substantial.

- The destoning rejects, see Table 6-14, have a small influence on the sulfate concentration (10% increase or less over the same pit without rejects), except in the higher disposal scenarios of Pit D (if 10 to 15% of the material backfilled is discard). The source-terms for destoning rejects are preliminary source-terms, based on 7 of 20 weeks humidity cell data, and an update memorandum will be provided in mid-November, when the cell is completed.
- See Table 6-15 for predicted source terms at Pit Wilge (no discard/rejects) for the long-term postclosure.
- It should also be noted that effect of the waste backfilling is naturally influenced by the proportion that the waste makes up of the backfill, ranging from 0.03% at Pit F to 11% at Pit A&G. In some cases, this may have a greater influence than the difference in material properties between discard and rejects.
- Sulfate and calcium concentrations increased in all the pits with coal discard or rejects compared to the predicted concentrations in the pits without discard or rejects.
- Similar to sulfate, total dissolved solids, manganese, and magnesium also increased in all the pits with coal discard or rejects are compared to the predicted concentrations in the pits without discard or rejects over a medium term. However, concentration decrease is expected over a long term.
- Iron and aluminium concentrations decreased in all the pits with coal discard or rejects compared to the predicted concentrations in the pits without discard or rejects.

6.3.3 COMPARISON WITH PREVIOUS FINDINGS

Table 6-12 gives a summary of the predicted mine water quality from the current study (Final and preliminary results) compared to the 2011 study by JMA ((JMA, 2011) which predicted water qualities at New Largo based on Version 5 mining schedule and additional ABA results (Geostratum, 2011) for 79 samples from 2010 drill cores that including Seam 3 &5 and thin carbonaceous layers. (JMA, 2011) completed five different water quality predictions, but only three of the scenarios are discussed in this report, to compare with the current preliminary predictions. And these are:

- Scenario 3: "Combination of waste streams post 2021 (north and UG). This is both short, residence, longer residence, dewatering and discard disposal cell storage combined as a single waste steam. A total of 90Mt of coal discard will be disposed of in mainly the southern pit sections. This scenario is a blend of the four waste streams. This waste stream starts at zero and gradually builds up to a maximum of 28% in 2034. After that it reduces to 18% of the total waste stream."
- Scenario 4: "In-pit qualities long residence time post 2035 (south and north). Full acidification of sections has taken place over most of the early mining areas. The residence time of in-pit water is kept to a minimum due to long term pump and treat management. For this very important reason the overall qualities will not deteriorate to that of mines of similar age in the Witbank area, where ground water is allowed to have a long residence time in acidic conditions. It is assumed that this waste steam will make up about 30% of all water qualities for the period 2030 2065."
- Scenario 5: "Longest term in-pit qualities with total discard disposal (90Mt). This is the component of waste stream where in-pit acidification of all discard cells has taken place. It is considered the poorest quality water to be expected in isolated areas (the first mining sections, combined with

the in-pit storage of discard). The excess water make from the temporary 10Mt surface discard dump is added to this water make. This waste steam adds 5% to the total water make from 2017, gradually increasing to 25% at the total LOM. Please note that the short-residence nature (due to pump and treat) will prevent the total mine to acidify to the qualities presented for this scenario."

According to JMA, the predicted long term in-pit water qualities for post closure (post 2030) under scenario 3 showed a pH of 5, and sulfate and TDS concentrations of 900 and 1 250 mg/L respectively. The quality of in-pit water seems to deteriorate according to JMA, with addition of discard into the pits (in-pit disposal). This is apparent as the pH is expected to drop to pH=4.5 with selective in-pit coal discard disposal (Scenario 4) and pH=2.5 with 50% of the discard disposed into the pits (Scenario 5). Furthermore, the sulfate and TDS concentrations are observed to increase from 1 200 mg/L to 3 600 mg/L, and 2 400 mg/L to 6 800 mg/L, respectively, from scenario 4 to scenario 5.

Pit	Description	рН	Sulfate (SO ₄ ²⁻)	Total Dissolved Solids (TDS)				
			mg/L	mg/L				
	Without Discard / Rejects							
Pit A&G (Final)	-	4.87	644	1 976				
Pit C (Final)	-	4.82	654	2 097				
Pit D-North (Final)	-	4.51	923	2 968				
Pit H (Final)	-	4.89	650	1 918				
Pit F (Final)	-	5.5	613	1 292				
Pit D (Final)	-	4.89	650	1 918				
Pit Wilge (Final)	-	4.82	654	2 097				
	With	n Discard / Rejects						
Pit A&G (Final)	DMS plant discard – Medium term	5.18	877	2 170				
	DMS plant discard – Long term	5.23	701	1 938				
Pit C (Final)	DMS plant discard – Medium term	5.12	886	2 291				
	DMS plant discard – Long term	5.16	710	2 059				
Pit D-North (Final)	DMS plant discard – Medium term	4.77	1 110	3 053				
	DMS plant discard – Long term	4.79	932	2 818				
Pit H (Preliminary)	Destoning plant rejects	5.46	713	1 974				
Pit F (Preliminary)	Destoning plant rejects*	5.28	611	1 292				
Pit D (5%) (Preliminary)	Destoning plant rejects	5.81	806	2 041				

Table 6-12 - Predicted Mine Water Quality (2024 Final or Preliminary Findings) Compared toJMA 2011 Predictions

Pit	Description	рН	Sulfate (SO ₄ ²⁻)	Total Dissolved Solids (TDS)
Pit D (10%) (Preliminary)	Destoning plant rejects	5.55	726	1 964
Pit D (15%) (Preliminary)	Destoning plant rejects	5.99	889	2 126
	JMA	A 2011 Predictions		
In-pit qualities long	term post 2030 (Average)	5	900	1 250
In-pit qualities selec	tive discard (Average)	4.5	1 200	2 400
In-pit qualities 50%	discard (Average)	2.5	3 600	6 800

*If a change for Pit F from destoning rejects to DMS discard is required, this will need to be remodelled and updated in the next draft of this report.

The current final and preliminary predictions generally show that pH conditions improved slightly in the predicted pit water chemistry when coal discard or rejects are disposed in the pits. However, sulfate and TDS concentrations increased in all the pits with coal discard or rejects, compared to the predicted concentrations in the pits without discard or rejects.

The increased sulfate and TDS load predicted in the pits when disposing destoning rejects is higher than when disposing DMS discard.

The increased sulfate and TDS load predicted in the pits from the current study are similar to those predicted by JMA (2011) for pits with DMS disposal, and lower than JMA (2011) predictions for pits where destoning rejects will be disposed.

Parameter	Units		Pit A&G			Pit C		D-North		
		Without Discard	Medium Term (DMS Plant discard)	Long Term (DMS Plant discard)	Without Discard	Medium Term (DMS Plant discard)	Long Term (DMS Plant discard)	Without Discard	Medium Term (DMS Plant discard)	Long Term (DMS Plant discard)
рН		4.87	5.18	5.23	4.82	5.12	5.16	4.51	4.77	4.79
Alkalinity	mg/L as CaCO₃	3.00	8.05	8.47	3.01	8.05	8.47	3.01	8.10	8.53
Chloride (Cl ⁻)	mg/L	782	688	696	858	764	772	1 289	1 154	1 162
Sulfate (SO ₄ ²⁻)	mg/L	644	877	701	654	886	710	923	1 110	932
Aluminum (Al ³⁺)	mg/L	1.47	1.30	1.30	1.72	1.56	1.56	10.29	9.33	9.33
Silver (Ag)	mg/L	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.001	0.001
Arseni (As)	mg/L	0.008	0.018	0.011	0.009	0.019	0.011	0.006	0.016	0.008
Boron (B)	mg/L	0.039	0.049	0.046	0.039	0.049	0.046	0.015	0.027	0.024
Barium (Ba ²⁺)	mg/L	0.006	0.022	0.047	0.006	0.022	0.047	0.006	0.022	0.048
Beryllium (Be)	mg/L	0.010	0.009	0.009	0.009	0.009	0.009	0.010	0.009	0.009
Calcium (Ca ²⁺)	mg/L	242	292	250	274	325	282	322	363	321
Cadmium (Cd)	mg/L	0.002	0.003	0.002	0.002	0.003	0.002	0.002	0.003	0.002
Cobalt (Co)	mg/L	0.042	0.066	0.041	0.040	0.064	0.039	0.048	0.072	0.046
Copper (Cu ²⁺)	mg/L	0.166	0.151	0.148	0.168	0.153	0.150	0.284	0.258	0.256
Chrome (Cr)	mg/L	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.001	0.001
Fluoride (F ⁻)	mg/L	0.169	0.215	0.201	0.176	0.222	0.207	0.151	0.199	0.184
Iron (Fe)	mg/L	215	190	190	227	202	202	378	338	338
Mercury (Hg)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Potassium (K ⁺)	mg/L	19.0	18.4	17.3	18.1	17.6	16.5	26.4	25.1	23.9
Lithium (Li)	mg/L	0.066	0.064	0.060	0.067	0.064	0.060	0.066	0.063	0.059
Magnesium (Mg ²⁺)	mg/L	95.7	106.2	97.3	98.8	109.3	100.3	192.2	192.5	183.4
Manganese (Mn)	mg/L	1.07	1.26	0.99	1.06	1.25	0.98	1.11	1.29	1.02
Molybdenum (Mo)	mg/L	0.017	0.016	0.016	0.017	0.016	0.016	0.018	0.016	0.016
Nitrate (NO ₃)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sodium (Na ²⁺)	mg/L	183	175	164	183	176	164	197	188	176
Nickel (Ni)	mg/L	0.088	0.111	0.083	0.086	0.109	0.081	0.094	0.116	0.088
Phosphorus (P)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lead (Pb ²⁺)	mg/L	0.098	0.088	0.088	0.098	0.088	0.088	0.098	0.088	0.088
Antimony (Sb)	mg/L	0.003	0.003	0.004	0.003	0.003	0.004	0.003	0.003	0.004
Selenium (Se)	mg/L	0.004	0.004	0.006	0.004	0.004	0.006	0.004	0.004	0.005
Silicon (Si)	mg/L	3.41	3.02	3.02	3.53	3.14	3.14	5.94	5.32	5.32
Tin (Sn)	mg/L	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Strontium (Sr)	mg/L	0.000	0.428	0.182	0.000	0.428	0.182	0.000	0.433	0.184

Table 6-13 - Predicted final source terms for New Largo open cast pits with DMS Plant discard over medium and term post-closure

	Units		Pit A&G			Pit C		D-North		
		Without Discard	Medium Term (DMS Plant discard)	Long Term (DMS Plant discard)	Without Discard	Medium Term (DMS Plant discard)	Long Term (DMS Plant discard)	Without Discard	Medium Term (DMS Plant discard)	Long Term (DMS Plant discard)
Thorium (Th)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Thallium (TI)	mg/L	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Uranium (U)	mg/L	0.005	0.004	0.004	0.005	0.004	0.004	0.005	0.004	0.004
Vanadium (V)	mg/L	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Zinc (Zn ²⁺)	mg/L	0.37	1.41	0.74	0.36	1.40	0.73	0.92	1.92	1.25
Total Dissolved Solids (TDS)	mg/L	1 976	2 170	1 938	2 097	2 291	2 059	2 968	3 053	2 818

Table 6-14 - Predicted preliminary source terms for New Largo open cast pits with Destoning Plant rejects over medium and term post-closure

Parameter	Units	Pit H		Pit F		Pit D			
		Without Destoning Plant rejects	Destoning plant rejects (Preliminary Source Terms with 7 weeks data)	Without Destoning Plant rejects	Destoning plant rejects (Preliminary Source Terms with 7 weeks data)	Without Destoning Plant rejects	Destoning plant rejects, 5% (Preliminary Source Terms with 7 weeks data)	Destoning plant rejects, 10% (Preliminary Source Terms with 7 weeks data)	Destoning plant rejects, 15% (Preliminary Source Terms with 7 weeks data)
рН		4.89	5.46	5.50	5.51	4.89	5.81	5.55	5.99
Alkalinity	mg/L as CaCO ₃	3.00	15.04	3.00	3.09	3.00	33.10	18.05	48.60
Chloride (Cl ⁻)	mg/L	736	705	339	341	736	650	684	619
Sulfate (SO42-)	mg/L	650	713	613	611	650	806	726	889
Aluminum (Al ³⁺)	mg/L	1.34	1.29	0.02	0.02	1.34	1.17	1.23	1.13
Silver (Ag)	mg/L	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001
Arseni (As)	mg/L	0.008	0.010	0.009	0.009	0.008	0.012	0.010	0.014
Boron (B)	mg/L	0.039	0.062	0.043	0.044	0.039	0.095	0.067	0.124
Barium (Ba ²⁺)	mg/L	0.006	0.044	0.006	0.006	0.006	0.102	0.054	0.151
Beryllium (Be)	mg/L	0.010	0.009	0.009	0.009	0.010	0.009	0.009	0.009
Calcium (Ca ²⁺)	mg/L	226	239	58	58	226	256	237	277
Cadmium (Cd)	mg/L	0.002	0.003	0.002	0.002	0.002	0.004	0.003	0.005
Cobalt (Co)	mg/L	0.043	0.044	0.053	0.053	0.043	0.045	0.044	0.046
Copper (Cu ²⁺)	mg/L	0.165	0.159	0.167	0.166	0.165	0.151	0.158	0.144
Chrome (Cr)	mg/L	0.000	0.002	0.000	0.000	0.000	0.005	0.003	0.008
Fluoride (F ⁻)	mg/L	0.166	0.226	0.159	0.159	0.166	0.315	0.240	0.394
Iron (Fe)	mg/L	209	200	177	176	209	185	195	175
Mercury (Hg)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Potassium (K ⁺)	mg/L	19.4	20.1	21.1	21.2	19.4	21.2	20.4	22.0
Lithium (Li)	mg/L	0.066	0.066	0.066	0.066	0.066	0.067	0.066	0.067
Magnesium (Mg ²⁺)	mg/L	94.2	99.4	74.3	74.4	94.2	107.0	100.2	114.1
Manganese (Mn)	mg/L	1.08	1.15	1.24	1.24	1.08	1.25	1.17	1.34
Molybdenum (Mo)	mg/L	0.017	0.018	0.018	0.018	0.017	0.020	0.019	0.021

	Units	Pit H		Pit F		Pit D			
		Without Destoning Plant rejects	Destoning plant rejects (Preliminary Source Terms with 7 weeks data)	Without Destoning Plant rejects	Destoning plant rejects (Preliminary Source Terms with 7 weeks data)	Without Destoning Plant rejects	Destoning plant rejects, 5% (Preliminary Source Terms with 7 weeks data)	Destoning plant rejects, 10% (Preliminary Source Terms with 7 weeks data)	Destoning plant rejects, 15% (Preliminary Source Terms with 7 weeks data)
Nitrate (NO ³)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sodium (Na ²⁺)	mg/L	182	179	175	175	182	173	178	168
Nickel (Ni)	mg/L	0.089	0.090	0.109	0.109	0.089	0.091	0.090	0.091
Phosphorus (P)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lead (Pb ²⁺)	mg/L	0.098	0.096	0.098	0.098	0.098	0.093	0.096	0.091
Antimony (Sb)	mg/L	0.003	0.003	0.003	0.003	0.003	0.004	0.003	0.004
Selenium (Se)	mg/L	0.004	0.006	0.006	0.006	0.004	0.010	0.007	0.012
Silicon (Si)	mg/L	3.35	3.21	3.53	3.51	3.35	2.99	3.15	2.82
Tin (Sn)	mg/L	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
Strontium (Sr)	mg/L	0.000	0.344	0.000	0.003	0.000	0.860	0.430	1.303
Thorium (Th)	mg/L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Thallium (TI)	mg/L	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
Uranium (U)	mg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Vanadium (V)	mg/L	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Zinc (Zn ²⁺)	mg/L	0.37	0.44	0.41	0.41	0.37	0.53	0.45	0.61
Total Dissolved Solids (TDS)	mg/L	1 918	1 974	1 292	1 292	1 918	2 041	1 964	2 126

\\SD

Table 6-15 - Predicted final source terms for New Largo open cast Pit Wilge over short term post-closure

Parameter	Units	Pit Wilge
		Without Discard/Rejects
рН		4.82
Alkalinity	mg/L as CaCO₃	3.01
Chloride (Cl ⁻)	mg/L	858
Sulfate (SO ₄ ²⁻)	mg/L	654
Aluminum (Al ³⁺)	mg/L	1.72
Silver (Ag)	mg/L	0.000
Arseni (As)	mg/L	0.009
Boron (B)	mg/L	0.039
Barium (Ba ²⁺)	mg/L	0.006
Beryllium (Be)	mg/L	0.009
Calcium (Ca ²⁺)	mg/L	274
Cadmium (Cd)	mg/L	0.002
Cobalt (Co)	mg/L	0.040
Copper (Cu ²⁺)	mg/L	0.168
Chrome (Cr)	mg/L	0.000
Fluoride (F ⁻)	mg/L	0.176
Iron (Fe)	mg/L	227
Mercury (Hg)	mg/L	0.000
Potassium (K ⁺)	mg/L	18.1
Lithium (Li)	mg/L	0.067
Magnesium (Mg ²⁺)	mg/L	98.75
Manganese (Mn)	mg/L	1.06
Molybdenum (Mo)	mg/L	0.02
Nitrate (NO ³)	mg/L	0.00
Sodium (Na ²⁺)	mg/L	183
Nickel (Ni)	mg/L	0.086
Phosphorus (P)	mg/L	0.000

Parameter	Units	Pit Wilge
Lead (Pb ²⁺)	mg/L	0.098
Antimony (Sb)	mg/L	0.003
Selenium (Se)	mg/L	0.004
Silicon (Si)	mg/L	3.53
Tin (Sn)	mg/L	0.001
Strontium (Sr)	mg/L	0.000
Thorium (Th)	mg/L	0.000
Thallium (TI)	mg/L	0.001
Uranium (U)	mg/L	0.005
Vanadium (V)	mg/L	0.002
Zinc (Zn ²⁺)	mg/L	0.36
Total Dissolved Solids (TDS)	mg/L	2 097

7 RISK ASSESSMENT

7.1 CONCEPTUAL UNDERSTANDING

The reviewed information was used to develop the conceptual site understanding.

7.1.1 MINING METHOD

All the five coal seams of the Highveld coalfield exist in the New largo area but only the No. 2 and No. 4 seams are considered economic and will be mined. The coal is extracted from the pits by opencast strip mining using truck and shovel, although dragline operations could be implemented in future. The initial overburden removed to access the coal is placed as backfill inside the pits or stockpiled outside the pits. Interburden and later overburden are spoiled: rolled over to remain within the pit as new mining blocks are opened and old ones mined out.

At Pit Wilge, the mining plan avoids mining through the land on which the old Wilge Power Station infrastructure is located. The old discard dump associated with the power station will however be removed / mined-through.

There are, or will be, two different types of plants contemplated for coal processing at New Largo, the destoning (air) plant and DMS (washing) plant.

7.1.2 IN-PIT DISPOSAL

It is WSP's understanding that the coal discard and destoning rejects produced from the aforementioned plants, will be disposed back into the mined open pits. In-pit coal discard disposal is authorised for a certain areal extent and therefore the proposed mining changes warrants environmental authorisation for in-pit disposal of discard to cover the full extents of the pits.

The practice of in-pit disposal means that the coal discard and destoning rejects will be deposited into the pit after removal of all the coal and spoils, which for New Largo will be the area in suitable areas identified that was occupied by the No. 2 Seam. This allows that, wherever possible, at least some of the discard and rejects will be lower than the post mining ground water re-charge/decant elevation, although in some pits parts of this disposal zone will be above the water table (see Figure 7-1 to Figure 7-3).

This is done prior to dumping of overburden spoils from the next mining strip in the direction of mining. Overburden spoils are dumped into the pit on top of the discard and graded with light compaction. Once No. 4 Seam from the next mining strip has been removed, the interburden spoils are dumped into the pit on top of the recently added overburden, and again graded with light compaction.

At this point, the No. 2 Seam is removed, and the new void is available for discard/reject disposal. Topsoil and subsoil removed and stored previously are then used as cover material and vegetated.

Figure 7-1 - N-S cross section through Pit A and C (WSP, 2024)

Figure 7-2 - NNE-SSW cross section through Pit A, C, D-North, D, and H (WSP, 2024)

Figure 7-3 - W-E cross section through Pit D, and F (WSP, 2024)

The mining method, where all the discard/rejects from both seams end up at the bottom of the pit, means that some of the discard/rejects will be below the in-pit water table, where there is limited availability of oxygen (Love, 2024): the maximum dissolved oxygen availability is some thirty times less than under atmospheric conditions (INAP, 2010). Numerous case studies have shown that the sub-aqueous environment, by limiting the exposure of potentially acid-generating sulfide-bearing residues to oxygen, is effective in limiting acid rock drainage generation over the long-term (Cacciuttolo, 2023), (MEND, 1995), and (Oggeri, 2023). Although recent findings indicate a bacterial mechanism that can drive pyrite oxidation under anoxic conditions (Payne, 2021), this requires specific methanogenic bacteria, and extremely small grain sizes for the bacteria to attach to (Spietz, 2022).

However, at New Largo, several of the pits have final in-pit water levels which are low, leaving much of the pit open to atmospheric conditions (for example Pit F in Figure 7-3), and in other pits, the quantity of discard/rejects will result in at least some of the discard/rejects being above the in-pit water table. This does not have the geochemical advantages of sub-aqueous disposal, but still consolidates dirty water of the discard/rejects, and of the pit, into one system, managed by the same dirty water management system that the pit requires (Love, 2024). It also decreases the amount of mined land and waste exposed at any point in time (Das, 2022). This means that rainfall that falls onto the mineral residue does not also fall onto the pit (as it would if the two were separate) meaning that less rainfall in total is converted into dirty water, which is a lesser environmental impact (Love, 2024).

7.1.3 WATER MANAGEMENT

During coal mining operation, groundwater is pumped out (dewatering) of the working environment (pit) to ensure dry and safe working conditions in collieries, with strategic pumping stations located around mine workings and once mining has ceased and rehabilitation takes place, the cessation of dewatering results in the progressive rise of groundwater and flooding of the workings (groundwater rebound) (see Figure 7-4). The water levels in all the pits are expected to rebound to decant level (see Figure 7-1 to Figure 7-3 and Pit decant elevation map presented in Appendix C).

Figure 7-4 – A Conceptual model of in-pit disposal during rollover mining, rehabilitation, and post-closure (WSP, 2024A)

The Best Practice Guideline (BPG) questions as outlined in the Project Context in Section 2 of this report are addressed below:

7.2 BGP QUESTION 1

Question 1	BPG: Will any waste material be generated that has a potential to generate acid, neutral or saline drainage?		
	Residue Stockpile Regulations: Characterise chemical characteristics that must include the propensity to oxidise the pH and chemical composition of the water separated from the solids, the reactivity and rate thereof, acid generating and neutralising potential. 4(2)(b)		
	Residue Stockpile Regulations: The classification of residue deposit must be undertaken on the basis of the characteristics of the residue, locations & dimension of the deposit. 5(3)		
Findings	 Yes. In terms of the sulfide sulfur content from the ABA results, all the samples exhibit a high potential for acid generation with sulfide sulfur values of 1.09% for Welgelegen DMS discard, and 2.77% for Genet destoning rejects. Furthermore, some buffering capacity is present in both the samples with a neutral pH ranging between pH 6.11 and 7.22 for the DMS Plant discard sample (SNL-Welge-CD-01), and between 7.37 and 7.73 for the Destoning Plant rejects reached over a long term. Mineralogical Results revealed the following: Pyrite, the principal sulfide mineral linked to ARD generation, was detected in all the samples with the Genet destoning rejects (SNL-PitD-Deston-02) having a higher percentage (2.9 wt.%) of pyrite compared to the DMS plant discard from Welgelegen Plant (SNL-Welge-CD-01) which had 0.8 wt.%. 		
- Fast-reacting carbonates such as calcite (CaCO₃) and dolomite [CaMg(CO₃)₂], which contribute to buffering, were detected in the samples, with calcite detected in all the samples at 0.4 wt.% and 1.6 wt.% for Welgelegen DMS plant discard and Genet Destoning Plant rejects, respectively. Dolomite was only detected in Welgelegen DMS Plant (0.1 wt.%) discard sample. Moreover, the presence of other minerals such as kaolinite and muscovite can act as a buffer, in the pH range of 2.2-5.1 as it weathers slowly, for any poor drainage that may generate.
- As an indication of potential environmental hazard and to put the results into context, the kinetic leach results have been compared to the water use license (WUL) limits for groundwater quality. From the results, both the coal residue samples had pH levels that were close to the groundwater WUL limit of 7.7. Only chloride and iron were found to be above the specified WUL limits of 3.7 mg/L and 0.13 mg/L, respectively, in negligible number of samples. DMS plant discard had exceedances for iron concentrations during week 11 (1.38 mg/L) and 12 (0.49 mg/L), while the Destoning Plant reject had the chloride concentration exceedance during the initial flush (week 0) with 14.8 mg/L, but thereafter was below the laboratory detection limit.

7.3 BGP QUESTION 2

Question 2	BPG: Is there a potential to separate and manage waste streams in accordance to their acid, neutral or saline drainage potential?
	Residue Stockpile Regulations: Characterise chemical characteristics that must include the propensity to oxidise the pH and chemical composition of the water separated from the solids, the reactivity and rate thereof, acid generating and neutralising potential. 4(2)(b)
Findings	No. This study considers the disposal of discard/rejects, by backfilling into the opencast pits with the rollover spoils. The current final and preliminary predictions generally show that pH conditions improved slightly in the predicted pit water chemistry when coal discard or rejects are disposed in the pits. Sulfate and calcium concentrations increased in all the pits with coal discard or rejects compared to the predicted concentrations in the pits without discard or rejects (the effect is greater in pits to be backfilled with DMS discard than those with destoning rejects). Similar to sulfate, total discard or rejects are compared to the predicted concentrations in the predicted concentrations in the pits without discard or rejects are compared to the predicted concentrations in the pits with coal discard or rejects are compared to the predicted concentrations in the pits without discard or rejects over a medium term. However, concentration decrease is expected over a long term. Iron and aluminium concentrations decreased in all the pits with coal discard or rejects compared to the predicted concentrations in the pits with coal discard or rejects compared to the predicted concentrations in the pits with coal discard or rejects compared to the predicted concentrations in the pits with coal discard or rejects compared to the predicted concentrations in the pits with coal discard or rejects compared to the predicted concentrations in the pits with coal discard or rejects compared to the predicted concentrations in the pits with coal discard or rejects.

7.4 BGP QUESTION 3

Question 3	BPG: Are there any positive or negative consequences of storing and/or disposing of these waste materials in a specific manner on their own or in any combination?
	Residue Stockpile Regulations: The classification of residue deposit must be undertaken on the basis of the characteristics of the residue, locations & dimension of the deposit. 5(3)
Findings	The mining method, where all the discard/rejects from both seams end up at the bottom of the pit, means that some of the discard/rejects will be below the in-pit water table, where there is limited availability of oxygen (Love, 2024): the maximum dissolved oxygen

	availability is some thirty times less than under atmospheric conditions (INAP, 2010). Numerous case studies have shown that the sub-aqueous environment, by limiting the exposure of potentially acid-generating sulfide-bearing residues to oxygen, is effective in limiting acid rock drainage generation over the long-term (Cacciuttolo, 2023), (MEND, 1995), and (Oggeri, 2023). Although recent findings indicate a bacterial mechanism that can drive pyrite oxidation under anoxic conditions (Payne, 2021), this requires specific methanogenic bacteria, and extremely small grain sizes for the bacteria to attach to (Spietz, 2022).
	However, at New Largo, several of the pits have final in-pit water levels which are low, leaving much of the pit open to atmospheric conditions (for example Pit F in Figure 7-3), and in other pits, the quantity of discard/rejects will result in at least some of the discard/rejects being above the in-pit water table. This does not have the geochemical advantages of sub-aqueous disposal, but still consolidates dirty water of the discard/rejects, and of the pit, into one system, managed by the same dirty water management system that the pit requires (Love, 2024). It also decreases the amount of mined land and waste exposed at any point in time (Das, 2022). This means that rainfall that falls onto the mineral residue does not also fall onto the pit (as it would if the two were separate) meaning that less rainfall in total is converted into dirty water, which is a lesser environmental impact (Love, 2024).
	 Pit A & G: pit A may have limited storage volume below the post-closure water level towards the north area of the pit (see Figure 7-1 and Figure 7-2). Pit C: may have storage volume below the post-closure water level (see Figure 7-1 and Figure 7-2). Pit D-North: may have limited space towards the north of north-east of the pit, but majority of the pit does not have storage volume below the post-closure water level (see Figure 7-3). Pit H: may have storage volume below the post-closure water level (see Figure 7-3). Pit F: does not have storage volume below the post-closure water level (see Figure 7-3). Pit D: may have limited space towards the south of south-west of the pit, but majority of the pit does not have storage volume below the post-closure water level (see Figure 7-3). Pit D: may have limited space towards the south of south-west of the pit, but majority of the pit does not have storage volume below the post-closure water level (see Figure 7-3).

7.5 BGP QUESTION 4

Question 4	BPG: How would proposed alternative mining techniques and layouts (backfill into opencast pits) affect the potential impact on the identified receptor water resource (surface and groundwater balance and quality)?
	Residue Stockpile Regulations: The classification of residue deposit must be undertaken on the basis of the characteristics of the residue, locations & dimension of the deposit. 5(3)
Findings	This study considers the opportunities for selective placement of discard to minimise potential acidic drainage, and the role of a decant management system to avoid decant. The practice of in-pit disposal means that the coal discard and destoning rejects will be deposited into the pit after removal of all the coal and spoils, which for New Largo will be the area in suitable areas identified that was occupied by the No. 2 Seam. This allows that, wherever possible, at least some of the discard and rejects will be lower than the post mining ground water re-charge/decant elevation, although in some pits parts of this disposal zone will be above the water table (see also question 3 above)
	Furthermore, the in-pit disposal is done prior to dumping of overburden spoils from the next mining strip in the direction of mining. Overburden spoils are dumped into the pit on top of the discard and graded with light compaction. Once No. 4 Seam from the next mining strip

has been removed, the interburden spoils are dumped into the pit on top of the recently added overburden, and again graded with light compaction.

At this point, the No. 2 Seam is removed, and the new void is available for discard/reject disposal. Topsoil and subsoil removed and stored previously are then used as cover material and vegetated.

The receptor must be protected by decant management: dirty water from the pit must be pumped out to prevent decant post-closure. The safe operating level of the decant management system should be to keep the in-pit water level at least 2 m below the decant elevation.

7.6 SUMMARY

The combined risk assessment for each of the individual pits is considered in Table 7-1.

Pits	Geochemical risk profile: material disposed	Geochemical risk profile: water level	Conclusion
Pit A & G	DMS plant discard: substantial effect on the sulfate (~900 mg/L) and TDS (~2 000 mg/L) concentrations	Pit A may have limited storage volume below the post-closure water level towards the north area of the pit	High risk of elevated sulfate and TDS concentrations, largely unmitigated by in-pit water level
Pit C	DMS plant discard: substantial effect on the sulfate (~900 mg/L) and TDS (~2 300 mg/L) concentrations	May have storage volume below the post-closure water level	High risk of elevated sulfate and TDS concentrations, partially mitigated by in-pit water level
Pit D-North	DMS plant discard: substantial effect on the sulfate (~1 000 mg/L) and TDS (~3 000 mg/L) concentrations	May have limited space towards the north of north- east of the pit, but majority of the pit does not have storage volume below the post- closure water level	High risk of elevated sulfate and TDS concentrations, unmitigated by in-pit water level
Pit H	Destoning plant rejects: moderate effect on sulfate (~700 mg/L) and TDS (~2 000 mg/L) concentrations	May have storage volume below the post-closure water level	Moderate/low risk of elevated sulfate and TDS concentrations, partially mitigated by in-pit water level
Pit F	Destoning plant rejects: moderate effect on sulfate (~600 mg/L) and TDS (~1 300 mg/L) concentrations	Does not have storage volume below the post- closure water level	Moderate risk of elevated sulfate and TDS concentrations, unmitigated by in-pit water level
Pit D	Destoning plant rejects: moderate effect on sulfate (~800 mg/L) and TDS (~2 000 mg/L) concentrations	May have limited space towards the south of south- west of the pit, but majority of the pit does not have storage volume below the post-closure water level	Moderate/low risk of elevated sulfate and TDS concentrations, partially mitigated by in-pit water level
Pit Wilge	No in-pit disposal	No in-pit disposal	Lower risk

Table 7-1 Summarised geochemical risk assessment for each pit

8 CONCLUSIONS

The following conclusions are made based on the static analytical results of the discard samples:

- The were nine crystalline mineral phases detected in the New Largo coal residue samples, with the dominant ones being kaolinite and quartz.
- Pyrite, the principal sulfide mineral linked to ARD generation, was detected in all the samples with the DMS plant discard from Phola DMS Plant (SNL-Ph-CD-01) having higher percentage (3.2 wt.%) compared to the DMS plant discard from Welgelegen Plant (SNL-Welge-CD-01) which had 0.8 wt.%. The Genet destoning rejects (SNL-PitD-Deston-02) had 2.9 wt.% of pyrite.
- Fast-reacting carbonates such as calcite (CaCO₃) and dolomite [CaMg(CO₃)₂], which contribute to buffering, were detected in the samples, with calcite detected in all the samples at 0.4 wt.%, 1.52 wt.%, and 1.6 wt.% for Welgelegen DMS plant discard, Phola DMS Plant discard, and Genet Destoning Plant rejects respectively. Dolomite was only detected in Welgelegen DMS Plant (0.1 wt.%) and Phola Plant (1.1 wt.%) discard samples. Moreover, the presence of other minerals such as kaolinite and muscovite can act as a buffer, in the pH range of 2.2-5.1 as it weathers slowly, for any poor drainage that may generate.
- Based on Geochemical abundance index (GAI), Silver (Ag), Selenium (Se), arsenic (As), bismuth (Bi), mercury (Hg), molybdenum (Mo), and tellurium (Te) were found to be enriched (GAI ≥ 3), with all other metals and semi-metals below 3-fold enrichment.
- The differences in mineralogy and geochemical abundance between the DMS discards from Welgelegen and Phola, compared to the Genet destoning rejects, is due to the latter process producing residue containing more silicate minerals, but this does not have environmental significance due to their low reactivity.
- In terms of the sulfide sulfur content from the ABA results, all the samples exhibit a high potential for acid generation with sulfide sulfur values of 1.09% for Welgelegen DMS discard, 2.77% for Genet destoning rejects, and 2.37% for Phola DMS discard.
- The paste pH vs. SNPR (BulkNP/SAP), which is based on sulfide content revealed that all the discard samples are potentially acid generating (PAG).
- From the NAG results, all New Largo discard samples were below the NAG pH threshold of 4.5, which implies that the samples have potential for acid generation, which is consistent with the ABA results.

In terms of the kinetic test results the following is summarised:

- This report presents the full 20-week kinetic results for the DMS Plant discard, while the cell for the Destoning Plant rejects, is still running at WSP Laboratory for the standard 20-weeks with a weekly evaluation of the leachate samples. Full results until the 8th week, and pH and EC until the 13th week are available so far and presented in this report.
- The DMS Plant discard sample (SNL-Welge-CD-01) had a pH = 6.91 at the start of the kinetic leach test (week 0), after which it remains within the range (pH 6.11 7.22), which indicates some buffering capacity. The discard sample paste pH values are within the pH ranges with the DMS plant discard paste pH of 6.76. The Destoning Plant reject sample show neutral conditions with pH range between 7.37 and 7.73, and the paste pH (7.03) within the range in the 8 weeks so far. Both the coal residue samples had pH levels that were close to the groundwater WUL limit of 7.7.
- The DMS plant discard sample (SNL-Welge-CD-01) had the highest TDS concentrations measured (764 mg/L) in week 9. The TDS for DMS plant discard samples is shown to fluctuate

from week 0 to week 16, with a slight but stable increase from week 16 until week 20. A similar trend was observed in terms of the conductivity. Furthermore, DMS plant discard sample had the highest conductivity in week 12 (1 080 μ S/cm) and showed a variable conductivity until week 13 ranging from 81 μ S/cm to 1 080 μ S/cm. Destoning Plant reject sample had the highest TDS recorded in week 0 (745 mg/L), but fluctuated with the weeks with the lowest concentration (378 mg/L) recorded in week 2. Moreover, variable conductivity is observed during the 8 weeks of the experiment, ranging between 449 to 981 μ S/cm. Both Samples had TDS levels that were below the specified WUL limit of 3 309 mg/L.

- Sulfate concentrations are shown to have a similar trend to TDS and conductivity for both the DMS Plant discard (range from 236 to 652 mg/L) and Destoning Plant reject (237.5 to 505 mg/L). Both the samples had concentrations that are lower than the specified WUL limit of 2 130 mg/L.
- Only chloride and iron were found to be above the specified WUL limits of 3.7 mg/L and 0.13 mg/L, respectively, in negligible number of samples. DMS plant discard had exceedances for iron concentrations during week 11 (1.38 mg/L) and 12 (0.49 mg/L), while the Destoning Plant reject had the chloride exceedance during the initial flush (week 0) with 14.8 mg/L, but thereafter was below the laboratory detection limit.

In terms of pit water qualities, the following is deduced:

- The DMS plant discard and destoning rejects will be disposed in-pit. Some of the discard/rejects will end up below the final in-pit water table, and some will be above. There are advantages in decreasing environmental impact from both, but the greatest advantage is achieved by disposal below the in-pit water table.
- All pits are conservatively considered to have the potential to turn acidic, with long-term pH ranging between 4.5 and 6.0. This is partly influenced by the conservative laboratory method used in previous studies on the overburden, and should be revised when a geochemical assessment update is done for the pits, especially of the overburden that is spoiled (backfilled).
- The DMS discard has a substantial effect on the sulfate and TDS load of pits into which it will be backfilled, with the predicted concentrations rising by between 20% and 36% in the medium-term (compared to the same pit without discard), but falling off to a lower increase (below 10% more than the same pit without discard) in the long-term. The influence on the TDS is less substantial. This is largely within previously predicted ranges: the range predicted by JMA (2011): 900 1,200 mg/L sulfate and 1,200 2,400 mg/L TDS.
- The destoning rejects have a small influence on the sulfate concentration (10% increase or less over the same pit without rejects), except in the higher disposal scenarios of Pit D (if 10 to 15% of the material backfilled is discard). The source-terms for destoning rejects are preliminary source-terms, based on 7 of 20 weeks humidity cell data, and an update memorandum will be provided in mid-November, when the cell is completed.
- It should also be noted that effect of the waste backfilling is naturally influenced by the proportion that the waste makes up of the backfill, ranging from 0.03% at Pit F to 11% at Pit A&G. In some cases, this may have a greater influence than the difference in material properties between discard and rejects.

The risk assessment indicates that in-pit disposal of the New Largo coal residue is a suitable option if the discard/reject is disposed below the final water level where no or little oxidation of pyrite will take place. This allows that, wherever possible, at least some of the discard and rejects will be lower than the post mining ground water re-charge/decant elevation, although in some pits parts of this disposal zone will be above the water table. This is done prior to dumping of overburden spoils from

۱۱SD

the next mining strip in the direction of mining. The discard/rejects which will be below the in-pit water table will have limited availability of oxygen: the maximum dissolved oxygen availability is some thirty times less than under atmospheric conditions. However, several of the pits have final in-pit water levels which are low, leaving much of the pit open to atmospheric conditions, and in other pits, the quantity of discard/rejects will result in at least some of the discard/rejects being above the in-pit water table. This does not have the geochemical advantages of sub-aqueous disposal, but still consolidates dirty water of the discard/rejects, and of the pit, into one system, managed by the same dirty water management system that the pit requires. It also decreases the amount of mined land and waste exposed at any point in time. This means that rainfall that falls onto the mineral residue does not also fall onto the pit (as it would if the two were separate) meaning that less rainfall in total is converted into dirty water, which is a lesser environmental impact.

The overall effect of these risks and mitigations is summarised below:

- The highest level of geochemical risk is in Pits A&G and D North, where DMS discard will be disposed in pits with limited storage below the final in-pit water level, resulting in long-term oxidation of the discard and high sulfate and TDS concentrations.
- Pit C has moderate risk as there is more storage below the final in-pit water level for the DMS discard. Pit F also has a moderate risk due to a lower sulfate and TDS load from destoning rejects, but little disposal space below the final in-pit water level.
- Pits H and D have moderate/low risk, due to a lower sulfate and TDS load from destoning rejects, and some disposal space below the final in-pit water level.
- Wilge Pit will not have discard or rejects co-disposed with the spoils.

9 **RECOMMENDATIONS**

A backfilling plan should be developed, documenting the planned co-disposal of discard and rejects, following the below principles:

- Discard/rejects should be preferentially placed in the deepest part of the pit, and the mined-out section should then be backfilled, compacted and rehabilitated as soon as possible.
- The Discard/rejects should be placed a few meters below the decant water level (final pit water level) meaning that no or little oxidation of pyrite will take place.
- The discard/rejects should have a neutral (paste) pH when backfilled else it would immediately acidify interstitial water before being covered with water. This could be done by backfilling these coal residues while they are still fresh and cover them as quickly as possible in less than a year.

The mining blocks and elevations for disposal of discard and rejects need to be marked out in the mine plan for each pit, and these should be updated as the mine plan is updated – as should the backfilling plan document itself.

Furthermore, a pathway control will be required, to capture mine water before or at the decant point: dirty water from the pit must be pumped out of the pit to prevent decant post-closure. The safe operating level of the decant management system should be to keep the in-pit water level at least 2 m below the decant elevation. The water which is pumped out of the pit should be treated for reuse or discharge. Scavenger wells outside the pit are *not* recommended, as these allow a plume to form and then be captured, whereas in-pit pumping wells contain the dirty water and prevent the formation of a plume, see Figure 9-1.

Figure 9-1 Comparison of in-pit pumping (A is recommended) and scavenger wells (B is not recommended)

10 REFERENCES

- AATC. (2012). Feasibility Study Report Section 6 Process and Metallurgy Report No. P130-03-00-03-AATC- 01-22-47-001.
- ASTM. (2018a). Standard Test Method for Laboratory Weathering of Solid Materials Using a *Humidity Cell.* Standard: D5744-18.
- ASTM. (2018b). Standard Guide for Interpretation of Standard Humidity Cell Test Results. Standard: D8187-18.
- Bethke et al. (2021). The Geochemist's Workbench Release 15: GWB Essentials Guide.University of Illinois. Urbana, Illinois, USA.
- Cacciuttolo, C. a. (2023). In-Pit Disposal of Mine Tailings for a Sustainable Mine Closure: A Responsible Alternative to Develop Long-Term Green Mining Solutions. *Sustainability, 15*(8), 6481. doi:10.3390/su15086481
- Cairncross, B. (1986). *Depositional environments of the Vryheid/ Formation in the east Wit bank coalfield: a framework for coal seam stratigraphy, occurrence and distribution.* Ph.D. Thesis (unpublished). University of the Witwatersrand, Johannesburg, 232pp. .
- CSIR. (2009). LEACHATE STUDIES FOR ACID MINE DRAINAGE AND PREDICTION FROM COAL SAMPLES – A KINETIC TEST INVESTIGATION.

Das, R. T. (2022). Improved optimised scheduling in stratified deposits in open pit mines–using in-pit dumping. *International Journal of Mining, Reclamation and Environment, 36*(4), 287-304. doi:10.1080/17480930.2022.2036559

Geostratum. (2011). Geochemical Assessment of the New Largo Colliery.

Golder. (2009). NEW LARGO PFS STUDY FOR GYPSUM SLUDGE WASTE.

Golder. (2011). PFS MINE WATER MANAGEMENT STUDY NEW LARGO PROJECT.

- Golder. (2019). Geochemistry Specialist Report New Largo Coal Bankable Feasibility Study.
- IFC. (2007). *Environmental, Health and Safety Guidelines for Mining.* World Bank Group: International Finance Corporation.
- INAP. (2010). *The Global Acid Rock Drainage Guide (GARD Guide TM)*. International Network for Acid Prevention. Retrieved from www.gardguide.com
- J&W, J. a. (2013 and 2014). Baseline surface water quality.
- JMA. (2009). *Technical Memo: Expected In-pit water qualities at the New Largo Mining Section.* Jasper and Miller Associates: May 2009.
- JMA. (2011). Technical Memo. Expected water qualities based on additional ABA samples and the latest .
- JMA. (2012). Groundwater Specialist Study Report.
- Love, D. (2024). In-pit disposal of mineral residues to minimise dirty water in stressed catchments. *WISA Conference Summary of Oral Presentations* (p. 31). eThekwini: Water Institute of Southern Africa.
- MEND. (1995). *Review of In-Pit Disposal Practices for the Prevention of Acid Drainage Case Studies.* MEND Report: 2.36.1.
- MEND. (2009). Prediction Manual for drainage Chemistry from Sulphidic Geological Materials.Mend Report 1.20.1. Natural Resources Canada.
- Morin et al. (1997). *Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies.* Vancouver, British Columbia, Canada. ISBN 0-9682039-0-6.: MDAG Publishing.
- Morin, K. (2013). Scaling Factors of Humidity Cell Kinetic Rates for Larger Scale Predictions. MDAG. .
- Oggeri, C. V. (2023). Large Scale Trials of Waste Mine Burden Backfilling in Pit Lakes: Impact on Sulphate Content and Suspended Solids in Water. *Sustainability*, *15*(9), 7387. doi:10.3390/su15097387
- Parkhurst, D., & Appelo, a. C. (2013). Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods. U.S. Geological Survey Techniques and Methods.
 Survey Techniques and Methods. U.S. Geological Survey Techniques and Methods.
 Retrieved from U.S. Geological Survey Techniques and Methods.
- Payne, D. S. (2021). Reductive dissolution of pyrite by methanogenic archaea. *ISME Journal, 15*, 3498–3507. doi:10.1038/s41396-021-01028-3

Price et al. (1997). *Guidelines for prediction of acid rock drainage and metal leaching for mines in British Columbia: Part II. Recomended procedures for static and kinetic tests.* Vancouver: Proceedings of the Fourth International Conferance on Acid Rock Drainage.

Seriti. (2017). COAL WASHING DATA EXCEL SPREADSHEETS (RECEIVED 06 AUGUST 2019).

Snyman, C. a. (1993). Coal in South Africa. Journal of African Earth Sciences, 16, 171-180.

- Soregaroli et al. (1997). Waste Rock Characterization at Dublin Gulch: A Study. *Proceedings of the 4th International Conferance on Acid Rock Drainage.*, (pp. 631-645). Vancouver.
- Spietz, R. P. (2022). Investigating abiotic and biotic mechanisms of pyrite reduction. *Frontiers in Microbiology, 13*, 878387. doi:10.3389/fmicb.2022.878387
- UKWAZI. (2019). UKWAZI LOM SCHEDULE (RECEIVED AUGUST 2019).
- Usher, e. (2003). On-site and laboratory investigations spoil in opencast collieries and the development of acid-base accounting procedures. Report 1055/1/03. Pretoria: Water Research Commision.
- WSP. (2024). Hydrogeological Specialist Studies

WSP. (2024A). KLX Preliminary Geochemistry Specialist Report.

11 AUTHORSHIP AND REVIEW

This Report has been compiled by Mpule Gloria Dube (with some of the data analysis done by Motlatji Molabe), reviewed by David Love, and approved by Shameer Hareeparsad. All technical comments and queries can be directed to Shameer Hareeparsad.

Appendix A

GEOLOGICAL LOGS (JMA, 2012)

CONFIDENTIAL

\\SD

SITE INFORI	MATION	REPO	DRT					Da	ate comp	iled: 20)7/03/	/01
BASIC SITE	INFORM		N: Si	te Iden	tifier: 2528DD0	0001 Number:	LGW-B	1 Site t	ype: Bore	ehole		
Distr./Farm No.:	: 534 JR		Site	Name	e/ Des.: NEW LA	RGO PROJECT	: LGW-B1					
Region Type:					Regio	on Descr.:						
Y Coord. [m]:	2	796.00	Rea./BE	3.:		Topo-set.: H	lillside (slo	pe)	Dep	oth [m]:	;	30.00
X Coord. [m]:	2864	204.98	G-Nr ·			Site status: Ir	n use		Co	. ht. [m]:		0.76
Altitude [m]:	1	534.00	G-INI			Site purp.: C)bservatio	า	Dia	m. [mm]:		165
Coord. acc.:	Accurate to	within 1	10 units			Use applic.: Ir	ndustrial -	mining	Dra	in. reg.:	B20	DG
Coord. meth.:	Global Pos	itioning	System			Equipment: N	lo equipm	ent	Rej	o. inst.:	JM	A
Coordinate System: So	outh African LO	Transvers	e Mercator,	Hartebee	esthoek94 (WGS 84)							
CONSTRUCT Date const. Co	TION:		Con	str. me	eth. Tyj	pe finish	Develo Metho	pment d L	Spec Durat. treat	cial ment	Co c	nstr. :ost
20060908 ED	DRS		Air p	ercuss	ion Op	en bottom	Pumpe	d with air	10			0.00
HOLE DIAME Rep. Inst.	ETER:	Dер Тор	th to [m]		Depth to Bottom [m]	Diameter [m	m]	Date const.	Comme	ent		
JMA		0	0.00		24.00	215		20060908	CASED	TO 165		
JMA		24	1.00		30.00	165		20060908	NO CA	SING		
CASING DET Date inst. D	FAILS: Dep. to top	[m] Bo	ot. [m]	Diam. [mm]	Material	Thick [mm]	n. Openi Type	ng	Length	Width	Hori. dist.	Vert. dist.
20060908	0.00	14	4.00	165	Steel	3	Plain c	asing	0	0	0	0
20060908	14.00	20	0.00	165	Steel	3	Perfora	ited or slotted	300	3	200	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot.	[m]	Yield [l/s]	Method meas	. Aquife	er type	Info so	urce	Com	ment	
JMA	17.00	20.	00	0.42	Volumetric			Geologi	st, technicia	ın, VOL	UMETF	RIC
GEOLOGY: Dep. Top [m]	Bot. [m]	Litholo	gy code		Colour Primary	Secondary	Texture		Feature Primary	Se	condai	ry
0.00	1.00	SOIL			Orange	Reddish			Silty	Sa	indy	
1.00	7.00	CLAY			Orange	Reddish			Sandy			
7.00	13.00	CLAY			Orange	Reddish			Ferrugino	us		
13.00	18.00	LAVA			Grey				Fractured	Fr	actured	l
18.00	26.00	LAVA			Grey				Fractured			
26.00	30.00	LAVA		_	Grey	Dark			Fresh	Ha	Ird	
WATER LEV Meth. meas.	EL: Level :	status	Pie	ez. Inf	o source	Date meas.	Time me	as. Sec.	Water lev.	[m] Com	ment	
Electrical contact	t Static		C	Ge	ologist,	20061002	1426	0.00	10.5	3		

SITE INFOR	MATION	REPORT					Dat	e compile	d: 200	07/03/	/01
BASIC SITE		IATION: s	ite Iden	tifier: 2528DD00	0002 <i>Number:</i>	LGW-B2	Site typ	e: Boreho	ole		
Distr./Farm No.	.: 536 JR	Sit	e Name	Des.: NEW LA	RGO PROJECI	T: LGW-B2					
Region Type:				Regio	on Descr.:						
Y Coord. [m]:	2	919.00	D .		Topo-set.: +	lillside (slope	.)	Depth	n [m]:	:	30.00
X Coord. [m]:	2865	151.98	В.:		Site status: In	n use	')	Col. h	 t. [m]:		0.61
Altitude [m]:	1	557.00 G-Nr.:			Site purp.:	Observation		Diam.	[mm]:		165
Coord. acc.:	Accurate to	within 10 units			Use applic.: In	ndustrial - mi	ning	Drain	. req.:	B2(0G
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipment	t	Rep.	inst.:	JM	A
Coordinate System: S	outh African LO	Transverse Mercator	, Hartebee	sthoek94 (WGS 84)							
CONSTRUC	TION:	_				Developm	nent	Specia	1	Co	onstr.
Date const. C	Contractor	Cor	nstr. me	eth. Typ	be finish	Method	Du	rat. treatm	ent	0	cost
20060907 E	DRS	Air p	percussi	on Ope	en bottom	Pumped v	vith air	10			0.00
Rep. Inst.	EIER:	Top [m]		Bottom [m]	Diameter [m	nm] Da	ate const.	Commen	t		
JMA		0.00		18.00	215	20	060907	CASED T	O 165		
JMA		18.00		30.00	165	20	060907	NO CASI	١G		
CASING DE	TAILS:		Diam.		Thick	n. Opening				Hori.	Vert.
Date inst.	Dep. to top	[m] Bot. [m]	[mm]	Material	[mm] Туре		Length V	Vidth	dist.	dist.
20060907	0.00	6.00	165	Steel	3	B Plain casi	ng	0	0	0	0
20060907	6.00	18.00	165	Steel	3	B Perforate	d or slotted	300	3	200	150
AQUIFER: Rep. Inst.	Top [m]	Bot. [m]	Yield [l/s]	Method meas.	Aquife	er type	Info sour	се	Com	ment	
JMA	7.00	8.00	0.13	Estimated			Geologist,	technician,	ESTI	MATE	D
JMA	13.00	15.00	0.13	Estimated			Geologist,	technician,	EST	MATE	D
GEOLOGY:				Colour		_		Feature			
Dep. Top [m]	Bot. [m]	Lithology code	•	Primary	Secondary	Texture	l	Primary	Se	condal	ry
0.00	1.00	SOIL		Red	Red		5	Silty	Sa	indy	
1.00	2.00			Red	Light	Fine	1	/veathered			
2.00	5.00	CRIT		Orango	Boddish	Fille	1	Neathorod	\٨/	aathar	h
5.00	6.00	SANDSTONE		Brown	Reddish	Fine	1	Neathered	10/	athere	od ad
6.00	7.00	GRIT		Orange	Reddish	1 110	1	Neathered	W	athere	ed .
7.00	9.00	GRIT		Orange	Reddish		1	Neathered	W	eathere	ed
9.00	10.00	GRIT		Orange	Reddish		١	Neathered			
10.00	11.00	SHALE		Black		Very fine	١	Neathered			
11.00	12.00	SHALE		Grey		Fine	F	Fresh	W	eathere	∋d
12.00	13.00	SANDSTONE		Grey	Light	Fine	F	Fresh			
13.00	14.00	SHALE		Grey	Dark	Very fine	F	Fresh	Ca	rbonad	ceous
14.00	15.00	SHALE		Black		Very fine	F	Fresh	W	eathere	эd
15.00	16.00	SHALE		Grey		Very fine to	fine F	Fresh	Mi	caceou	JS
16.00	17.00	SHALE		Black		Very fine	F	Fresh	W	eathere	эd
17.00	24.00	COAL		Black							
24.00	25.00	SHALE		Black		Very fine	F	Fresh	Ca	irbonad	ceous
25.00	29.00	SANDSTONE		Grey	Light	Fine	F	Fresh			
29.00	30.00	SHALE		Grey	Dark	Fine	F	resh	Ca	irbonad	cous
Meth. meas.	Level :	status Pi	iez. Inf	o source	Date meas.	Time meas	. Sec. Wa	ater lev. [m] Com	ment	
Electrical contac	ct Static		0 Ge	ologist,	20061002	1606	0.00	6.08			

SITE INFOR	MATION	REPORT					Dat	e compileo	d: 200	7/03/	01
BASIC SITE	INFORM	IATION: s	ite Iden	tifier: 2528DD0	0003 Number:	LGW-B3	Site typ	be: Borehol	е		
Distr./Farm No.	.: 537 JR	Sit	e Name	/Des.: NEW LA	RGO PROJECT	: LGW-B3					
Region Type:				Regio	on Descr.:						
Y Coord. [m]:	4	936.00 Bor /B	р .		Topo-set.: H	lillside (slope))	Depth	[m]:	3	30.00
X Coord. [m]:	2865	792.98	D.:		Site status: In	n use	,	Col. ht	. [m]:		0.82
Altitude [m]:	1	546.00 <i>G-Nr.:</i>			Site purp.: C	bservation		Diam.	[mm]:		165
Coord. acc.:	Accurate to	within 10 units			Use applic.: Ir	ndustrial - mir	ning	Drain.	reg.:	B20	G
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipment		Rep. in	ist.:	JM	۹.
Coordinate System: S	outh African LC	Transverse Mercator,	, Hartebee	esthoek94 (WGS 84)							
CONSTRUC	TION:					Developm	nent	Special		Со	nstr.
Date const. C	ontractor	Con	nstr. me	eth. Tyj	pe finish	Method	Du	rat. treatme	nt	c	ost
20060911 El	DRS	Air p	percuss	ion Op	en bottom	Pumped w	rith air	10			0.00
HOLE DIAM	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter Im	mi Da	te const.	Comment			
.IMA		0.00		18.00	215	20	060911	CASED TO	165		
JMA		18.00		30.00	165	20	060911	NO CASIN	G		
CASING DE	TAILS:		Diam.		Thick	n. Opening			Ŀ	lori.	Vert.
Date inst.	Dep. to top	[m] Bot. [m]	[mm]	Material	[mm]] Type		Length W	idth d	dist.	dist.
20060911	0.00	6.00	165	Steel	3	Plain casir	ng	0	0	0	0
20060911	6.00	18.00	165	Steel	3	Perforated	l or slotted	300	3	200	150
	Depth Top [m]	to Bot [m]	Yield II/s1	Method meas	Δαμίξ	er fyne	Info sour	ce	Comr	nent	
JMA	8.00	12 00	0.17	Estimated	, iquite	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Geologist	technician	ESTIN		ר
GEOLOGY:	0.00	12.00	0.11	Colour			Coologici,	Feature	2011	<i>"</i> () <u></u>	-
Dep. Top [m]	Bot. [m]	Lithology code	•	Primary	Secondary	Texture	I	Primary	Sec	ondar	У
0.00	1.00	SOIL		Brown	Reddish		ŝ	Silty	San	idy	
1.00	2.00	GRIT		Red	Light		١	Weathered	Wea	athere	d
2.00	3.00	SANDSTONE		Orange	Reddish	Fine	١	Weathered			
3.00	4.00	CLAY		Orange	Reddish						
4.00	5.00	CLAY		Brown	Reddish		١	Micaceous			
5.00	6.00	CLAY		Brown	Reddish		ſ	Micaceous			
6.00	7.00	CLAY		White	Greyish						
7.00	8.00			vvnite	Greyisn			21	14/-	- 4 1	
8.00	9.00	SHALE		Black				Carbonocou	vvea	athere	a
9.00	11.00			Black			(Carbonaceou	5 c		
11 00	12 00			White	Grevish		1	Veathered	0		
12.00	13.00	TILLITE		White	Grevish		1	Weathered			
13.00	26.00	TILLITE		White	Grevish		F	Fractured			
26.00	30.00	QUARTZITE		White	Greyish		F	Fresh			
WATER LEV Meth. meas.	/EL: Level :	status Pi	iez. Inf	o source	Date meas.	Time meas	. Sec. Wa	ater lev. [m]	Com	nent	
Electrical contac	ct Static		0 Ge	ologist,	20061002	1659	0.00	8.72			
	5.6.10				E			0=			

SITE INFORMATION REPORT				Date compile	d: 2007/03/01
BASIC SITE INFORMATION:	Site Identifier: 2528DD(00004 <i>Number:</i>	LGW-B4 Sit	e type: Boreho	le
Distr./Farm No.: 566 JR S	ite Name/Des.: NEW LA	ARGO PROJECT	: LGW-B4		
Region Type:	Regi	ion Descr.:			
Y Coord. [m]: 5699.00	DD -	Topo-set.: H	illside (slope)	Depth	[m]: 36.00
X Coord. [m]: 2869460.98	<i></i>	Site status: In	use	Col. h	t. [m]: 0.53
Altitude [m]: 1543.00		Site purp.: O	bservation	Diam.	[mm]: 165
Coord. acc.: Accurate to within 10 units		Use applic.: In	dustrial - mining	Drain.	<i>reg.:</i> B20F
Coord. meth.: Global Positioning System		Equipment: N	o equipment	Rep. il	nst.: JMA
Coordinate System: South African LO Transverse Mercato	or, Hartebeesthoek94 (WGS 84)				
CONSTRUCTION: Date const. Contractor Co	onstr. meth. Ty	vpe finish	Development Method	Special Durat. treatme	Constr. ent cost
20060911 EDRS Air	percussion Op	pen bottom	Pumped with air	10	0.00
HOLE DIAMETER: Depth to Rep. Inst. Top [m]	Depth to Bottom [m]	Diameter [m	m] Date cons	st. Comment	
JMA 0.00	12.00	215	20060911	CASED TO	D 165
JMA 12.00	36.00	165	20060911	NO CASIN	G
CASING DETAILS: Date inst. Dep. to top [m] Bot. [m]	Diam. [mm] Material	Thickr [mm]	n. Opening Type	Length W	Hori. Vert. 'idth dist. dist.
20060911 0.00 6.00	165 Steel	3	Plain casing	0	0 0 0
20060911 6.00 12.00	165 Steel	3	Perforated or slot	ted 300	3 200 150
AQUIFER: Depth to Rep. Inst. Top [m] Bot. [m]	Yield [l/s] Method meas	s. Aquife	r type Info s	source	Comment
JMA 22.00 30.00	6.67 Volumetric		Geolo	ogist, technician,	VOLUMETRIC
JMA 33.00 34.00	3.33 Volumetric		Geolo	ogist, technician,	VOLUMETRIC
GEOLOGY: Dep. Top [m] Bot. [m] Lithology cod	Colour le Primary	Secondary	Texture	Feature Primary	Secondary
0.00 1.00 SOIL	Red	Greyish		Silty	Sandy
1.00 2.00 CLAY	Red	Dark		Sandy	
2.00 3.00 CLAY	Red	Dark		Sandy	
3.00 4.00 GRIT	Red	Light		Clayey	Weathered
4.00 5.00 GRI	Crange	Ligni Roddich		Clayey	weathered
6.00 7.00 CLAY	Orange	Reddish			
7.00 8.00 CLAY	Brown	Reddish			
8.00 13.00 TILLITE	White	Grevish		Fresh	Weathered
13.00 22.50 SHALE	Brown	Reddish	Very fine	Weathered	Fractured
22.50 25.00 SHALE	Brown	Reddish	Very fine	Fractured	
25.00 30.00 SHALE	Brown	Reddish	Very fine	Fractured	Fractured
30.00 33.00 SHALE	Brown	Reddish	Very fine	Weathered	Fractured
33.00 34.00 SHALE	Brown	Reddish	Very fine	Fractured	
34.00 36.00 SHALE	Grey		Very fine	Fresh	
WATER LEVEL: Meth. meas. Level status F	Piez. Info source	Date meas.	Time meas. Sec.	Water lev. [m]	Comment
Electrical contact Static	0 Geologist,	20060930	0955 0.00	6.74	

SITE INFOR	MATION	REPO	RT						D	ate c	ompile	ed: 20	07/03/	/01
BASIC SITE	INFORM		: Site I	den	tifier: 2528DD00	0005 <i>Number:</i>	I	LGW-B5	Site	type:	Boreh	ole		
Distr./Farm No.	: 566 JR		Site N	ame	/Des.: NEW LA	RGO PROJECT	: L	GW-B5						
Region Type:					Regio	on Descr.:								
Y Coord. [m]:	6	003.00	Rea /BB ·			Topo-set.: At	t o	or in openca	st mine		Dept	h [m]:	;	30.00
X Coord. [m]:	2872	144.98	C Nr			Site status: In	us	se			Col.	ht. [m]:		0.59
Altitude [m]:	1	519.00	G-Nr.:			Site purp.: O	bs	servation			Diam	. [mm]	:	165
Coord. acc.:	Accurate to	o within ${1}$	0 units			Use applic.: In	du	ustrial - mini	ng		Drair	n. reg.:	B20	0F
Coord. meth.:	Global Pos	itioning S	System			Equipment: No	0 6	equipment			Rep.	inst.:	JM	A
Coordinate System: So	outh African LC	Transverse	e Mercator, Hart	tebees	sthoek94 (WGS 84)									
CONSTRUC Date const. Co	TION:		Constr.	. me	eth. Typ	oe finish		Developm Method	ent	Durat.	Specia treatm	al nent	Co	nstr. :ost
20060911 EE	DRS		Air perc	ussi	on Ope	en bottom		Pumped wi	th air	10)			0.00
HOLE DIAMI Rep. Inst.	ETER:	Dept Top	th to [m]	1	Depth to Bottom [m]	Diameter [mi	m]] Dat	te const.	. с	ommer	nt		
JMA		0	.00		18.00	215		200	60911	С	ASED 1	O 165		
JMA		18	.00		30.00	165		200	60911	Ν	O CASI	NG		
CASING DET Date inst.	TAILS: Dep. to top	[m] Bo	Dia ot. [m] [m	nm. nm]	Material	Thickr [mm]	n. I	Opening Type		Le	ngth	Width	Hori. dist.	Vert. dist.
20060911	0.00	14	.00 1	65	Steel	3		Plain casin	g		0	0	0	0
20060911	14.00	18	3.00 1	65	Steel	3		Perforated	or slotte	d :	300	3	200	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [Yie [m] [l/:	ld s]	Method meas.	. Aquife	er t	type	Info so	urce		Con	nment	
JMA	8.00	18.0	0 00	.17	Estimated				Geolog	ist, tec	hnician	, EST	IMATE	D
GEOLOGY: Dep. Top [m]	Bot. [m]	Litholog	gy code		Colour Primary	Secondary	Те	exture		Fea Prin	ture nary	Se	conda	ry
0.00	1.00	SOIL			Red	Light				Silty	,	Sa	andy	
1.00	2.00	CLAY			Orange	Reddish				San	dy			
2.00	3.00	CLAY			Orange	Reddish				San	dy	Fe	erruginc	ous
3.00	4.00	CLAY			Orange	Reddish				San	dy	Fe	erruginc	us
4.00	14.00	CLAY			Orange	Reddish								
14.00	18.00	TILLITE			Orange	Reddish				Wea	athered	W	eathere	ed
18.00	24.00	TILLITE			White	Greyish				Fres	sh	W	eathere	ed
24.00	30.00	TILLITE			White	Greyish				Free	sh			
WATER LEV Meth. meas.	EL: Level	status	Piez.	Infe	o source	Date meas.	Т	ïme meas.	Sec.	Wate	r lev. [n	n] Con	nment	
Electrical contac	t Static		0	Geo	ologist,	20061003		1053	0.00		5.02			

SITE INFOR	MATION	REPORT					Da	te compileo	d: 2007/	/03/01
BASIC SITE Distr./Farm No. Region Type:	INFORM : 568 JR	ATION:	Site Ider Site Nam	ntifier: 2528DD0 e/ Des.: NEW LA Regi o	0006 <i>Number:</i> RGO PROJECT on Descr.:	LGW-B6 : LGW-B6	Site ty	pe: Boreho	le	
Y Coord. [m]: X Coord. [m]: Altitude [m]:	8 2874 1	744.00 793.98 536.00	ı./BB.: Ir.:		Topo-set.: A Site status: In Site purp.: O	t or in openca n use Observation	st mine	Depth Col. hi Diam.	[m]: t. [m]: [mm]:	30.00 0.63 165
Coord. acc.:	Accurate to	within 10 un	its		Use applic.: In	ndustrial - mini	ing	Drain.	reg.:	B20F
Coord. meth.:	Global Pos	itioning Syste	m		Equipment: N	lo equipment		Rep. ii	nst.:	JMA
Coordinate System: So	outh African LO	Transverse Merce	ator, Hartebee	esthoek94 (WGS 84)		Davalanm	ont	Special	,	Constr
Date const. Co	ntractor	(Constr. m	eth. Ty	oe finish	Method	ent Di	urat. treatme	nt	constr.
20060912 EI	ORS		Air percuss	ion Op	en bottom	Pumped wi	th air	10		0.00
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] Da	te const.	Comment		
JMA		0.00		18.00	215	200	060912	CASED TO	D 165	
JMA		18.00		30.00	165	200	060912	NO CASIN	G	
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [n	Diam. n] [mm]	Material	Thick [mm]	n. Opening Type		Length W	Ho idth di	ri. Vert. st. dist.
20060912	0.00	12.00	165	Steel	3	Plain casin	g	0	0	0 0
20060912	12.00	18.00	165	Steel	3	Perforated	or slotted	300	3 2	00 150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas	. Aquife	er type	Info sou	rce	Comme	ent
JMA	13.00	14.00	0.01	Estimated			Geologis	t, technician,	ESTIMA	NTED
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology c	ode	Colour Primary	Secondary	Texture		Feature Primary	Seco	ndary
0.00	1.00	SOIL		Red	Light			Silty	Sand	У
1.00	6.00	CLAY		Red	Light			Sandy		
6.00	7.00	CLAY		Orange	Reddish			Sandy		
7.00	9.00	CLAY		Orange	Reddish			Micaceous		
9.00	10.00	CLAY		Brown	Reddish			Micaceous		
10.00	12.00			Black				Vacthered	IS Moot	harad
12.00	12.00	SHALE		Black				Weathered	Weat	hered
12.00	14.00			Black				Weathered	weat	nereu
10.00	15.00	COAL		Black				Weathered		
14.00	.0.00		F	Grev	Dark	Fine		Carbonaceou	is Fract	ured
14.00 15.00	17.00	SANDSTON				-				
14.00 15.00 17.00	17.00 21.00	SANDSTON SANDSTON	E	Grey	Light	Fine		Fresh		
14.00 15.00 17.00 21.00	17.00 21.00 30.00	SANDSTON SANDSTON TILLITE	E	Grey	Light Light	Fine		Fresh Fresh	Weat	hered
14.00 15.00 17.00 21.00 WATER LEV Meth. meas.	17.00 21.00 30.00 'EL: <i>Level</i> s	SANDSTON SANDSTON TILLITE	E Piez. Int	Grey Grey	Light Light Date meas.	Fine Time meas.	Sec. V	Fresh Fresh Vater lev. [m]	Weat Comme	hered

SITE INFOR	RMATION	REPORT					Da	ate compile	d: 2007/0	3/01
BASIC SITE		IATION:	Site Ide	ntifier: 2528DD0	00007 Number:	LGW-B7	Site t	ype: Boreho	le	
Distr./Farm No	.: 537 JR	9	Site Nan	ne/Des.: NEW LA	ARGO PROJECT	Г: LGW-B7	-			
Region Type:				Regi	on Descr.:					
Y Coord. [m]:	4	898.00	/ .		Topo-set.:	lillside (slope)		Depth	[m]:	30.00
X Coord. [m]:	2866	568.98	BB.:		Site status: II	n use		Col. h	 t. [m]:	0.61
Altitude [m]:	1	558.00 G-Nr .	:		Site purp.:	Observation		Diam.	 [mm]:	165
Coord. acc.:	Accurate to	o within 10 units	S		Use applic.: In	ndustrial - min	ing	Drain.	<i>reg.:</i> В	320G
Coord. meth.:	Global Pos	itioning Systen	า		Equipment: N	lo equipment	-	Rep. i	nst.: J	MA
Coordinate System: S	South African LC	Transverse Mercat	or, Harteb	eesthoek94 (WGS 84)						
CONSTRUC	TION:					Developm	ent	Special	· · · ·	Constr.
Date const. C	Contractor	C	onstr. n	neth. Ty	pe finish	Method	D	ourat. treatme	ent	cost
20061025 E	DRS	Ai	r percus	sion Op	en bottom	Pumped w	ith air	10		
HOLE DIAM	ETER:	Depth to		Depth to Bottom [m]	Diameter In	umi Da	te const	Comment		
				18.00		200	10013L	Comment		
		18.00		30.00	215	20	161025			
		10.00	Diam		Thick	n. Openina	501025		Hori	. Vert.
Date inst.	Dep. to top	[m] Bot. [m]	[mm] Material	[mm] Type		Length W	idth dist.	. dist.
20061218	0.00	12.00	165	5 Steel	3	B Plain casir	g	0	0	
20061218	12.00	18.00	165	5 Steel	3	8 Perforated	or slotted	300	3 200) 150
AQUIFER:	Depth	to Det [m]	Yield		A		lufa an		0	
Rep. Inst.			0.4	Method meas	s. Aquilo	er type			Commen	
	16.00	18.00	0.18	Colour			Geologis	St, technician,	ESTIMAT	ED
Dep. Top [m]	Bot. [m]	Lithology co	de	Primary	Secondary	Texture		Primary	Second	lary
0.00	1.00	SOIL		Orange	Reddish			Clayey	Sandy	
1.00	3.00	GRIT		Orange	Reddish			Weathered	Weathe	red
3.00	4.00	SHALE		White	Greyish			Weathered		
4.00	5.00	SHALE		Brown	Reddish			Micaceous	Weathe	red
5.00	7.00	SHALE		Brown	Reddish			Micaceous	Weathe	ered
7.00	10.00	CLAY		Orange	Reddish					
10.00	11.00	CLAY		Red	Red			Silty	Sandy	
11.00	12.00	SHALE		Black				Weathered	Weathe	ered
12.00	13.00	SHALE		Black		Very fine		Weathered		
13.00	18.00	COAL		Black						
18.00	19.00	SANDSTONE		Grey	Light	Fine		Fresh		
19.00	26.00			White	Greyish			Fresh		
26.00	29.00			White	Greyish			Fresh		
00.00	30.00	QUARIZHE		Grey	Greenish			Fresh		
29.00										
29.00 WATER LEV Meth. meas.	/EL: Level:	status	Piez. Ir	nfo source	Date meas.	Time meas.	Sec.	Water lev. [m]	Commen	t

SITE INFORMATION REP	ORT				Da	ate compile	d: 200)7/03/	/01
	N: Site Ident	<i>ifier:</i> 2629AA00	0008 Number:	LGW-B8	Site ty	/pe: Boreho	le		
Distr./Farm No.: 216 IR	Site Name/	Des.: NEW LA		LGW-B8					
Region Type.		Descr			Dent	· · · · ·		20.00	
Y Coord. [m]: -751.00	Reg./BB.:		Topo-set.: Hill	lside (slope)		Depth	[m]: • [m]:		30.00
Altitudo [m]: 1520.00	G-Nr.:					Diam	Col. ht. [m]: 0		
Coord acc : Accurate to within	10 units	Use applic : Ind	lustrial - mini	na	Drain.	rea ·	B2(
Coord meth : Global Positioning	System		Equipment: No		iig	Ren i	nst ·	.IM	Δ
Coordinate System: South African LO Transve	rse Mercator Hartebees	thoek94 (WGS 84)		equipment		Rep. 1		0111	~
CONSTRUCTION: Date const. Contractor	Constr. met	th. Typ	oe finish	Developm Method	ent D	Specia Jurat. treatme	ent	Co	onstr. cost
20060905 EDRS	Air percussio	on Ope	en bottom	Pumped wi	th air	10			0.00
HOLE DIAMETER: De Rep. Inst. To	pth to D D [m]	Depth to Bottom [m]	Diameter [mn	n] Dat	te const.	Comment			
JMA	0.00	12.00	215	200	60905	CASED TO	D 165		
JMA 1	2.00	30.00	165	200	60905	NO CASIN	IG		
CASING DETAILS: Date inst. Dep. to top [m]	Diam. Bot. [m] [mm]	Material	Thickn. [mm]	Opening Type		Length V	/idth	Hori. dist.	Vert. dist.
20060905 0.00	9.00 165	Steel	3	Plain casin	g	0	0	0	0
20060905 9.00	2.00 165	Steel	3	Perforated	or slotted	300	3	200	150
AQUIFER: Depth to Rep. Inst. Top [m] Bot	Yield [m] [l/s]	Method meas.	. Aquifer	type	Info sou	ırce	Com	ment	
JMA 6.00 8	8.00 0.05	Estimated			Geologis	st, technician,	ESTI	MATEI	D
GEOLOGY: Dep. Top [m] Bot. [m] Lithol	ogy code	Colour Primary	Secondary 1	Texture		Feature Primary	Se	condai	ry
0.00 1.00 CLAY		Grey	Dark			Sandy			
1.00 2.00 CLAY		White	Brownish			Sandy			
2.00 3.00 CLAY		White	Greyish			Sandy			
3.00 4.00 CLAY		White	Greyish						
4.00 5.00 CEAT		Black	Dark			Weathered	\٨/	athore	d
7.00 8.00 COAL		Black				Weathered	W	athere	ed and
8.00 9.00 SHAL	E	Black	V	/erv fine		Weathered		Janiore	,a
9.00 12.00 DIAM	CTITE	White	Greyish	,		Fresh			
12.00 30.00 DIAM	CTITE	White	Greyish			Fresh			
WATER LEVEL: Meth. meas. Level status	Piez. Info	source	Date meas.	Time meas.	Sec. N	Nater lev. [m]	Com	ment	
Electrical contact Static	0 Geo	ologist,	20061002	1004	0.00	2.30			

SITE INFOR	MATION	REPORT					Dat	e compiled	: 2007	/03/01
BASIC SITE	INFORM	IATION: S	ite Iden	<i>tifier:</i> 2528DD0	0009 <i>Number:</i>	LGW-B9	Site typ	be: Borehole	9	
Distr./Farm No.	.: 569 JR	Sit	e Name	/Des.: NEW LA	RGO PROJECT	: LGW-B9				
Region Type:				Regio	on Descr.:					
Y Coord. [m]:		892.00 Reg /B	R.·		Topo-set.: H	lillside (slope)	Depth	[m]:	30.00
X Coord. [m]:	2876	250.98	<i>D</i>		Site status: In	nuse		Col. ht.	[m]:	0.66
Altitude [m]:	1	544.00 G-Nr.:			Site purp.: C	bservation		Diam. [mm]:	165
Coord. acc.:	Accurate to	o within 10 units			Use applic.: Ir	ndustrial - mir	ning	Drain. I	eg.:	B20G
Coord. meth.:	Global Pos	itioning System			Equipment: N	lo equipment		Rep. in	st.:	JMA
Coordinate System: Se	outh African LO	Transverse Mercator	Hartebee	sthoek94 (WGS 84)						
CONSTRUC	TION:	Cor	nstr. me	th Tv	oe finish	Developn Method	nent Du	Special rat. treatmer	nt .	Constr.
20060906 EI	DRS	Air s	percussi	on Ope	en bottom	Pumped v	vith air	10		0.00
HOLE DIAM	ETER:	Depth to		Depth to						
Rep. Inst.		Top [m]		Bottom [m]	Diameter [m	nm] Da	ate const.	Comment		
JMA		0.00		24.00	215	20	060906	CASED TO	165	
		24.00	D'	30.00	165	20	0060906	NO CASINO	<u>.</u>	t. Mt
Date inst.	I AILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Material	I hick [mm]	n. Opening] Type		Length Wi	Ho dth di	ist. dist.
20060906	0.00	12.00	165	Steel	3	Plain casi	na	0	0	0 0
20060906	12.00	24.00	165	Steel	3	Perforated	d or slotted	300	3 2	200 150
AQUIFER:	Depth	to	Yield							
Rep. Inst.	Top [m]	Bot. [m]	[l/s]	Method meas	. Aquife	er type	Info sour	се	Comm	ent
JMA	16.00	19.00	0.77	Volumetric			Geologist,	, technician,	VOLUN	IETRIC
GEOLOGY:	Bot. [m]	Lithology code	•	Colour Primary	Secondary	Texture		Feature Primarv	Seco	ndarv
0.00	1 00	SOIL		Brown	Reddish		ç	Sandy		,
1.00	2.00	SILT		Brown	Reddish		(Clavev		
2.00	3.00	SANDSTONE		Brown	Reddish	Coarse	١	Neathered		
3.00	5.00	SILT		Brown	Reddish		(Clayey		
5.00	6.00	CLAY		Red	Light					
6.00	7.00	CLAY		Brown	Reddish					
7.00	8.00	CLAY		Orange	Reddish					
8.00	9.00	SHALE		Brown	Reddish		١	Weathered	Weat	thered
9.00	11.00	SHALE		Grey	Light	Fine	١	Weathered	Weat	thered
11.00	12.00	SHALE		Grey	Light	Fine	F	Fresh	Weat	thered
12.00	14.00	SHALE		Black		Very fine	F	Fresh	Carb	onaceous
14.00	15.00	COAL		Black		.,		. .	_	
15.00	16.00	SHALE		Black		Very fine	(Carbonaceous	s Fresl	n
16.00	19.00			Black		Von fin -	ŀ	-ractured	0	
19.00	20.00	SHALE		Black		very fine	ł	riesn	Carb	onaceous
20.00 24.00	24.00 25.00	SHALE		Black		Fine	r	Frash	Carb	00202010
24.00	25.00	SANDSTONE		Grev	Liaht	Fine	r F	Fresh	Caib	CHACEOUS
26.00	27.00			Grev	Light		F	Fresh		
27.00	30.00	TILLITE		Grev	Light		F	Fresh		
WATER LEV	/EL:	status Pi	iez. Inf	o source	Date meas	Time meas	Sec W	ater lev [m]	Comm	ent
Electrical contac	t Static		0 Ge		20060030	0020	0.00	6 33	John	on
				ologist,	20000330	0320	0.00	0.00		

BASIC SITE INFORMATION: Site Identifier: 2528DD00010 Number: LGW-B10 Site type: Borehole	
Distr./Farm No.: 569 JR Site Name/Des.: NEW LARGO PROJECT: LGW-B10	
Region Type: Region Descr.:	
Y Coord. [m]: 1033.00 Reg./BB.: Topo-set.: Hillside (slope) Depth [m]:	30.00
X Coord. [m]: 2875583.98 G-Nr.: Site status: In use Col. ht. [m]:	0.61
Altitude [m]: 1538.00 Site purp.: Observation	165
Coord. acc.: Accurate to within 10 units Use applic.: Industrial - mining Drain. reg.:	B20G
Coord. meth.: Global Positioning System Equipment: No equipment Rep. inst.:	JMA
Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	
CONSTRUCTION: Development Special Date const. Constr. meth. Type finish Method Durat. treatment	Constr. cost
20060905 EDRS Air percussion Open bottom Pumped with air 10	0.00
HOLE DIAMETER: Depth to Rep. Inst. Top [m] Bottom [m] Diameter [mm] Date const. Comment	
JMA 0.00 18.00 215 20060905 CASED TO 165	
JMA 18.00 30.00 165 20060905 NO CASING	
CASING DETAILS: Diam. Thickn. Opening Ho Date inst. Dep. to top [m] Bot. [m] [mm] Material [mm] Type Length Width diagonal	ori. Vert. ist. dist.
20060905 0.00 12.00 165 Steel 3 Plain casing 0 0	0 0
20060905 12.00 18.00 165 Steel 3 Perforated or slotted 300 3 2	200 150
GEOLOGY: Colour Feature Dep. Top [m] Bot. [m] Lithology code Primary Secondary Texture Primary Secondary	ndary
0.00 1.00 SAND Grey Dark Very fine Clayey	
1.00 2.00 SAND Orange Yellowish Very fine	
2.00 3.00 CLAY White Greyish Sandy Sand	dy
3.00 4.00 CLAY Orange Reddish Sandy	
4.00 5.00 CLAY Orange Yellowish Very fine	
5.00 6.00 CLAY Orange Yellowish Sandy Sand	y
6.00 8.00 SAND Red Light Very fine	
8.00 9.00 SAND Red Light Very fine	4
9.00 15.00 SHALE Red Light Weathered Fract	tured
16.00 17.00 SHALE Red Light Weathered Fract	tured
17.00 18.00 SHALE Grey Light Fresh	
18.00 30.00 SHALE Grev Light Fresh	
WATER LEVEL: Date meas. Time meas. Sec. Water lev. [m] Comm	ent
Electrical contact Static 0 Geologist, 20060930 0844 0.00 2.13	

BASIC SITE INFORMATION: Site Identifier: 2528DD00011 Number: LGW-B11 Site type: Borehole Distr./Farm No.: 537 JR Site Name/Des.: NEW LARGO PROJECT : LGW-B11 Site type: Borehole Main of the second
Site Name/Des.: NEW LARGO PROJECT : LGW-B11 Region Type: Region Descr.: Y Coord. [m]: 4611.00 X Coord. [m]: 2867515.98 Altitude [m]: 1560.00 Coord. acc.: Accurate to within 10 units Goord. acc.: Accurate to within 10 units Coord. meth.: Type finish Development Method Depth [m]: 30.00 Coord. acc.: Accurate to within 10 units Destitues applic: Industrial - mining Coord. acc.: Accurate to within 10 units Destitue applic: Industrial - mining Coord. acc.: Accurate to within 10 units Destitue applic: Industrial - mining Dood 1025 DENS Altitue [m]: 105 Dood 1025 Depth to Rep. Inst. Depth to Depth to
Region Type: Region Descr.: Y Coord. [m]: 4611.00 2867515.98 Reg./BB.: G-Nr.: Top-set.: Hillside (slope) Site status: In use Depth [m]: 30.00 Col. ht. [m]: 0.62 Diam. [mm]: 165 Diam. [mm]: 165 <diam. [mm]:<="" th=""> 165<diam. [mm]:<="" th=""> 165<diam. [mm]:<="" th=""> 20061025 2006</diam.></diam.></diam.>
Y Coord. [m]: 4611.00 X Coord. [m]: Reg./BB.: 2867515.98 Atitude [m]: Topo-set.: Hillside (slope) Site status: Depth [m]: 30.00 Col. ht. [m]: Depth [m]: 30.00 Col. ht. [m]: Depth [m]: 30.00 Col. ht. [m]: 0.62 Diam. [mm]: 165 Diam. [mm]: 100 100 101 Constr. meth. Type finish Development Durat. Treaternation Constr. 20061025 EDRS Air percussion Open bottom Pumped with air 10 0.00 24.00 215 20061025 Comment Constr.
X Coord. [m]: 2867515.98 [G-Nr.: Site status: In use Col. ht. [m]: 0.62 Attitude [m]: 1560.00 [G-Nr.: Site status: In use Site status: In use Col. ht. [m]: 0.62 Coord. acc.: Accurate to within 10 units Site status: In use Site status: In use Col. ht. [m]: 0.62 Coord. meth.: Coord. meth.: Site status: In use Site status: In use Col. ht. [m]: 0.62 Coord. meth.: Coord. meth.: Coord. meth.: Development Special Constr. Coord. scc: Constr. meth. Type finish Method Durat: treatment Cost 20061025 EDRS Air percussion Open bottom Pumped with air 10 Top JMA 0.00 24.00 30.00 165 20061025 Vert Length Hori. Vert Date const. Diam. Thickn. Opening Thickn. Opening Length Hori. Vert JMA 0.00 6.00 165 Steel 3 Plain casing 20061218 300 3 200 15
Attitude [m]: 1560.00 G-NF.: Site purp.: Observation Diam. [mm]: 165 Coord. acc.: Accurate to within 10 units Geodogan Geodogan Site purp.: No equipment Diam. [mm]: 165 Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Development Special Constr. B206 Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Development Special Constr. Constr. 20061025 EDRS Air percussion Open bottom Pumped with air 10 Constr. cost JMA 0.00 24.00 215 20061025 Comment Comment Length Hori. Vert JMA 0.00 6.00 165 20061025 Comment Length Width dist. dist. 20061218 0.00 6.00 165 Steel 3 Plain casing 20061025 Comment Length Width dist. dist. 20061218 0.00 6.00 165 Steel 3 Perforated or slotted 300 3
Coord. acc.: Accurate to within 10 units Use applic.: Industrial - mining Drain. reg.: B20G Coord. meth.: Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Equipment: No equipment No equipment Rep. inst.: JMA Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Dep. for to Constr. meth. Type finish Development Special Durat. treatment Constr. constr. constr. Odd 1025 Constr. meth. Dept hot Durat. treatment Constr. Comment JMA 0.00 Dept hot Dept mio Bot [m]
Coord. meth.: Equipment: No equipment Rep. inst.: JMA Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84) Type finish Development Method Special Durat. treatment Constr. cost 20061025 EDRS Air percussion Open bottom Pumped with air 10 Constr. cost Constr. meth. Type finish Development Method Special Durat. treatment Cost Cost 20061025 EDRS Air percussion Open bottom Pumped with air 10 Cost Cost <td< th=""></td<>
Coordinate System: South African LO Transverse Mercator, Harlebeesthoek94 (WGS B4) Development Method Special Durat. treatment Constr. cost 20061025 EDRS Air percussion Open bottom Pumped with air 10 HOLE DIAMETER: Rep. Inst. Depth to Top [m] Depth to Bottom [m] Diameter [mm] Date const. Comment JMA 0.00 24.00 215 20061025 Comment Vertice JMA 24.00 30.00 165 20061025 Vertice Vertice Date inst. Dep. to top [m] Bot. [m] [mm] Material Thickn. Openfore Length Width dist. dist. 20061218 0.00 6.00 165 Steel 3 Plain casing 2006 3 200 150 20061218 0.00 6.00 165 Steel 3 Perforated or slotted 300 3 200 150 20061218 0.00 24.00 165 Steel 3 Perforated or slotted 300 3 200 150 AQUIFER: Depth to Feature
CONSTRUCTION: Date const. Contractor Constr. meth. Type finish Development Method Special Durat. treatment Constr. cost 20061025 EDRS Air percussion Open bottom Pumped with air 10 Image: cost Constr. cost HOLE DIAMETER: Rep. Inst. Depth to Top [m] Depth to Bottom [m] Depth to Bottom [m] Date const. Comment Image: cost Image: cost <t< th=""></t<>
20061025 EDRS Air percussion Open bottom Pumped with air 10 HOLE DIAMETER: Rep. Inst. Depth to Top [m] Depth to Bottom [m] Diameter [mm] Depting [m] Depth to Bot [m] Hori. Vert dist 20061218 0.00 6.00 165 Steel 3 Plain casing 200 150 AQUIFER: Rep. Inst. Depth to [m] Depth to Bot [m] Yield [M Method meas. Aquifer type Info source ESTIMATED JMA 12.00 19.00 0.15 Estimated Econoary Feature Primary Feature Primary Sandy Sandy 0.00<
HOLE DIAMETER: Rep. Inst.Depth to Top [m]Depth to Bottom [m]Diameter [mm]Date const.CommentJMA0.0024.0021520061025 \sim
Index instructionIndex initialDefinitionDefinitionDefinitionContinuityJMA0.0024.0021520061025CASING DETAILS: Date inst.Diam. ImmThickn. MaterialOpening ImmHori. Vert dist.200612180.006.00165Steel3Plain casing200612180.0024.00165Steel3Perforated or slotted300320015AQUIFER: Rep. Inst.Dept to Top [m]Yield Bot. [m]Method meas.Aquifer typeInfo sourceCommentJMA12.0019.000.15EstimatedGeologist, technician, PrimaryESTIMATEDGEOLOGY: Dep. Top [m]Lithology codeColour PrimarySecondary SecondaryFeature PrimarySecondary Secondary0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeathered2.003.00GRITOrangeReddishWeathered
JMA 0.00 24.00 213 20061025 JMA 24.00 30.00 165 20061025 CASING DETALLS: Date inst. Diam. Dep. to top [m] Diam. Bot. [m] Material Thickn. [mm] Opening Type Length Hori. Length Verd dist. 20061218 0.00 6.00 165 Steel 3 Plain casing 15 20061218 0.00 24.00 165 Steel 3 Perforated or slotted 300 3 200 15 AQUIFER: Rep. Inst. Depth to Top [m] Vield Bot. [m] Method meas. Aquifer type Info source Comment JMA 12.00 19.00 0.15 Estimated Geologist, technician, ESTIMATED 0.00 1.00 SOIL Red Light Silty Sandy 0.00 1.00 GRIT Orange Reddish Weathered Veathered 2.00 3.00 GRIT Orange Reddish Weathered Veathered
Sitic Diam. [mm] Diam. [mm] Thickn. [mm] Opening Type Length Hori. Veri dist. 20061218 0.00 6.00 165 Steel 3 Plain casing Image: state stat
Date inst.Dep. to top [m]Bot. [m][mm]Material[mm]TypeLengthWidthdist.dist.200612180.006.00165Steel3Plain casing200612186.0024.00165Steel3Perforated or slotted3003200150AQUIFER: Rep. Inst.Depth to Top [m]Yield Bot. [m]Method meas.Aquifer typeInfo sourceCommentJMA12.0019.000.15EstimatedGeologist, technician,ESTIMATEDGEOLOGY: Dep. Top [m]Dot. [m]Lithology codeRedLightSiltySandy0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeatheredVeathered2.003.00GRITOrangeReddishWeatheredVeathered
20061218 0.00 6.00 165 Steel 3 Plain casing 20061218 6.00 24.00 165 Steel 3 Perforated or slotted 300 3 200 15 AQUIFER: Depth to Yield Method meas. Aquifer type Info source Comment Comment JMA 12.00 19.00 0.15 Estimated Geologist, technician, ESTIMATED GEOLOGY: Bot. [m] Lithology code Primary Secondary Texture Feature Perimary Secondary Secondary Silty Sandy Sandy 0.00 1.00 SOIL Red Light Silty Sandy Sandy 1.00 2.00 GRIT Orange Reddish Weathered Veathered Veathered 2.00 3.00 GRIT Orange Reddish Weathered Veathered Veathered
200612186.0024.00165Steel3Perforated or slotted300320015AQUIFER: Rep. Inst.Depth to Top [m]Yield Bot. [m]Method meas.Aquifer typeInfo sourceCommentJMA12.0019.000.15EstimatedGeologist, technician,ESTIMATEDGEOLOGY: Dep. Top [m]Lithology codeColour PrimaryFeature Secondary TextureFeature PrimarySecondary0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeatheredVeathered2.003.00GRITOrangeReddishWeatheredVeathered
AQUIFER: Rep. Inst.Depth toYield [I/s]Method meas.Aquifer typeInfo sourceCommentJMA12.0019.000.15EstimatedGeologist, technician,ESTIMATEDGEOLOGY: Dep. Top [m]Bot. [m]Lithology codePrimarySecondaryTextureFeature PrimarySecondary0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeathered2.003.00GRITOrangeReddishWeathered
Nop: IndexPop: [Ing]Dot: [Ing]Pop: [Ing]<
GEOLOGY: Dep. Top [m]Lithology codeColour PrimarySecondary TextureFeature PrimarySecondary0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeathered2.003.00GRITOrangeReddishWeathered
Dep. Top [m]Bot. [m]Lithology codePrimarySecondaryTexturePrimarySecondary0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeathered2.003.00GRITOrangeReddishWeathered
0.001.00SOILRedLightSiltySandy1.002.00GRITOrangeReddishWeathered2.003.00GRITOrangeReddishWeathered
1.002.00GRITOrangeReddishWeathered2.003.00GRITOrangeReddishWeathered
2.00 3.00 GRIT Orange Reddish Weathered
3.00 4.00 CLAY White Greyish
4.00 5.00 CLAY Orange Reddish
5.00 6.00 SHALE Grey Dark Very line Weathered Carbonaceous
8.00 9.00 SHALE Gley Dark Very line Fresh Weathered
9 00 10 00 SANDSTONE AND SHALE Grev Light Fine Fresh Weathered
10.00 11.00 SHALE Black Verv fine Fresh Weathered
11.00 12.00 SHALE Black Verv fine Fresh Weathered
12.00 13.00 COAL Black
13.00 18.00 COAL Black
18.00 19.00 COAL Black
19.00 30.00 TILLITE White Greyish Fresh
WATER LEVEL: Date meas. Vertex meas.
Electrical contact Static 0 Field checked 20061114 0735 0.00 6.92

Borehole Construction and	l Geological Log	Date co	ompiled: 2007/03/02
BASIC SITE INFORMATION Distr./Farm No.: 537 JR	I: Site Identifier: 2528DD0001 Site Name/Des.: NEW LARGC	1 <i>Number:</i> LGW-B11 <i>Site type:</i> DPROJECT : LGW-B11	Borehole
Y Coord. [m]: 4611.00 X Coord. [m]: 2867515.98 Altitude [m]: 1560.00 Coord. acc.: Accurate to within Coord. meth.: Coordinate System: South African LO Transverse	Reg./BB.: G-Nr.: 10 units P Mercator, Hartebeesthoek94 (WGS 84)	ppo-set.: Hillside (slope) te status: In use te purp.: Observation se applic.: Industrial - mining quipment: No equipment	Depth [m]: 30.00 Col. ht. [m]: 0.62 Diam. [mm]: 165 Drain. reg.: B20G Rep. inst.: JMA
Construction Hol Car Sor Pie Construction Construction Laborat	e 165 sing (plain / perforated, sloted) een / Mesh Screen zometer 0.50 Progr. Yield EC. 0.075 0.15 5 10 25 0.075 0.15 5 10 10 10 10 10 10 10 10 10 10 10 10 10	2 Hole diameter [mm] Casing diameter [mm] Waterlevel measured: 14/11/06 Piezometer (Nr. & Diameter [mm]) Lithology	0 1 2 3 4 5 6 7 8 9 9 9 10 11 12 13 14 5 6 7 8 9 9 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 14 5 16 11 12 13 14 5 16 17 18 19 20 21 22 23 24 25 26
29 30 COMMENT:		JMA Consulting P O Box 883 Delmas 2210 Tel: (013) 665 1 www.imaconsul	(Pty) Ltd 788 t.co.za

SITE INFOR	MATION	REPO	RT						Da	ate co	mpileo	d: 20	07/03/	/01
BASIC SITE	INFORM		l: Si	ite Iden	<i>tifier:</i> 2528DD0	0012 Number:	;	LGW-B12	Site ty	/pe:	Boreho	le		
Distr./Farm No.: 326 JR Site Name/Des.: NEW LARGO PROJECT:							Г: L	LGW-B12						
Region Type:					Regio	on Descr.:								
Y Coord. [m]:	1	590.00	Rea./B	B.:		Topo-set.: A	۹t c	or in waste o	disposal		Depth	[m]:	;	30.00
X Coord. [m]:	2872	546.98	C Nr .			Site status: Ir	n u	Jse			Col. ht	t. [m]:		0.65
Altitude [m]:	1	525.00	G-IVI			Site purp.: C	Cost	servation			Diam.	[mm]	•	165
Coord. acc.:	rd. acc.: Accurate to within 10 units				Use applic.: Ir	ndı	ustrial - min	ing		Drain.	reg.:	B2(JG	
Coord. meth.:	Global Pos	itioning S	System			Equipment: N	٩	equipment			Rep. iı	ıst.:	JM	A
Coordinate System: S	outh African LC	Transverse	e Mercator,	Hartebee	sthoek94 (WGS 84)		_							
CONSTRUC Date const. C	TION: ontractor		Con	str. me	th. Tyj	pe finish		Developm Method	ent D	urat.	Special treatme	nt	Co	nstr. :ost
20060905 El	DRS		Air p	ercussi	on Op	en bottom		Pumped wi	th air	10				0.00
HOLE DIAM Rep. Inst.	ETER:	Dept Top	th to [m]		Depth to Bottom [m]	Diameter [m	nm	n] Da	te const.	Co	mment			
JMA		0	.00		18.00	215		200	060905	CA	SED TO	0 165		
JMA		18	.00		30.00	165		200	060905	NO	CASIN	G		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bo	ot. [m]	Diam. [mm]	Material	Thick [mm	n.]	Opening Type		Len	gth W	ïdth	Hori. dist.	Vert. dist.
20060905	0.00	12	2.00	165	Steel	3	3	Plain casin	g		0	0	0	0
20060905	12.00	18	5.00	165	Steel	3	}	Perforated	or slotted	30	00	3	200	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [[m]	Yield [l/s]	Method meas	. Aquife	er	type	Info sou	ırce		Con	nment	
JMA	12.00	15.0	00	0.24	Volumetric				Geologis	st, tech	nician,	VOL	UMETF	۶IC
GEOLOGY: Dep. Top [m]	Bot. [m]	Litholog	gy code		Colour Primary	Secondary	T	exture		Featu Prima	ıre ary	Se	condaı	ry
0.00	1.00	SOIL			Orange	Yellowish	V	ery fine		Silty		Sa	andy	
1.00	5.00	CLAY			Red	Dark								
5.00	7.00	CLAY			Red	Dark								
7.00	9.00	CLAY			Red	Dark								
9.00	10.00	CLAY	_		Brown	Light				Gritty				
10.00	12.00	DIABAS	SE		Brown	Light	_			Weat	hered			
12.00	15.00	DIABAS	SE		Brown	Greyish	Fi	ine to mediu	ım	Weat	hered	W	eathere	;d
15.00	17.00	DIABAS			Brown	Greyish		ine to medit	un)	vveat	nered	VV	eathere) D
17.00	10.00				Grey	Light	FI F	ine to medil	111	Fresh		۷۷ با	eamere	a
	30.00	DIADAC			Gley	Ligiti		me to medit		riesi	1	Fli		
Meth. meas.	Level :	status	Pi	ez. Inf	o source	Date meas.	7	Time meas.	Sec. I	Vater	lev. [m]	Con	nment	
Electrical contac	ct Static		() Ge	ologist,	20061002		1335	0.00		7.70			

SITE INFOR	MATION	REPORT					I	Date c	ompil	ed: 20	07/03	/01
BASIC SITE		IATION:	Site Identifie	er: 2528DD0	0013 Number:	LGW-B1	3 Site	type:	Boreh	nole		
Distr./Farm No.	.: 566 JR	:	Site Name/De	s.: NEW LA	RGO PROJECT	Г: LGW-B13						
Region Type:				Regi	on Descr.:							
Y Coord. [m]:	6	348.00	/DD		Topo-set : +	lillside (slop	e)		Dept	th [m]:		40.00
X Coord. [m]:	2874	504.98	/BB.:		Site status:	n use	0)		Col.	 ht. [m]:		0.68
Altitude [m]:	1	552.00	.:		Site purp.: (Observation			Dian	n. [mm]		165
Coord acc.	Accurate to	within 10 unit	s		Use applic. : In	ndustrial - m	inina		Drai	n rea.	B2(0F
Coord moth :	Clobal Bas	itioning System	n		Equipmont:		nt in ing		Bon	inct :		
			11 1	-1-04 (11/00 04)	Equipment.		n		пер.		5101	^
		I ransverse Merca	tor, Hartebeesthoe	ek94 (WGS 84)		Develop	mont		Spaci	้วไ	6	netr
Date const. C	Contractor	С	onstr. meth.	Ty	pe finish	Method	mem	Durat.	treatn	nent	00	cost
20060908 E	DRS	A	ir percussion	Op	en bottom	Pumped	with air	10				0.00
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]	Deµ Bo	oth to ottom [m]	Diameter [m	nm] L	Date cons	t. C	ommei	nt		
JMA		0.00		18.00	215	2	20060908	C	ASED -	TO 165		
JMA		18.00		40.00	165	2	20060908	N	O CAS	ING		
CASING DE	TAILS: Dep. to top	[m] Bot. [m	Diam. I Imm1 Ma	aterial	Thick Imm	n. Opening 1 Type	g	Lei	nath	Width	Hori. dist.	Vert. dist.
20060908	0.00	18.00	165 St	eel	3	B Plain cas	sina		0	0	0	0
GEOLOGY:	0.00			Colour				Fea	ture	-	<u> </u>	
Dep. Top [m]	Bot. [m]	Lithology co	de	Primary	Secondary	Texture		Prin	nary	Se	conda	ry
0.00	1.00	CLAY		Brown	Reddish			San	dy	G	ritty	
1.00	2.00	CLAY		Orange	Reddish			Ferr	uginou	S		
2.00	3.00	CLAY		Orange	Reddish							
3.00	5.00	CLAY		Orange	Reddish			Mica	aceous			
5.00	6.00	CLAY		White	Greyish							
6.00	10.00	SILT		White	Greyish			Clay	ey			
10.00	11.00	SHALE		Grey		Very fine		Fres	h	W	eathere	əd
11.00	12.00	COAL		Black								
12.00	13.00	SANDSTONE		Grey	Light	Fine to me	dium	Fres	h			
13.00	14.00	COAL		Black								
14.00	15.00	COAL		Black								
15.00	16.00	NO SAMPLE										
16.00	18.00	NO SAMPLE										
18.00	19.00	SHALE		Grey	Dark	Very fine		Fres	h	С	arbonad	ceous
19.00	21.00	SANDSTONE	E AND SHALE	Grey	Light	Fine to me	dium	Fres	h			
21.00	22.00	SHALE		Grey		Fine to me	dium	Fres	h	М	icaceou	JS
22.00	24.00	SHALE		Blue		Very fine to	o fine	Fres	h	С	arbonad	ceous
24.00	26.00	SHALE		Grey	Light	Fine		Fres	h	М	icaceou	JS
26.00	28.00	SHALE		Blue		Very fine to	o fine	Fres	h	С	arbonad	ceous
28.00	29.00	COAL		Black								
29.00	30.00	COAL		Black								
30.00	32.00	COAL		Black								
32.00	34.00	SHALE		Blue		Very fine to	o fine	Fres	h	C	arbonad	ceous
34.00	35.00	SHALE		Blue		Very fine to	o fine	Fres	h	C	arbonad	ceous
35.00	37.00	COAL		Black								
37.00	38.00	SHALE		Grey		Fine		Fres	h	М	icaceou	s
38.00	40.00	TILLITE		Grey				Fres	h	W	eathere	ed
WATER LEV Meth. meas.	/EL: Level	status	Piez. Info so	ource	Date meas.	Time mea	s. Sec.	Water	· lev. [n	n] Con	nment	
Electrical contac	ct Static		0 Geoloc	gist,	20061003	1140	0.00		19.16	5		
			200.00	,,			1.00					

SITE INFORMATION REPORT Date compiled: 2007/03/01										
BASIC SITE INF Distr./Farm No.: 5 Region Type:	ORMATION 68 JR	N: Site Ide Site Nan	entifier: 2528DD0 ne/Des.: NEW LA Regio	0014 <i>Number:</i> RGO PROJECT: on Descr.:	LGW-B14 LGW-B14	Site ty	/pe: Boreh	ole		
Y Coord. [m]:6337.00Reg./BB.:Topo-set.:Hillside (slope)Depth [m]:30.0X Coord. [m]:2876355.98G-Nr.:Site status:In useCol. ht. [m]:0.1Altitude [m]:1525.00G-Nr.:Site purp.:ObservationDiam. [mm]:1Coord. acc.:Accurate to within 10 unitsUse applic.:Industrial - miningDrain. reg.:B20FCoord. meth.:Global Positioning SystemEquipment:No equipmentRep. inst.:JMA								30.00 0.76 165 0F A		
CONSTRUCTIO Date const. Contra	N: ictor	Constr. n	neth. Ty	pe finish	Developm Method	ent D	Specia urat. treatm	nl ent	Co	onstr. cost
20060908 EDRS		Air percus	sion Op	en bottom	Pumped wi	th air	10			0.00
HOLE DIAMETE Rep. Inst.	R: Dep Top	oth to [m]	Depth to Bottom [m]	Diameter [mn	n] Da	te const.	Commen	t		
JMA	(0.00	15.00	215	200	060908	CASED T	O 165		
JMA	15	5.00	30.00	165	200	060908	NO CASI	NG		
CASING DETAIL Date inst. Dep.	.S: to top [m] B	Diam ot. [m] [mm]] Material	Thickn. [mm]	Opening Type		Length V	Vidth	Hori. dist.	Vert. dist.
20060908 0.	00 9	9.00 165	5 Steel	3	Plain casin	g	0	0	0	0
20060908 9.	00 1	5.00 165	5 Steel	3	Perforated	or slotted	300	3	200	150
AQUIFER: Rep. Inst. Top	Depth to [m] Bot.	Yield [m] [l/s]	Method meas	. Aquifer	type	Info sou	ırce	Con	ment	
JMA 19).00 23.	.00 0.17	7 Estimated			Geologis	st, technician,	EST	IMATEI	D
GEOLOGY: Dep. Top [m] Bot	.[m] Litholo	ogy code	Colour Primary	Secondary 7	Texture		Feature Primary	Se	condaı	ry
0.00	1.00 SOIL		Red	Light			Silty	Sa	andy	
1.00	2.00 CLAY		Orange	Reddish			Sandy			
2.00	4.00 CLAY		Brown	Reddish			Sandy			
4.00	5.00 CLAY		VVhite	Greyish						
5.00	9.00 CLAY	E	VVnite	Greyish			Freeb	۱۸/	oothorc	h
9.00		F	Grey				Fresh	vv	eamere	JU
19.00	20.00 LAVA	-	Red	Grevish			Weathered	Fr	actured	ł
20.00	23.00 LAVA		Red	Greyish			Fractured			
23.00	30.00 LAVA		Red	Greyish			Fresh			
WATER LEVEL: Meth. meas.	Level status	Piez. lı	nfo source	Date meas.	Time meas.	Sec. V	Vater lev. [m] Corr	ment	

SITE INFORMATION REPORT Date compiled: 2007/03										7/03/	/01
BASIC SITE		IATION:	Site Iden	ntifier: 2528DD0	0015 Number:	LGW-B15	Site t	/pe: Boreho	le		
Distr./Farm No).: 326 JR		Site Name	e/ Des.: NEW LA	RGO PROJECT	T: LGW-B15					
Region Type:				Regio	on Descr.:						
Y Coord. [m]:	2	435.00 Reg	/RR ·		Topo-set.: ⊢	lillside (slope)	Depth	[m]:	3	30.00
X Coord. [m]:	2871	334.98			Site status: Ir	nuse		Col. h	t. [m]:		0.66
Altitude [m]:	1	538.00			Site purp.: C	Observation		Diam.	[mm]:		165
Coord. acc.:	Accurate to	o within 10 unit	s		Use applic.: Ir	ndustrial - mir	ning	Drain.	reg.:	B20	0G
Coord. meth.:	Global Pos	itioning Syster	m		Equipment: N	lo equipment		Rep. i	nst.:	JM	A
Coordinate System: \$	South African LC	Transverse Merca	ator, Hartebee	esthoek94 (WGS 84)							
CONSTRUC	CTION:					Developn	nent	Specia	1	Со	nstr.
Date const. C	Contractor	C	constr. me	eth. Typ	pe finish	Method	D	urat. treatme	ent	C	ost
20060904 E	DRS	A	ir percuss	ion Ope	en bottom	Pumped w	vith air	10			0.00
HOLE DIAN Rep. Inst.	IETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	nm] Da	ate const.	Comment	•		
JMA		0.00		12.00	215	20	060904	CASED TO	D 165		
JMA		12.00		30.00	165	20	060904	NO CASIN	IG		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m	Diam.] [mm]	Material	Thick [mm	n. Opening] Type		Length V	lidth (lori. dist.	Vert. dist.
20060904	0.00	9.00	165	Steel	3	B Plain casi	ng	0	0	0	0
20060904	9.00	12.00	165	Steel	3	B Perforated	d or slotted	300	3	200	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas	. Aquife	er type	Info sou	ırce	Comr	nent	
JMA	9.00	12.00	0.05	Estimated			Geologis	st, technician,	ESTIN	ΙΑΤΕΙ	D
JMA	12.00	14.00	0.12	Estimated			Geologis	st, technician,	ESTIN	ΙΑΤΕΙ	D
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology co	de	Colour Primary	Secondary	Texture		Feature Primary	Sec	ondar	ry
0.00	3.00	SOIL		Orange	Reddish			Silty	Sar	idy	
3.00	4.00	SOIL		Orange	Reddish			Silty	Sar	idy	
4.00	7.00	CLAY		Red	Light			Sandy			
7.00	9.00	CLAY		Orange	Reddish			Sandy			
9.00	12.00	CLAY		Orange	Reddish						
12.00	14.00	DIABASE		Grey	Light	Fine to medi	um	Fresh	Har	d	
14.00	15.00	DIABASE		Grey	Light	Fine to medi	um	Fractured			
15.00	30.00	DIABASE		Grey	Light	Fine to medi	um	Fresh	Har	d	
WAIER LE' Meth. meas.	VEL: Level :	status	Piez. Inf	o source	Date meas.	Time meas	. Sec. I	Vater lev. [m]	Com	nent	
Electrical conta	ct Static		0 Ge	ologist,	20061002	1238	0.00	6.15			

SITE INFORM	NATION	REPORT					D	ate co	mpiled:	2007/03	8/01
BASIC SITE I Distr./Farm No.: Region Type:	INFORM 536 JR	ATION: Sit	ite Iden e Name	tifier: 2528DD00 #/ Des.: NEW LAI Regio	0016 <i>Number:</i> RGO PROJECT on Descr.:	LGW-B1 : LGW-B16	6 Site t	type:	Borehole		
Y Coord. [m]:		900.00 Reg /B	в·		Topo-set.: H	illside (slop	be)		Depth [r	n]:	30.00
X Coord. [m]:	2868	478.98	D		Site status: In	use			Col. ht.	[m] :	0.48
Altitude [m]:	1	541.00			Site purp.: O	bservation			Diam. [n	nm]:	140
Coord. acc.:	Accurate to	within 10 units			Use applic.: In	dustrial - n	nining		Drain. re	.: B2	20G
Coord. meth.:	Global Pos	itioning System			Equipment: N	o equipme	nt		Rep. ins	<i>t.:</i> JN	1A
Coordinate System: Sou	uth African LO	Transverse Mercator,	Hartebee	sthoek94 (WGS 84)							
CONSTRUCT Date const. Co	FION: ontractor	Con	nstr. me	eth. Typ	oe finish	Develoµ Method	oment L	S Durat. t	Special reatment	Co t Co	onstr. cost
20060907 ED	RS	Air p	ercuss	ion Filte	er (gravel pack	Pumped	with air	10			0.00
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m]	Date const.	Col	mment		
JMA		0.00		30.00	215	:	20060907	CAS	SED TO 1	140	
CASING DET Date inst. D	AILS: ep. to top	[m] Bot. [m]	Diam. [mm]	Material	Thickı [mm]	n. Openin I Type	g	Leng	gth Wid	Hori. Ith dist.	Vert. dist.
20060907	0.00	12.00	140	Steel	4	Plain ca	sing		0 0) 0	0
20060907	12.00	30.00	140	Steel	4	Perforat	ed or slotted	30	00 3	3 150	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas.	. Aquife	er type	Info so	urce	(Comment	
JMA	26.00	29.00	0.35	Estimated			Geologi	st, tech	nician, I	ESTIMATE	D
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code	•	Colour Primary	Secondary	Texture		Featu Prima	ire ary	Seconda	iry
0.00	1.00	SOIL		Red	Greyish			Claye	у	Sandy	
1.00	2.00	CLAY		Orange	Reddish			Sandy	/		
2.00	9.00	CLAY		Red	Dark						
9.00	10.00	CLAY		Red	Dark						
10.00	11.00	CLAY		Orange	Reddish			Sandy	/		
11.00	12.00	CLAY		Orange	Reddish			Sandy	/		
12.00	14.00	TILLITE		Grey	Light			Fractu	ured	Weather	ed
14.00	15.00	TILLITE		Grey	Light			Fractu	ured	Weather	ed
15.00	22.00	TILLITE		Orange	Reddish			Weath	nered	Weather	ed
22.00	23.00			Orange	Reddish			Fractu	ured	Fracture	d
23.00	27.00			Grey	Dark	\/ 		Fractu	lied	Hard	
	30.00	DIABASE	_	Grey	Dark	very fine		Hard		Fracture	a
Meth. meas.	EL: Level s	status Pi	ez. Inf	o source	Date meas.	Time mea	as. Sec.	Water I	ev. [m]	Comment	
Electrical contact	Static		0 Ge	ologist,	20061003	0919	0.00		7.79		

SITE INFORMATION REPORT Dat										iled: 20	07/03	/01
BASIC SITE	INFORM		: s	ite Iden	<i>tifier:</i> 2528DD0	0017 Number:	LGW-B1	7 Site ty	pe: Bor	ehole		
Distr./Farm No.	.: 536 JR		Sit	e Name	/ Des.: NEW LA	RGO PROJECT:	LGW-B1	7				
Region Type:					Regi	on Descr.:						
Y Coord. [m]:	-	176.00	Rea /B	R.·		Topo-set.: Hi	illside (slo	pe)	De	pth [m]:		30.00
X Coord. [m]:	2867	351.98	C N# .	21.		Site status: In	use		Co	l. ht. [m]:		0.49
Altitude [m]:	1	539.00	G-INF.			Site purp.: Of	bservation	1	Dia	am. [mm]	:	140
Coord. acc.:	Accurate to	within 1	0 units			Use applic.: In	dustrial - r	nining	Dra	ain. reg.:	B2	0G
Coord. meth.:	Global Pos	itioning S	System			Equipment: No	o equipme	ent	Re	p. inst.:	JM	IA
Coordinate System: Se	outh African LC	Transverse	Mercator	, Hartebee	sthoek94 (WGS 84)							
CONSTRUC Date const. C	TION: ontractor		Cor	nstr. me	eth. Ty	pe finish	Develo Method	oment I Di	Spe urat. trea	cial tment	Co	onstr. cost
20060907 EI	DRS		Air p	percussi	on Filt	er (gravel pack	Pumped	l with air	10			0.00
HOLE DIAM Rep. Inst.	ETER:	Depti Top [h to [m]		Depth to Bottom [m]	Diameter [mi	m]	Date const.	Comm	ent		
JMA		0.	.00		30.00	215		20060907	CASED	D TO 140		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bo	ot. [m]	Diam. [mm]	Material	Thickn [mm]	n. Openin Type	ng	Length	Width	Hori. dist.	Vert. dist.
20060907	0.00	6.	.00	140	Steel	4	Plain ca	ising	0	0	0	0
20060907	6.00	30.	.00	140	Steel	4	Perfora	ted or slotted	300	3	150	150
GEOLOGY: Dep. Top [m]	Bot. [m]	Litholog	gy code	•	Colour Primary	Secondary	Texture		Feature Primary	Se	conda	ry
0.00	1.00	SOIL			Orange	Reddish			Sandy			
1.00	2.00	CLAY			Orange	Reddish			Sandy			
2.00	5.00	CLAY			Orange	Reddish			Sandy			
5.00	7.00	CLAY			Orange	Reddish			Sandy			
7.00	9.00	TILLITE			Orange	Reddish			Weathere	d W	eathere	ed
9.00	11.00	TILLITE			Red	Dark			Weathere	d Fr	actured	b
11.00	25.00	CLAY			Orange	Reddish			Sandy			
25.00	30.00	TILLITE			Grey				Weathere	d W	eathere	ed

SITE INFOR	MATION	REPORT	Г				Da	ate co	ompiled: 2	2007/03/01
BASIC SITE	INFORM	IATION:	Site Identifie	r:2528DD00	0018 <i>Number:</i>	LGW-E	18 Site t	ype:	Borehole	
Distr./Farm No.	.: 536 JR		Site Name/Des	s.: NEW LA	RGO PROJECT	T: LGW-B	18			
Region Type:				Regio	on Descr.:					
Y Coord. [m]:		613.00	a /PP -		Topo-set.: ⊢	lillside (slo	ope)		Depth [m]	: 36.00
X Coord. [m]:	2865	768.98	еу./ <i>ВВ</i>		Site status: D	Destroyed	. ,		Col. ht. [n	n] : 0
Altitude [m]:	1	526.00	-Nr.:		Site purp.: C	Observatio	n		Diam. [mr	n]: 215
Coord. acc.:	Accurate to	o within 10 u	units		Use applic.: Ir	ndustrial -	mining		Drain. reg	J.: B20G
Coord. meth.:	Global Pos	itioning Sys	stem		Equipment: N	lo equipm	ent		Rep. inst.	: JMA
Coordinate System: So	outh African LC	Transverse Me	ercator, Hartebeesthoel	k94 (WGS 84)						
CONSTRUC	TION:		Constr. meth.	Tvr	oe finish	Develo Metho	opment d L	Durat.	Special treatment	Constr.
20060906 E	DRS		Air percussion	Air	percussion	Pumpe	 d with air	10		0.00
HOLE DIAM Rep. Inst.	ETER:	Depth t Top [m]	to Dep Bot	th to ttom [m]	Diameter [m	nm]	Date const.	Co	omment	
JMA		0.00)	36.00	215		20060906	NC	CASING	
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology	code	Colour Primary	Secondary	Texture		Feat Prim	ure ary .	Secondary
0.00	1.00	SOIL		Orange	Reddish			Silty		Sandy
1.00	5.00	CLAY		Orange	Reddish			Gritty	/	
5.00	11.00	GRIT		Orange	Yellowish			Clay	еу	Weathered
11.00	12.00	CLAY		Orange	Reddish			Gritty	/	
12.00	14.00	CLAY		Orange	Reddish					
14.00	20.00	CLAY		Brown	Reddish					
20.00	27.00	CLAY		Brown	Reddish			Sanc	ly	
27.00	30.00	CLAY		Orange	Yellowish			Sanc	ly	
30.00	33.00	TILLITE		Orange	Yellowish			Weat	thered	Weathered
33.00	36.00	TILLITE		Brown	Reddish			Weat	thered	Weathered

Borehole Construct	tion and Geological Log	Date com	oiled: 2007/03/02
BASIC SITE INFORM	MATION: Site Identifier: 252	8DD00018 Number: LGW-B18 Site type: Bo	rehole
Distr./Farm No.: 536 JR	Site Name/Des.: NEV	N LARGO PROJECT: LGW-B18	
Region Type:	Ke	egion Descr.:	
Y Coord. [m]:	613.00 Reg./BB.:	Topo-set.: Hillside (slope) Site statue: Detraued	<pre>>pth [m]: 36.00</pre>
A COORA. [M]: 286	G-Nr.:	Site status: Destroyed	51. nt. [m]: 0
		Use applie : Industrial mining	am. [mm]. 210
Coord. acc.: Accurate	to within To units	Equipment: No equipment	ani. reg b200
oordinate System: South African L	O Transverse Mercator, Hartebeesthoek94 (WC	GS 84)	
	Construction	and Geohydrological Legend	
	Holo	165 Holo diameter [mm]	
	Casing (plain / perforated, sloted)	<pre>152 Casing diameter [mm]</pre>	
	Screen / Mesh Screen	Vater level with date meas.	
	Piezometer	0:50 Piezometer (Nr. & Diameter [mm])	
Construction		Lithology	
			
0		SOIL: Reddish orange, slightly sandy silty;	0
2		Dark, dry, and dark reddish orange, sandy clay, slightly moist;	-2
3		CLAY: Reddish orange, very gritty; Light,	
4		slightly moist;	-4
5		GRIT: Yellowish orange, very weathered clayey;	
7		Light, slightly moist;	-0 -
8			-8
9			
10		CLAY: Reddish orange gritty; Light, slightly	
12		moist;	-12
13		CLAY: Reddish orange; Light, moist;	
14		CLAY: Reddish brown; Light, very moist;	14
15			-
E 17			-10
⊊ 18 ²¹⁵ →			-18
a 19			
20		CLAY: Reddish brown, slightly sandy; Light,	20
21		moist to slightly moist;	-22
23			
24			24
25			-
20- 27-			-26
28		CLAY: Yellowish orange, very sandy; Light, slightly moist to moist;	-28
29			-
30	%00	TILLITE: Yellowish orange, very weathered	30
32	్లో	weathered; Light, slightly moist;	- _32
33		TILLITE: Reddish brown slightly weathered	
34		weathered Light, some fracturing present,	-34
35	o Co Co	sugntly moist, wet after attempted casing installation.	
36			36
OMMENT:		IMA Concultion /Dt	y) td
		P O Box 883	y) LIU
		Delmas	
		Tel: (013) 665 1788	i
Page 1		www.jmaconsult.co	.za

SITE INFOR	ate comp	iled: 20	07/03/	/01						
BASIC SITE		IATION:	Site Ide	ntifier: 2528DI	000019 Number:	LGW-B19 Site	type: Bore	ehole		
Distr./Farm No	.: 536 JR		Site Nam	e/Des.: NEW I	LARGO PROJECT	: LGW-B19				
Region Type:				Re	gion Descr.:					
Y Coord. [m]:	1	448.00			Topo-set.: H	illside (slope)	De	oth [m]:	2	24.00
X Coord. [m]:	2864	701.98	кеу./ББ		Site status: In	use	Co	l. ht. [m]:		0.51
Altitude [m]:	1	553.00	G-Nr.:		Site purp.: O	bservation	Dia	m. [mm].		140
Coord. acc.:	Accurate to	o within 10	units		Use applic.: In	dustrial - mining	Dra	ain. reg.:	B20	DG
Coord. meth.:	Global Pos	itioning Sy	/stem		Equipment: N	o equipment	Re	p. inst.:	JM	A
Coordinate System: S	South African LC	Transverse M	Vercator, Hartebe	esthoek94 (WGS 8	4)					
CONSTRUC Date const.	CTION:		Constr. m	eth.	Type finish	Development Method	Spe Durat. trea	cial tment	Co	nstr. cost
20060906 E	DRS		Air percuss	sion F	Filter (gravel pack	Pumped with air	10			0.00
HOLE DIAN Rep. Inst.	IETER:	Depth Top [n	to n]	Depth to Bottom [m]	Diameter [m	m] Date const.	Comm	ent		
JMA		0.0	0	24.00	215	20060906	CASED	TO 140		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot.	Diam. [m] [mm]	Material	Thick [mm]	n. Opening Type	Length	Width	Hori. dist.	Vert. dist.
20060906	0.00	10.5	50 165	Steel	3	Plain casing	0	0	0	0
20060906	10.50	12.0	00 165	Steel	3	Perforated or slotte	d 300	3	200	150
20060906	0.00	12.0	00 140	Steel	4	Plain casing	0	0	0	0
20060906	12.00	24.0	00 140	Steel	4	Perforated or slotte	d 300	3	150	150
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology	y code	Coloui Primar	r ry Secondary	Texture	Feature Primary	Se	condaı	ry
0.00	1.00	SOIL		Red	Dark		Sandy	Gi	itty	
1.00	2.00	CLAY		Red	Dark		Gritty			
2.00	5.00	CLAY		Red	Light					
5.00	6.00	CLAY		Orange	e Reddish					
6.00	15.00	BOULDE	R CLAY	Orange	e Reddish					
15.00	18.00	BOULDE	R CLAY	Orange	e Reddish					
18.00	22.50	CLAY		Orange	e Yellowish		Sandy			
22.50	24.00	DIABASE		Grey		Fine	Fresh	Ha	ard	

SITE INFOR	MATION	REPORT					Da	ite comp	oiled: 20	07/03	/01
BASIC SITE	INFORM	IATION: Site	e Iden	tifier: 2528DD0	0020 Number:	LGW-B20	Site ty	pe: Bor	ehole		
Distr./Farm No.	: 536 JR	Site	Name	/Des.: NEW LA	RGO PROJECT	: LGW-B20	-				
Region Type:				Regio	on Descr.:						
Y Coord. [m]:	2	2382.00			Topo-set · In	or along par	n	De	pth [m]:		30.00
X Coord. [m]:	2866	6408.98	.:		Site status: Ir	i use		Co	 d. ht. [m]:		0.68
Altitude [m]:	1	572.00 G-Nr.:			Site purp.: O	bservation		Dia	am. [mm].		165
Coord. acc.:	Accurate to	o within 10 units			Use applic.: Ir	dustrial - min	ing	Dra	ain. reg.:	B2	0G
Coord. meth.:	Global Pos	sitioning System			Equipment: N	o equipment	-	Re	p. inst.:	JM	IA
Coordinate System: So	outh African LC	Transverse Mercator, H	lartebee	sthoek94 (WGS 84)					-		
CONSTRUC	TION:					Developm	ent	Spe	cial	Co	onstr.
Date const. Co	ontractor	Cons	tr. me	th. Тур	be finish	Method	D	urat. trea	tment	(cost
20060906 EI	DRS	Air pe	ercussi	on Ope	en bottom	Pumped w	ith air	10			0.00
HOLE DIAM	ETER:	Depth to Top [m]		Depth to Bottom [m]	Diameter [m	m] Da	te const.	Comm	ent		
JMA		0.00		24.00	215	20	060906	CASED	D TO 165		
JMA		24.00		30.00	165	20	060906	NO CA	SING		
CASING DE	TAILS:	D	Diam.		Thick	n. Opening				Hori.	Vert.
Date inst. L	Dep. to top	[m] Bot. [m] [[mm]	Material	[mm]	Туре		Length	Width	dist.	dist.
20060906	0.00	6.00	165	Steel	3	Plain casir	ng	0	0	0	0
20060906	6.00	24.00	165	Steel	3	Perforated	or slotted	300	3	200	150
AQUIFER: Rep. Inst.	Top [m]	Bot. [m] [ieia [l/s]	Method meas	. Aquife	er type	Info sou	rce	Con	nment	
JMA	12.00	13.00	0.10	Estimated			Geologis	t, technicia	an, EST	IMATE	D
JMA	19.00	20.00	0.15	Estimated			Geologis	t, technicia	an, EST	IMATE	D
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code		Colour Primary	Secondary	Texture		Feature Primary	Se	conda	ry
0.00	1.00	SOIL		Brown	Reddish			Sandy			
1.00	2.00	GRIT		White	Greyish			Fresh	W	eathere	ed
2.00	3.00	GRIT		White	Greyish			Fresh	W	eathere	ed
3.00	4.00	CLAY		White	Greyish						
4.00	5.00	GRIT		White	Greyish			Fresh	W	eathere	ed
5.00	9.00	GRII		White	Greyish			Fresh	VV	eathere	ed
9.00	11.00	GRII		VVnite W/bite	Greyish			Fresh	VV	eather	ea
12.00	12.00	SHALE		Blue	Gleyish	Very fine		Carbonac	vv Moous W	eather	eu ed
12.00	19.00	COAL		Black		very line		Carbonat	2003 11	callier	eu
19.00	20.00	SANDSTONE		Grev	Liaht	Fine		Fresh			
20.00	23.00	SANDSTONE		Grev	Light	Fine		Fresh			
23.00	24.00	SANDSTONE		Grey	Light	Coarse		Fresh			
24.00	26.00	SANDSTONE		Grey	Light	Coarse		Fresh			
26.00	27.00	SHALE		Black	-	Very fine		Fresh	Ca	arbona	ceous
27.00	28.00	SANDSTONE		Grey		Fine		Fresh			
28.00	30.00	SHALE		Black		Very fine		Fresh	Ca	arbona	ceous
WATER LEV Meth. meas.	EL:	status Piez	z. Inf	o source	Date meas.	Time meas.	Sec. V	Vater lev.	[m] Con	nment	
Electrical contac	t Static	0	Ge	ologist,	20061002	1524	0.00	5.	63		

SITE INFOR	MATION	REPORT					D	ate compile	d: 2007	7/03/	/01
BASIC SITE	INFORM	IATION:	Site Ide	ntifier: 2528DD0	0021 Number:	LGW-B21	Site	type: Boreho	le		
Distr./Farm No.	: 326 JR		Site Nam	e/Des.: NEW LA	RGO PROJECT	: LGW-B21					
Region Type:				Regio	on Descr.:						
Y Coord. [m]:	3	246.00 Ref	n /RR ·		Topo-set.: +	lillside (slope)		Depth	[m]:	3	30.00
X Coord. [m]:	2868	489.98	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Site status: In	nuse		Col. h	t. [m]:		0.79
Altitude [m]:	1	586.00	<i>I</i>		Site purp.: C	Observation		Diam.	[mm]:		165
Coord. acc.:	Accurate to	within 10 un	iits		Use applic.: In	ndustrial - min	ing	Drain.	reg.:	B20	0G
Coord. meth.:					Equipment: N	lo equipment		Rep. i	nst.:	JM	A
Coordinate System: So	outh African LC	Transverse Mer	cator, Hartebe	esthoek94 (WGS 84)							
CONSTRUC Date const. Co	TION: ontractor		Constr. m	eth. Typ	oe finish	Developm Method	ent	Specia Durat. treatme	ent ent	Co c	onstr. cost
20061025 EI	ORS		Air percuss	sion Op	en bottom	Pumped wi	th air	10			
HOLE DIAM Rep. Inst.	ETER:	Depth to Top [m]	,	Depth to Bottom [m]	Diameter [m	nm] Da	te const.	Comment			
JMA		0.00		18.00	215	200	061025				
JMA		18.00		30.00	165	200	061025				
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [n	Diam. n] [mm]	Material	Thick [mm	n. Opening] Type		Length N	H /idth d	ori. list.	Vert. dist.
20061218	0.00	12.00	165	Steel	3	Plain casin	g				
20061218	12.00	18.00	165	Steel	3	Perforated	or slotted	d 300	3	200	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [m]	Yield [l/s]	Method meas	. Aquife	er type	Info so	ource	Comm	ent	
JMA	18.00	26.00	0.02	Notch (V- or U	-notch)		Geolog	ist, technician,	ESTIM	ATE	D
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology c	ode	Colour Primary	Secondary	Texture		Feature Primary	Seco	ondar	ry
0.00	1.00	SAND		Red	Light			Gritty			
1.00	2.00	GRIT		Red	Dark			Weathered			
2.00	3.00	GRIT		Red	Dark			Weathered			
3.00	4.00	SANDSTON	IE	White	Greyish	Fine to coars	е	Weathered			
4.00	8.00	GRIT		White	Greyish			Weathered			
8.00	9.00	SANDSTON	IE	White	Greyish			Weathered			
9.00	11.00	CLAY		Red	Light			Sandy	Gritt	у	
11.00	18.00	GRII		Brown	Reddish			Weathered			
18.00	20.00	GRII		Brown	Reddish			Weathered			
20.00	21.00			Orange	Redaish				0		
21.00	25.00	SHALE		Віаск		very fine		vveathered	Car	onac	ceous
25.00	26.00	SHALE		Grey		Fine		Micaceous	vvea	ithere	ea
20.00	27.00	SHALE		Grey		Fine		Micaceous	vvea	unere	eu ad
∠1.00 28.00	∠8.00 20.00	SHALE		Grey		rine Voru fina		Weathered	vvea	unere	
	30.00	SHALE		ыаск		very line		vveainered	Cart	Jonac	Jeous
Meth. meas.	Level	status	Piez. In	fo source	Date meas.	Time meas.	Sec.	Water lev. [m]	Comm	ent	
Electrical contac	t Static		0 Fi	eld checked	20061114	0953	0.00	13.31			

Borehole Construction and C	Geological Log	Date c	ompiled: 2007/03/02
ASIC SITE INFORMATION:	Site Identifier: 2528DD00021 N	umber: LGW-B21 Site type:	Borehole
istr./Farm No.: 326 JR	Site Name/Des.: NEW LARGO PRO	DJECT : LGW-B21	
egion Type:	Region Descr.:		Donth Iml. 20
Coord. [m]: 3246.00 R	eg./BB.: Topo-se	et.: Hillside (slope)	Deptn [m]: 30.
Ititude [m]: 1586.00	-Nr.: Site pur	<i>p.:</i> Observation	Diam. [mm]: 1
oord. acc.: Accurate to within 10	units Use app	<i>plic.:</i> Industrial - mining	Drain. reg.: B20G
oord. meth.:	Equipm	ent: No equipment	Rep. inst.: JMA
ordinate System: South African LO Transverse M	lercator, Hartebeesthoek94 (WGS 84)		
	Construction and Geohydro	blogical Legend	
Hole	165	Hole diameter [mm]	
Casing	y (plain / perforated, sloted) ← 152	Casing diameter [mm]	
Screer	n/Mesh Screen ■ 0:50	Waterlevel measured: 14/11/06 Piezometer (Nr. & Diameter [mm])	
Construction	Progr. Yield EC.	Lithology	
		SAND: Light red gritty;	
2		GRIT: Dark red, very weathered;	
3		GRIT: Dark red, very weathered;	to coarse slightly
4		weathered;	hered;
5	4	· · · · · · · · · · · · · · · · · · ·	5
6 <mark>≤ 165</mark>		· · · · · · · · · · · · · · · · · · ·	6
7		· · · · · · · · · · · · · · · · · · ·	7
0 ²¹⁵		SANDSTONE: Greyish white, slig	htly weathered;
10		CLAY: Light red gritty sandy;	
11		GRIT: Reddish brown, slightly wea	athered;
12			Ē1:
13 ▼	J		-1:
			-1
17	0.021/c		-1
18		GRIT: Reddish brown weathered;	
19			-1
20		CLAY: Reddish orange;	2
21		SHALE: Black, very fine, very carb	onaceous weathered;
23			2
24			2
25		SHALE: Grey, fine, slightly weather	red micaceous;
26		SHALE: Grey, fine, slightly weather	red micaceous;
27		SHALE: Grey, fine, slightly weathe	red micaceous;
20 20		SHALE: Black, very fine, very carb	onaceous weathered;
30			-31
DMMENT:		JMA Consulting	g (Pty) Ltd
		Delmas	
		2210 Tel: (013) 665 ⁻	1788
		www.jmaconsu	lt.co.za

SITE INFOR	MATION	REPORT					Date	compiled:	2007/03/01
BASIC SITE	INFORM	IATION: Sin	te Ident	ifier: 2528DD0	0022 Number:	LGW-B22	Site type:	Borehole	
Distr./Farm No.	: 566 JR	Site	e Name/	/Des.: NEW LA	RGO PROJECT	: LGW-B22			
Region Type:				Regio	on Descr.:				
Y Coord. [m]:	3	927.00 Reg /Bl	ą.		Topo-set.: H	illside (slope)		Depth [n	n]: 36.00
X Coord. [m]:	2870	016.98			Site status: Ir	use		Col. ht. [[m]: 0.56
Altitude [m]:	1	573.00 G-Nr.:			Site purp.: C	bservation		Diam. [n	n m]: 165
Coord. acc.:	Accurate to	o within 10 units			Use applic.: Ir	dustrial - minir	ng	Drain. re	.: B20D
Coord. meth.:					Equipment: N	o equipment		Rep. ins	t.: JMA
Coordinate System: So	outh African LO	Transverse Mercator,	Hartebees	thoek94 (WGS 84)]
CONSTRUC	TION:	Con	str. met	th. Tv	pe finish	Developme Method	ent Durat	Special t. treatment	Constr. t cost
20061026 EE	DRS	Air p	ercussio	an Op	en bottom	Pumped wit	hair 1	0	
	ETER:	Depth to	L	Depth to		. uniped int			
Rep. Inst.		Top [m]		Bottom [m]	Diameter [m	m] Date	e const. (Comment	
JMA		0.00		24.00	215	200	61026		
JMA		24.00		30.00	165	200	61026		
CASING DE Date inst.	TAILS: Dep. to top	[m] Bot. [m]	Diam. [mm]	Material	Thick [mm]	n. Opening I Type	Le	ength Wid	Hori. Vert. th dist. dist.
20061218	0.00	12.00	165	Steel	3	Plain casing)		
20061218	12.00	24.00	165	Steel	3	Perforated of	or slotted	300 3	3 200 150
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code		Colour Primary	Secondary	Texture	Fea Pri	ature mary	Secondary
0.00	1.00	SOIL		Red	Light		Silt	y	Sandy
1.00	2.00	GRIT		Red	Dark		We	athered	
2.00	3.00	GRIT		Red	Dark		We	athered	
3.00	5.00	GRII		Red	Light		VVe W/e	athered	Weathered
5.00	6.00 7.00	GRII		Red	Light		vve	athered	weathered
0.00 7.00	7.00 9.00			White	Grevish		Jai	luy	
9.00	13.00	GRIT		White	Grevish		Fre	sh	
13.00	15.00	SANDSTONE		White	Grevish	Fine to coarse	Fre	esh	
15.00	16.00	SANDSTONE		White	Greyish	Fine to mediur	m Fre	sh	
16.00	17.00	GRIT		Orange	Reddish		We	athered	
17.00	18.00	GRIT		Orange	Reddish		We	athered	
18.00	19.00	SANDSTONE		Red	Light	Fine	Fre	⊧sh	
19.00	20.00	CLAY		Red	Light				
20.00	22.00	COAL		Black					
22.00	23.00	SHALE		Black		Very fine	Fre	sh	Weathered
23.00	24.00	SANDSTONE		Grey		Fine	Fre	sh	Weathered
24.00	25.00	SANDSTONE		Grey		Fine	Fre	sh	
25.00	26.00	COAL		Black			_		
26.00	29.00	SHALE		Black	5.	Very fine	Fre	⊧sh	Carbonaceous
29.00	30.00	SHALE		Grey	Dark	Fine	Fre	÷sn	Carbonaceous
WATER LEV Meth. meas.	Level :	status Pie	ez. Info	source	Date meas.	Time meas.	Sec. Wate	er lev. [m] (Comment
Electrical contac	t Static	C) Field	d checked	20061114	1055	0.00	18.46	

Borehole Construction and Geologica	al Log	Date compiled: 2007/03/02
BASIC SITE INFORMATION: Site Ider	ntifier: 2528DD00022 Number: LGW-B22	Site type: Borehole
Distr./Farm No.: 566 JR Site Name	/Des.: NEW LARGO PROJECT : LGW-B22	
Region Type:	Region Descr.:	
Y Coord. [m]: 3927.00 Reg./BB.:	Topo-set.: Hillside (slope)	Depth [m]: 36.00
Coord. [m]: 2870016.98 G-Nr. :	Site status: In use	Col. ht. [m]: 0.56
Altitude [m]: 1573.00	Site purp.: Observation	Diam. [mm]: 165
<i>Coord. acc.:</i> Accurate to within 10 units	Use applic.: Industrial - minin	g Drain. reg.: B20D
Coord. meth.:	esthoek94 (WGS 84)	Rep. inst.: JMA
C	onstruction and Geohydrological Legend	
	165	
Hole	Hole diameter [mm]	
Screen / Mesh Screen	Waterlevel measured: 14/11/0	6
Piezometer	0:50 Piezometer (Nr. & Diameter	- mm])
Construction EC.		Lithology
mS/m 5 2()	
	SQII Lintt red sintity sandy sity	0
1	GPIT- Dark red very weathered	1
2		2
3	GRIT: Lintz red sintituty weathered we	athered 3
4		
5		5
6		atnered;
7	CLAY: Dark red, sightly sandy;	7
8	CLAY: Greyish white;	8
10	GRIT: Greyish white fresh;	10
11	• • • • • • •	-10
12 215		12
13	*****	13
	SANDSTONE: Greyish white, fine to a	coarse fresh;
	SANDSTONE: Greyish white, fine to r	nedium fresh;
	GRIT: Reddish orange, slightly weathe	red;
10-1165	GRIT: Reddish orange, slightly weathe	red;
	SANDSTONE: Light red, fine fresh;	-10
20	CLAY: Light red;	19
20	COAL: Black;	20
		-21
22	SHALE: Black, very fine, slightly weath	hered fresh;
24	SANDSTONE: Grey, fine, slightly wea	thered fresh;
25	SANDSTONE: Grey, fine fresh;	24
26	COAL: Black;	23
27 165	SHALE: Black, very fine, very carbona	ceous fresh;
		-21
20		20
29	SHALE: Dark grey, fine carbonaceous	fresh;
30		30
JWIMENT		MA Consulting (Pty) Ltd O Box 883
		elmas
		210 el: (013) 665 1788
	W	ww.jmaconsult.co.za
age 1		

SITE INFOR	RMATION	REPO	ORT						Da	te co	mpilec	l: 20	07/03	/01
BASIC SITE			N: Si	te Ider	ntifier: 2528DD0	0023 Number:	LG	W-B23	Site ty	/pe:	Borehol	e		
Distr./Farm No	b.: 566 JR		Site	e Name	e/ Des.: NEW LA	ARGO PROJECT	: LG	W-B23						
Region Type:					Regi	on Descr.:								
Y Coord. [m]:	4	228.00	Rea /Bł	а <i>.</i>		Topo-set.: H	lillside	e (slope)			Depth	[m]:	:	30.00
X Coord. [m]:	2871	715.98				Site status: Ir	n use				Col. ht	[m]:		0.77
Altitude [m]:	1	549.00	G-Nr.:			Site purp.: C	bser	vation			Diam.	[mm]	:	165
Coord. acc.:	Accurate to	o within 1	10 units			Use applic.: Ir	ndust	rial - minii	ng		Drain.	reg.:	B2(0F
Coord. meth.:						Equipment: N	lo equ	uipment			Rep. in	st.:	JM	A
Coordinate System:	South African LC) Transvers	e Mercator,	Hartebee	esthoek94 (WGS 84)]
CONSTRUC Date const.	CTION: Contractor		Con	str. me	eth. Ty	rpe finish	De Me	evelopme ethod	ent D	urat.	Special treatme	nt	Co	onstr. cost
20061026 E	EDRS		Air p	ercuss	ion Op	pen bottom	Pu	Imped wit	h air	10				
HOLE DIAN	IETER:	Dep	th to		Depth to			Der		0.				
Rep. Inst.		тор	[m]			Diameter [m	imj	Dat	e const.	0	mment			
		19	2.00		30.00	215		200	61218					
		10	5.00	Diam.	30.00	Thick	n. O	penina	01210				Hori.	Vert.
Date inst.	Dep. to top	[m] B	ot. [m]	[mm]	Material	[mm]	ι Τy	/pe		Len	gth W	dth	dist.	dist.
20061218	0.00	12	2.00	165	Steel	3	Pl	ain casing)					
20061218	12.00	18	3.00	165	Steel	3	Pe	erforated	or slotted	3	00	3	200	150
GEOLOGY: Dep. Top [m]	: Bot. [m]	Litholo	gy code		Colour Primary	Secondary	Text	ture		Featu Prima	ure ary	Se	conda	ry
0.00	1.00	SOIL			Red	Light				Silty		Sa	andy	
1.00	2.00	GRIT			Orange	Reddish				Weat	hered			
2.00	9.00	GRIT			Brown	Reddish				Fresh	ı	W	eathere	əd
9.00	10.00	GRIT			Brown	Reddish				Fresh	ı	W	eathere	əd
10.00	11.00	GRIT			Brown	Reddish				Fresh	ı	W	eathere	эd
11.00	12.00	CLAY			Red	Light								
12.00	13.00	SANDS	STONE		Grey	Light	Fine			Fresh	۱	W	eathere	∋d
13.00	14.00	SHALE			Grey	Light	Fine	to mediu	m	Fresh	1	VV	eathere	эd
14.00	15.00	SANDS	TONE		Grey	Light	Fine	to coarse	•	Fresh	1	C	arbana	000110
16.00	10.00	SHALE			Grey	Daik	Fine	line		Fresh	1	M	icaceou	Jeous
17.00	18.00	SANDS	STONE		Grev	Light	Fine			Fresh	' 1	111		15
18.00	19.00	SHALE			Grev	Dark	Verv	fine		Fresh	1	C	arbonad	ceous
19.00	20.00	SHALE			Grey		Fine			Fresh	ı	М	icaceou	JS
20.00	22.00	SHALE			Grey	Dark	Very	fine		Fresh	ı	C	arbonad	ceous
22.00	23.00	SHALE			Black		Very	fine		Fresh	n	C	arbonad	ceous
23.00	27.00	COAL			Black									
27.00	28.00	COAL			Black									
28.00	29.00	DIAMIC	TITE		Grey					Fresh	ı			
29.00	30.00	TILLITE			Grey	Light				Fresh	1	_		
WATER LE Meth. meas.	VEL: Level	status	Pie	ez. Inf	o source	Date meas.	Tim	e meas.	Sec. V	Vater	lev. [m]	Con	nment	
Electrical conta	act Static		C) Fie	eld checked	20061114		1210	0.00		9.42			

Borehole Construction and Geological Log	Date compiled: 2007/03/02
BASIC SITE INFORMATION: Site Identifier: 25280	DD00023 Number: LGW-B23 Site type: Borehole
istr./Farm No.: 566 JR Site Name/Des.: NEW	LARGO PROJECT : LGW-B23
Region Type: Reg	ion Descr.:
Coord. [m]: 4228.00	Topo-set.: Hillside (slope) Depth [m]: 30.0
Coord. [m]: 2871715.98	Site status: In use Col. ht. [m]: 0.7
Ititude [m]: 1549.00	Site purp.: Observation Diam. [mm]: 10
oord. acc.: Accurate to within 10 units	Use applic.: Industrial - mining Drain. reg.: B20F
oord. meth.:	Equipment: No equipment Rep. inst.: JMA
ordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS	\$ 84)
Construction a	and Geohydrological Legend
Hole 1	165 Hole diameter [mm]
Casing (plain / perforated, sloted)	← 152 Casing diameter [mm]
Screen / Mesh Screen	▼ Waterlevel measured: 14/11/06
Piezometer 0	Piezometer (Nr. & Diameter [mm])
Construction EC.	Lithology
mS/m	
	SOIL: Light red, slightly sandy silty;
	GRIT: Reddish orange weathered;
2	GRIT: Reddish brown, slightly weathered fresh;
6	
8	
9 215	ODIT. De dijek komer eljektikomet ved feek
10	CPIT: Reddish brown, slightly weathered fresh:
11	CLAY: Light red:
12	SANDSTONE: Light drey fine slightly weathered fresh:
13	SHALE: Light grey, fine to medium, slightly weathered
둔 14 · · · · · · · · · · · · · · · · · ·	fresh; SANDSTONE: Light grey, fine to coarse fresh;
돛 15 · · · · · · · · · · · · · · · · · ·	SHALE: Dark grey, very fine carbonaceous fresh;
	SHALE: Grey, fine micaceous fresh;
17	SANDSTONE: Light grey, fine fresh;
	SHALE: Dark grey, very fine carbonaceous fresh;
19	SHALE: Grey, fine micaceous fresh;
20	SHALE: Dark grey, very fine carbonaceous fresh;
21	2
22	SHALE: Black, very fine, very carbonaceous fresh;
	COAL: Black;
	2
	2
26	2
	COAL: Black;
	DIAMCTITE: Grey fresh;
	TILLITE: Light grey fresh;
MMENT:	JMA Consulting (Pty) Ltd
	P O Box 883
	Deimas 2210
	Tel: (013) 665 1788
ige 1	www.jmaconsuit.co.za

SITE INFOR	MATION	REPO	RT						Da	ate co	ompile	d: 200	07/03/	01
BASIC SITE	INFORM	IATION	: Site I	dentifi	ier: 2528DD00	0024 Number:		LGW-B24	Site t	ype:	Boreho	le		
Distr./Farm No.	: 566 JR		Site N	ame/D	es.: NEW LA	RGO PROJECT	:	LGW-B24						
Region Type:					Regio	on Descr.:								
Y Coord. [m]:	5	5716.00	Rea /BB ·			Topo-set.: H	lills	side (slope)			Depth	[m]:	3	30.00
X Coord. [m]:	2872	2597.98				Site status: Ir	ו u	se			Col. h	t. [m]:		0.57
Altitude [m]:	1	530.00	G-N.			Site purp.: O)bs	servation			Diam.	[mm]:		165
Coord. acc.:	Accurate to	o within 10	0 units			Use applic.: Ir	ndu	ustrial - mini	ing		Drain.	reg.:	B20)F
Coord. meth.:						Equipment: N	lo	equipment			Rep. i	nst.:	JM	4
Coordinate System: So	outh African LC) Transverse	Mercator, Hart	tebeesthc	oek94 (WGS 84)]
CONSTRUC Date const. Co	TION: ontractor		Constr.	meth.	. Тур	be finish		Developm Method	ent D	urat.	Specia treatme	l ent	Co c	nstr. ost
20061026 EE	ORS		Air perc	ussion	Ope	en bottom		Pumped wi	th air	10				
HOLE DIAMI Rep. Inst.	ETER:	Depti Top [h to ˈm]	De Be	pth to ottom [m]	Diameter [m	m] Dat	te const.	Co	omment	÷		
JMA		0.	00		24.00	215		200	061026					
JMA		24.	00		30.00	165		200	061026					
CASING DE Date inst.	TAILS: Dep. to top	[m] Bo	Dia t. [m] [m	nm. m] M	laterial	Thicki [mm]	n. 1	Opening Type		Ler	ngth V	/idth	Hori. dist.	Vert. dist.
20061218	0.00	12.	.00 1	65 St	teel	3		Plain casin	g					
20061218	12.00	24.	.00 1	65 St	teel	3		Perforated	or slotted	3	800	3	200	150
AQUIFER: Rep. Inst.	Depth Top [m]	to Bot. [I	Yie m] [۱/s	ld s] M	lethod meas.	. Aquife	er i	type	Info sou	ırce		Com	ment	
JMA	12.00	14.0	0 0	.05 N	otch (V- or U-	-notch)			Geologis	st, tecl	nnician,	EST	MATE)
GEOLOGY: Dep. Top [m]	Bot. [m]	Litholog	gy code		Colour Primary	Secondary	Te	exture		Feat Prim	ure ary	Se	condar	y
0.00	1.00	SAND			Brown	Reddish								
1.00	3.00	CLAY			Grey	Light				Sand	ły			
3.00	4.00	CLAY			Grey	Light				Sand	ly			
4.00	5.00	CLAY			Red	Dark				Ferru	uginous			
5.00	9.00				Red	Dark				Ferru	uginous	<u> </u>		
9.00	14.00				Orange	Redaish				Sand	iy thorad	Gr	niy	d
12.00	21 00				Brown	Reddieb				Wea	thered	vv	eaulere	u
21.00	26.00	TILLITE			Red	Light				Wea	thered			
26.00	30.00	TILLITE			Grev	Light				Fres	h			
WATER LEV Meth, meas.	EL:	status	Piez	Info s	ource	Date meas.	7	ime meas.	Sec.	Nater	lev. Imi	Com	ment	
Electrical contac	t Static		0	Field	checked	20061114		1300	0.00		4.95			
	-													

SITE INFORM	ATION	REPORT					Da	ate compile	d: 20	07/03/	/01
BASIC SITE IN Distr./Farm No.: Region Type:	NFORM 568 JR	ATION: s	Site Iden Site Name	tifier: 2528DD0 e/ Des.: NEW LA Regi	0025 Number: NGO PROJECT on Descr.:	LGW-B25 : LGW-B25	Site ty	/pe: Boreho	ble		
Y Coord. [m]: X Coord. [m]: Altitude [m]:	4 2874 1	559.00 753.98 582.00 G-Nr.	′BB.: :		Topo-set.: H Site status: In Site purp.: O	lillside (slope) n use Observation)	Depth Col. h Diam.	[m]: t. [m]: [mm]:		30.00 0.46 165
Coord. acc.: Ad	ccurate to	Within 10 Units	5		Equipment: N	lo equipment	ling	Rep. i	nst.:	JM.	A
Coordinate System: South	h African LO	Transverse Mercat	or, Hartebee	sthoek94 (WGS 84)	no finish	Developn Method	nent	Specia	l	Co	nstr.
				ion On		Dumpod w	ith oir	10	5110	Ľ	.031
	TED.	All	r percuss	Donth to	ben bottom	Pumpea w	nth air	10			
Rep. Inst.	IER.	Top [m]		Bottom [m]	Diameter [m	m] Da	nte const.	Commen	t		
JMA		0.00		12.00	215	20	061025				
JMA		12.00		30.00	165	20	061025				
CASING DETA Date inst. Dep	AILS: p. to top	[m] Bot. [m]	Diam. [mm]	Material	Thick [mm]	n. Opening Type		Length V	Vidth	Hori. dist.	Vert. dist.
20061218	0.00	6.00	165	Steel	3	Plain casii	ng				
20061218	6.00	12.00	165	Steel	3	Perforated	l or slotted	300	3	200	150
GEOLOGY: Dep. Top [m] B	Bot. [m]	Lithology cod	de	Colour Primary	Secondary	Texture		Feature Primary	Se	condai	ry
0.00	1.00	SOIL		Orange	Reddish			Silty	Sa	andy	
1.00	3.00	CLAY		Red	Light			Sandy			
3.00	4.00	CLAY		Red	Light			Sandy			
4.00	15.00	SILTSTONE		Brown	Reddish			Fresh	W	eathere	ed
15.00	17.00	SILTSTONE		White	Greyish			Fresh			
17.00	18.00	SILTSTONE		White	Greyish			Fresh			
18.00	19.00	COAL		Black	5.1				-		
19.00	20.00	SHALE		Grey	Dark	Very fine		Fresh	Ca	arbonac	ceous
20.00	21.00	SHALE		Grey	5 1	Fine		Fresh	M	caceou	IS
21.00	22.00	SHALE		Grey	Dark	very tine		⊢resn Freeb	Ca		eous
22.00	23.00	SHALE		Grey	Dark	very fine		Fresh	VV	eamere	eu A
∠3.00 24.00	24.00 27.00			DIACK	Grovieb	very line		Fresh	vv	eamere	u
24.00 27.00	20.00	SANDSTONE			Grevish	Fine to modi	um	Fresh			
27.00	29.00 30.00	SANDSTONE		Write	Grevish		um	Fresh			
	30.00	SANDS I UNE		vvriite	GleyISI	CUAISE		110011	_		
Meth. meas.	Level s	status	Piez. Inf	o source	Date meas.	Time meas	. Sec. V	Vater lev. [m	Con	ment	
Electrical contact	Static		0 Fie	ld checked	20061114	1515	0.00	3.40			

SITE INFORI	MATION	REPORT					Da	ate compil	ed: 20	07/03/	/01
BASIC SITE	INFORM	IATION: Site	Identifie	er: 2528DD0	0026 Number:	LGW-B26	Site ty	/pe: Borel	hole		
Distr./Farm No.:	: 568 JR	Site N	lame/De	s.: NEW LA	ARGO PROJECI	Г : LGW-B26	-	-			
Region Type:				Regi	on Descr.:						
V Coord [m]:	7	/521.00			Tomo cotto d	lilleide (elere)		Den	th [m]·		30.00
Y Coord. [m]:	، 1797	Reg./BB.:			lopo-set.: ⊢	niliside (slope)		Dep	ui [iii]. ht [m]		0.20
Altitudo [m]:	2074	G-Nr.:			Site status.			Diar			165
								Dial			105
Coord. acc.:	Accurate to	o within 10 units				ndustriai - mir	ing	Drai	n. reg.:	B20	
Coord. meth.:					Equipment: N	lo equipment		Rep	. inst.:	JM	A
Coordinate System: So	outh African LO	Transverse Mercator, Har	rtebeesthoe	ek94 (WGS 84)		~ /		•			
Date const. Co	IION: ontractor	Constr	r. meth.	Ту	pe finish	Developn Method	ent D	urat. treatr	ai nent	C0 0	onstr. cost
20061026 ED	DRS	Air perc	cussion	Op	en bottom	Pumped w	ith air	10			
HOLE DIAME Rep. Inst.	ETER:	Depth to Top [m]	Dep Bo	oth to ttom [m]	Diameter [m	nm] Da	te const.	Comme	nt		
JMA		0.00		12.00	215	20	061026				
JMA		12.00		30.00	165	20	061026				
CASING DET Date inst. D	TAILS: Dep. to top	Dia [m] Bot. [m] [n	am. nm] Ma	aterial	Thick [mm	n. Opening] Type		Length	Width	Hori. dist.	Vert. dist.
20061218	0.00	6.00	165 Ste	eel	3	B Plain casi	ng				
20061218	6.00	12.00	165 Ste	eel	3	B Perforated	l or slotted	300	3	200	150
GEOLOGY: Dep. Top [m]	Bot. [m]	Lithology code		Colour Primary	Secondary	Texture		Feature Primary	Se	conda	ry
0.00	4.00	GRIT		White	Greyish			Fresh	W	eathere	əd
4.00	5.00	SANDSTONE		Red	Light	Fine to coars	se	Fresh	W	eathere	əd
5.00	6.00	SANDSTONE		Brown	Reddish	Fine to coars	se	Fresh	W	eathere	əd
6.00	7.00	SHALE		Black		Very fine		Fresh	С	arbonad	ceous
7.00	10.00	COAL		Black							
10.00	11.00	COAL		Black							
11.00	12.00	SANDSTONE AND) SHALE	Grey		Fine		Fresh	Μ	icaceou	JS
12.00	13.00	SHALE		Grey		Fine		Fresh	Μ	icaceou	JS
13.00	14.00	SANDSTONE AND) SHALE	Grey		Fine		Fresh	Μ	icaceou	JS
14.00	15.00	SHALE		Grey	Dark	Fine		Fresh	С	arbonad	ceous
15.00	16.00	SANDSTONE AND	SHALE	Grey		Fine		Fresh	Μ	icaceou	JS
16.00	17.00	SHALE		Grey	Dark	Very fine		Fresh	C	arbonad	ceous
17.00	18.00	SHALE		Grey	Dark	Very fine		Fresh	C	arbonad	ceous
18.00	19.00	SHALE		Grey	Dark	Very fine		Fresh	C	arbonac	ceous
19.00	21.00	SHALE		Grey		Fine		Fresh	Μ	icaceou	JS
21.00	22.00	SHALE		Grey	Dark	Very fine		Fresh	C	arbonad	ceous
22.00	23.00	SHALE		Black		Very fine		Fresh	C	arbonad	ceous
23.00	24.00	SHALE		Black		Very fine		Fresh	C	arbonad	ceous
24.00	25.00	SHALE		Black		Very fine		⊢resh	C	arbonad	ceous
25.00	29.00	SHALE		Black		Very fine		⊢resh	C	arbonad	ceous
	30.00	COAL		Black							
Meth. meas.	L: Level	status Piez.	Info so	ource	Date meas.	Time meas	Sec. V	Vater lev. [I	n] Cor	nment	
Electrical contact	t Static	0	Field c	hecked	20061114	1725	0.00	11.7	5		

Borehole Construction and Geological Log	Date compiled: 2007/03/02
BASIC SITE INFORMATION: Site Identifier: 2528D	DD00026 Number: LGW-B26 Site type: Borehole
Distr./Farm No.: 568 JR Site Name/Des.: NEW I	LARGO PROJECT : LGW-B26
Region Type: Regi	ion Descr.:
Y Coord. [m]: 7521.00	Topo-set.: Hillside (slope) Depth [m]: 30
X Coord. [m]: 2874943.98	Site status: In use Col. ht. [m]: 0
Altitude [m]: 1543.00	Site purp.: Observation Diam. [mm]:
Coord. acc.: Accurate to within 10 units	Use applic.: Industrial - mining Drain. reg.: B20F
Coord. meth.:	Equipment: No equipment Rep. inst.: JMA
oordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS	84)
Construction a	nd Geohydrological Legend
Hole 1	65 Hole diameter [mm]
Casing (plain / perforated, sloted)	Casing diameter [mm]
Screen / Mesh Screen	Vaterlevel measured: 14/11/06
Piezometer 0:	50 Piezometer (Nr. & Diameter [mm])
Construction EC.	Lithology
mS/m	
	GRIT: Greyish white, slightly weathered fresh;
2	
	SANDSTONE: Light red, fine to coarse, slightly weathered fresh;
5	SANDSTONE: Redidish brown, fine to coarse, slightly weathered fresh;
	SHALE: Black, very fine, very carbonaceous fresh;
7	COAL: Black;
8	
9	Ē
10	COAL: Black;
	SANDSTONE AND SHALE: Grey, fine micaceous fresh;
	SHALE: Grey, fine micaceous fresh;
13	SANDSTONE AND SHALE: Grey, fine micaceous fresh;
E 14 -	SHALE: Dark grey, fine, slightly carbonaceous fresh;
도 15 · · · · · · · · · · · · · · · · · ·	SANDSTONE AND SHALE: Grey, fine micaceous fresh;
ă 16	SHALE: Dark grey, very fine carbonaceous fresh;
17	SHALE: Dark grey, very fine carbonaceous fresh;
18	SHALE: Dark grey, very fine carbonaceous fresh;
19	SHALE: Grey, fine micaceous fresh:
20	
21 165	SHALE: Dark orev, very fine carbonaceous fresh:
22	SHALE: Black very fine very carbonaceus fresh:
23	SHALE: Black, very fine, very carbonaceous fresh:
24	SHALE: Black very fine, very fine very carbonaceus freeh:
25	CHALE: Disk, voir file, voir file, voir carbonacour front:
26	Sincle. Black, very fille, very caluonaceous fresh,
27	
29	
	CUAL: Black;
OMMENT:	IMA Consulting (Dty) I to
	P O Box 883
	Tel: (013) 665 1788
	www.jmaconsult.co.za

BASIC SITE INFORMATION: Site Identifier: 2528DD00027 Number: LGW-B27 Site type: Distr./Farm No.: 568 JR Site Name/Des.: NEW LARGO PROJECT : LGW-B27 Site type: Region Type: Region Descr.: Reg./BB.: Topo-set.: Hillside (slope)	Borehole Depth [m]: Col. ht. [m	. 30.0	
Distr./Farm No.: 568 JR Site Name/Des.: NEW LARGO PROJECT : LGW-B27 Region Type: Region Descr.: Y Coord. [m]: 7413.00 Reg./BB.: Topo-set.: Hillside (slope)	Depth [m]: Col. ht. [m	30.0	
Region Type: Region Descr.: Y Coord. [m]: 7413.00 Reg./BB.: Topo-set.:	Depth [m]: Col. ht. [m	30.0	
Y Coord. [m]: 7413.00 Reg./BB.: Topo-set.: Hillside (slope)	Depth [m]: Col. ht. [m	30.0	
	Col. ht. [m		00
X Coord. [m]: 2875401.98 Site status: In use]: 0.1	75
Altitude [m]: 1550.00 G-Nr.: Site purp.: Observation	Diam. [mm	i]: 10	65
Coord. acc.: Accurate to within 10 units Use applic.: Industrial - mining	Drain. reg.	: B20F	
Coord. meth.: Equipment: No equipment	Rep. inst.:	JMA	
Coordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)			
CONSTRUCTION: Development Date const. Contractor Constr. meth. Type finish Method Durat.	Special treatment	Cons cos	tr. t
20061026 EDRS Air percussion Open bottom Pumped with air 10			
HOLE DIAMETER: Depth to Depth to			
Rep. Inst. Top [m] Bottom [m] Diameter [mm] Date const. Const.	omment		
JMA 0.00 12.00 215 20061026			
JMA 12.00 30.00 165 20061026			
CASING DETAILS: Diam. Thickn. Opening Date inst. Dep. to top [m] Bot. [m] [mm] Material [mm] Type Ler	ngth Width	Hori. Ve dist. di	ert. ist.
20061218 0.00 6.00 165 Steel 3 Plain casing			
20061218 6.00 12.00 165 Steel 3 Perforated or slotted 3	300 3	200 1	150
GEOLOGY: Colour Feat	ture	Soondory	
Dep. rop [m] Bot. [m] Lithology code Primary Secondary Texture Prima	iary 3	Condu	
1.00 GOL Red Light Silly	thorad \	Neathorod	
6.00 8.00 GRIT Brown Reddish Fres	h N	Neathered	
8.00 9.00 GRIT Brown Reddish Fres	h \	Neathered	
9.00 11.00 SANDSTONE Orange Reddish Fine to coarse Fres	μ	Neathered	
11.00 12.00 SANDSTONE Orange Reddish Fine to coarse Fres	h ۱	Neathered	
12.00 14.00 SANDSTONE Brown Reddish Fine to coarse Fres	h ۱	Neathered	
14.00 15.00 SHALE Grey Fine Fres	h		
15.00 16.00 COAL Black			
16.00 17.00 SHALE Grey Dark Very fine Fres	h (Carbonaceo	us
17.00 22.00 COAL Black			
22.00 23.00 SHALE Grey Dark Very fine Fresh	h (Carbonaceo	us
23.00 25.00 SANDSTONE Grey Fine to coarse Fresh	h		
25.00 26.00 COAL Black			
26.00 27.00 SHALE Grey Fine Fres	n N	Vicaceous	
27.00 28.00 SHALE Grey Fine Fres	n ľ		
WATER LEVEL:		Jarbonaceo	us
Meth. meas. Level status Piez. Info source Date meas. Time meas. Sec. Water	lev. [m] Co	mment	
Electrical contactStatic0Field checked2006111416350.00	12.51		

BASIC SITE INFORMATION: Site Identifier: 2528DD00027 Distr./Farm No.: 568 JR Site Name/Des.: NEW LARGO Degion Type: Region Desi 7 Coord. [m]: 7413.00 7 Coord. [m]: 2875401.98 Ititude [m]: 1550.00 Coord. acc.: Accurate to within 10 units ordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	7 Number: LGW-B27 Site type: E 9 PROJECT : LGW-B27 scr.: po-set.: Hillside (slope) te status: In use te purp.: Observation se applic.: Industrial - mining nuipment: No equipment hydrological Legend	Borehole Depth [m]: 30. Col. ht. [m]: 0. Diam. [mm]: 1. Drain. reg : B20E
Site Name/Des.: NEW LARGO region Type: Region Design Coord. [m]: 7413.00 Coord. [m]: 2875401.98 Ititude [m]: 1550.00 oord. acc.: Accurate to within 10 units oord. meth.: Equivalent of the system: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	PROJECT : LGW-B27 scr.: po-set.: Hillside (slope) te status: In use te purp.: Observation se applic.: Industrial - mining nuipment: No equipment	Depth [m]: 30 Col. ht. [m]: 0 Diam. [mm]: 1 Drain. reg : B20E
Region Type: Region Desc Coord. [m]: 7413.00 Coord. [m]: 2875401.98 titude [m]: 1550.00 pord. acc.: Accurate to within 10 units pord. meth.: Image: Coord. Hartebeesthoek94 (WGS 84)	scr.: po-set.: Hillside (slope) te status: In use te purp.: Observation se applic.: Industrial - mining puipment: No equipment hydrological Legend	Depth [m]: 30 Col. ht. [m]: 0 Diam. [mm]: 1 Drain. reg : 820E
Coord. [m]: 7413.00 Coord. [m]: 2875401.98 Ititude [m]: 1550.00 coord. acc.: Accurate to within 10 units coord. meth.: Use prdinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	po-set.: Hillside (slope) te status: In use te purp.: Observation se applic.: Industrial - mining nuipment: No equipment	Depth [m]: 30 Col. ht. [m]: 0 Diam. [mm]: 1 Drain. reg : B20E
Coord. [m]: 2875401.98 Ititude [m]: 1550.00 coord. acc.: Accurate to within 10 units coord. meth.: Equivalence profinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	te status: In use te purp.: Observation te applic.: Industrial - mining nuipment: No equipment hydrological Legend	Col. ht. [m]: 0 Diam. [mm]: 1 Drain. reg : B20E
Ititude [m]: 1550.00 Site oord. acc.: Accurate to within 10 units Use oord. meth.: Equ ordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	te purp.: Observation e applic.: Industrial - mining nuipment: No equipment	Diam. [mm]: 1
poord. acc.: Accurate to within 10 units Use poord. meth.: Image: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	e applic.: Industrial - mining uipment: No equipment hydrological Legend	Drain reg : B20E
oord. meth.: Equ ordinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	hydrological Legend	Diam. reg D201
rdinate System: South African LO Transverse Mercator, Hartebeesthoek94 (WGS 84)	hydrological Legend	Rep. inst.: JMA
	hydrological Legend	
Construction and Geol		
Hole ¹⁶⁵ →	Hole diameter [mm]	
Casing (plain / perforated, sloted)	2 Casing diameter [mm]	
Screen / Mesh Screen	Waterlevel measured: 14/11/06	
Piezometer 0.50	Piezometer (Nr. & Diameter [mm])	
Construction EC.	Lithology	
mS/m		
	SOIL: Light red, slightly sandy silty;	0
	GRIT: Reddish orange, slightly weathered weathered;	
		-2
		-3
		-4
		-0
	GRIT: Reddish brown, slightly weathered fresh;	
		-/
	GRIT: Reddish brown, slightly weathered fresh;	0
10	SANDSTONE: Reddish orange, fine to coarse, slightly weathered fresh;	, [-1
	SANDSTONE: Reddish orange, fine to coarse, slightly weathered fresh:	
	SANDSTONE weathered fresh:	<u></u> 1
		=1
	SHALE: Grey, fine fresh;	
	COAL: Black;	
	SHALE: Dark grey, very fine carbonaceous fresh;	
	COAL: Black;	
		-1
20		
21 165		-2
22		2
23	SHALE: Dark grey, very fine carbonaceous tresh;	2
24	SANDSTONE: Grey, fine to coarse fresh;	-2
25 — — —	COAL: Black	2
26	SHALE: Grey fine micaceous fresh	2
27	SHALE: Grey, fine micaceous fresh	2
28	SHALE: Black, very fine, very carbonaceous fresh:	2
29		2
30]		-3
MMENT:	JMA Consulting (Pty) Ltd
/	P O Box 883 Delmas	
	2210	
	Tel: (013) 665 17 www.imaconsult.c	୪୪ co.za

SITE INFORI	MATION	REPO	RT						Da	ate comp	iled: 2	007/03/	/01
BASIC SITE	INFORM		: Site	ldenti	<i>ifier:</i> 2629AA0	0028 Number:	LG	W-B28	Site ty	/ pe: Bore	ehole		
Distr./Farm No.:	: 568 JR		Site N	lame/	Des.: NEW LA	RGO PROJECT	: LG	W-B28					
Region Type:					Regi	on Descr.:							
Y Coord. [m]:	7	533.00	Rea./BB.:			Topo-set.: H	lillside	e (slope)		Dej	oth [m]	: :	30.00
X Coord. [m]:	2878	053.98	G-Nr ·			Site status: Ir	n use			Col	l. ht. [m	<i>]:</i>	0
Altitude [m]:	1	517.00	G-MI			Site purp.: C	bser	vation		Dia	m. [mn	n]:	165
Coord. acc.:	Accurate to	within 1	0 units			Use applic.: Ir	ndustr	rial - mini	ng	Dra	in. reg	.: B20	DF
Coord. meth.:						Equipment: N	lo equ	uipment		Rej	o. inst.:	JM	A
Coordinate System: So	outh African LO	Transverse	e Mercator, Har	tebeest	thoek94 (WGS 84)								
CONSTRUCT Date const. Co	TION: ontractor		Constr	. met	h. Ty	pe finish	De Me	evelopm ethod	ent D	Spec urat. treat	cial tment	Co	nstr. :ost
20061110 ED	DRS		Air perc	cussio	on Op	en bottom	Pu	mped wi	th air	10			
HOLE DIAME Rep. Inst.	ETER:	Dept Top	th to [m]	D	Depth to Bottom [m]	Diameter [m	m]	Dat	te const.	Comme	ent		
JMA		0	.00		12.00	215		200	061110				
JMA		12	.00		30.00	165		200	061110				
CASING DET Date inst. D	FAILS: Dep. to top	[m] Bo	Dia ot. [m] [n	am. nm]	Material	Thick [mm]	n. Oj Ty	pening ⁄pe		Length	Width	Hori. dist.	Vert. dist.
20061218	0.00	6	6.00 1	65	Steel	3	Pla	ain casin	g				
20061218	6.00	12	2.00 1	165	Steel	3	Pe	erforated	or slotted	300	3	200	150
GEOLOGY: Dep. Top [m]	Bot. [m]	Litholog	gy code		Colour Primary	Secondary	Text	ure		Feature Primary	ę	Seconda	ry
0.00	1.00	SOIL			Orange	Reddish				Silty			
1.00	2.00	CLAY			Red	Light				Sandy			
2.00	5.00	LAVA			Brown	Reddish				Weathere	d	Weathere	ed
5.00	8.00	LAVA			Brown	Reddish				Weathere	d		
8.00	9.00	LAVA			Grey	Dark				Fresh			
9.00	20.00	LAVA			Grey	Dark				Fresh			
20.00	21.00	LAVA			Grey	Dark				Weathere	d		
21.00	30.00	LAVA			Grey	Dark				Fresh			
WATER LEV Meth. meas.	EL: Level :	status	Piez.	Info	source	Date meas.	Tim	e meas.	Sec.	Nater lev.	[m] Co	omment	
Electrical contact	t Static		0	Field	d checked	20061127	(0845	0.00	5.1	9		

orehole Construction and Geological Lo	og	Date compiled:	2007/03/02
ASIC SITE INFORMATION: Site Identifier	: 2629AA0	0028 Number: LGW-B28 Site type: Borehole	
istr./Farm No.: 568 JR Site Name/Des.	: NEW LAF	RGO PROJECT : LGW-B28	
egion Type:	Region	Descr.:	
Coord. [m]: 7533.00 Reg./BB.:		Topo-set.: Hillside (slope) Depth [i	n]: 30.00
Coord. [m]: 2878053.98 G-Nr.:		Site status: In use Col. ht.	[m]: 0
ltitude [m]: 1517.00]	Site purp.: Observation Diam. [r	nm]: 165
oord. acc.: Accurate to within 10 units		Use applic.: Industrial - mining Drain. re	∌g.: B20F
oord. meth.:		Equipment: No equipment Rep. ins	; t.: JMA
rdinate System: South African LO Transverse Mercator, Hartebeesthoe	ek94 (WGS 84)		
Constr		Geonyarological Legena	
Hole	165	Hole diameter [mm]	
Casing (plain / perforated, slote	ed) 🗲	Casing diameter [mm]	
Piezometer	0:50	Waterlever measured: 2//11/06 Piezometer (Nr. & Diameter [mm])	
Construction EC.		Lithology	
mS/m 15 20			
		SOIL: Reddish orange silty;	0
		CLAY: Light red, slightly sandy;	<u></u> 1
2		LAVA: Reddish brown, very weathered weathered;	2
3	\sim		-3
			4
5 ▼	~	LAVA: Reddish brown weathered;	
	\sim		-6
	\sim		-/
	\sim	LAVA: Dark grey fresh;	0
	\sim	LAVA: Dark grey fresh;	
			-11
	\sim	-	-12
13	\sim	-	13
도 14		-	-14
도 돛 15			15
	\sim	-	16
17	\sim	-	17
18		-	18
19	\sim		19
20	\approx	LAVA: Dark grey, slightly weathered;	20
21 ¹⁶⁵	\rightarrow	LAVA: Dark grey fresh;	21
22	\sim		22
23	\sim	-	-23
24	\sim	-	24
25		-	-25
26			-26
27	\sim	-	-27
28	\sim	1	-28
29			-29
			30
MMENT:		JMA Consulting (Pty) Ltd	
		P O Box 883	
		2210	
		Tel: (013) 665 1788	
age 1		พพพพ.jmaconsuit.co.za	

Appendix B

NAG LEACH DATA (JMA, 2009)

CONFIDENTIAL

114

Table B5: NAG leach results (JMA, 2009)

Waterlab (Ptv) Ltd P.O. Box 11508 Hatfield 0028																																																		
(T) 012-3491-044/1066 (F) 012-349-1072 (E) ldewet@waterlab.co.	.co.za																																																	
Project Jasner Muller & Associates	Г																																																	
Client Mr J Fourie		AA	R																																															
Date 29/11/2006		911							-																																_									
Report No 18433		UU.				_											_	_	_																															
Sample Series 7934.7969															_		_					_		_																			_							
Analyses ICP MS Scan			Vah	as in black	nnh (liquid																			-																	_		_							
Owley No. J. ET. 5601	-	WATED		es in md er	. ppo (nquiu	(bile																													_															
Druger No		WAICK		es in ieu : i	цужд (шу з	000)					—		+		_			-				-											_		_						—	+								_
Floject No						_							+'				_		_										_	_					_															
						_																													_								_							_
Lab# Sample ID Extract	mple	Dry Ma V	olume Mas	s (g/l)	Li I	i Be	Be H	B B	Na	Na	M	lg Mg	Al	Al	Si S	i I	P	K	K	Ca	Ca	Cr	Cr 1	lín	Mn	Fe 7	Fe	Co Co	Ni	Ni	Cu	Cu Z	'n <mark>Zn</mark> A	s As	Se <mark>Se</mark>	Br Br	Mo Mo	Ag Ag	Cd	Cd Sn /	Sn Sb	Sb T	Ba Ba	Hg Hg	n n	Pb P	b Bi	Bi Th	Th T	U U
PEROXIDE EXTRACTS								_																																							_			
7934 LGW B20 9-11 Peroxide 1:100	2	2.50	250 1	.00 4	15 4.	5 2	0.2 13	34 13.4	14152	1415	15	57 16	3538	354 ?	235 3	309	53 309	754	75	4044	404	50	5 3	05	30 /	1005 1	101	12 1	17	2	71	7 2	46 25	8 0.8	8 0.8	0 0.0	8 0.8	46 4.6	0 /	0.0 1 /	0.1 1	0.1 /	140 14.0	0 0.0	0 0.0	9 0	.9 0	0.0 1	0.1	2 0.2
7935 LGW B20 11-12 Peroxide 1:100	2	2.50	250 1	.00	i6 6 .	6 8	0.8 11	19 11.9	13895	1389	63	36 64	12060	1206 8	232 8	246	32 246	2073	207	1506	151	168	17 5	201	520 (6564 6	656	73 7	81	8	167	17 2	17 22 1	8 2.8	15 1.5	0 0.0	12 1.2	15 15	0 /	0.0 0 6	0.0 1	0.1 5	536 53.6	0 0.0	1 0.1	20 2	.0 0	0.0 1	0.1 7	7 0.7
7936 LGW B20 13-15 Peroxide 1:100	2	2.50	250 1	.00	70 7.	0 14	1.4 13	31 13.1	18351	1835	100	99 110	3909	391 4	559 4	6 38	65 387	1881	188	4725	473	142	14 2	011	201 7/	/4236 7/	424	22 2	114	11	248	25 1	96 20 1	0 2.0	17 1.7	0 0.0	10 1.0	9 0.9	1 /	0.1 2 (0.2 3	0.3 1	126 12.6	0.0	0.0	6 🛛	.6 1	0.1 11	1.1 8	8 0.8
7937 LGW B20 15-17 Peroxide 1:100	2	2.50	250 1	.00	1 7.	1 6	0.6 17	76 17.6	19171	1917	131	41 1314	3804	380 4	025 4	13 401	61 401	774	77	340305	34030	102	10 25	541	254 37	71384 37	7138	19 2	0	0	162	16 1	67 17 1	5 1.5	17 1.7	0 0.0	35 3.5	5 0.5	0 (<u>0.0 2 (</u>	0.2 3	0.3 2	232 23.2	0 0.0	0 0.0	17 1.	1 1	0.1 7	0.7 8	8 0.8
7938 LGW B20 17-19 Peroxide 1:100	2	2.50	250 1	.00 (60 6 .	0 6	0.6 15	51 15.1	17569	1757	671	13 671	4303	430 4	851 4	5 49	66 494	831	83	119833	11983	105	1 10	097	110 11	18667 11	1867	21 2	116	12	169	17 1	49 15 (6.3	5 0.5	0 0.0	14 1.4	2 0.2	0 (0.0 2 (0.2 4	0.4 1	190 19.0	0 0.0	0 0.0	30 3.	0 3	0.3 4	0.4 7	7 0.7
7939 LGW B20 19-20 Peroxide 1:100	2	2.50	250 1	.00	2 7.	2 2	0.2 8	9 8.9	15149	1515	167	23 162	8018	802 6	214 6	312	08 312	1488	149	20984	2098	70	1 3	89	<u>39 1</u> 2	.2836 12	284	14 1	53	5	113	<u>11</u> 1	17 18	8 0.8	0.0	0 0.0	11 1.1	3 0.3	0 (<u>J.0 1 (</u>	0.1 1	0.1 2	275 27.5	0 0.0	0 0.0	10 1/	.0 0	0.0 3	0.3 4	4 0.4
7940 LGW B13 18-21 Peroxide 1:100	2	2.50	250 10	.00	N8 3.	8 0	0.0 7	<u>1 1.1</u>	18/30	18/3	251	45 2315	129	15 3	9/9 3	8 180	64 186	1/15	172	89213	8921	80	8 7	82	18	588	59	78 8	12/	13	28	3 3	51 33	5 0.5	0 0.0	0 0.0	10 1.0	2 0.2	0		0.0 1	0.1	26 2.6	0 0.0		3 0.	3 1	0.1 0	0.0 0	0 0.0
7941 LGW B13 22-24 Peroxide 1:100		2.50	250 10	.00	<u>81</u> 8.	1 18	1.8 1.	24 12.4	18485	1848	204	29 2043	145/0	1438 1	400 13	4/ 241 22 241	39 <u>241</u> 4 29 247	4819	482	22018	1024	15/	10 14	442	144 0 ⁴	A014 04	451	101 10	190	20	491	49 11	0 100	0 1.0	8 0.8	0 0.0	18 1.8	0 0.0	3	<u>J.J </u>	0.1 1	0.1 9	700 70.0	0 0.0		45 4.	3 0	0.0 21	2.1 1	10 1.0
7942 LGW B13 24-20 Peroxide 1:100 7043 I CW B13 26-28 Doroxide 1:100		2.50	250 10	.00 1	0 9. 00 10	0 17	17 8	0 0.0 84 8.4	21542	2134	1/9	070 1908	12037	1200 1	1350 13	35 34	28 347. 76 341	4/03	4/0	19339	1934	9/	12 1	948	80 IS 106 7	33836 3	384 1	144 14	250	20	204	20 10	61 136	9 1.9	0 0.0	0 0.0	10 10	0 0.0	0		0.1 1	0.1 /	199 19.9 020 02.0	0 0.0		27 2	7 0	0.0 4	0.4 4	4 0.4
7944 LGW B13 28-29 Peroxide 1:100		2.50	250 1	00 1	60 10 63 6	3 11	1.1 1	55 15.5	18413	1841	90	48 905	3969	397	456 4	16 47	76 422	1496	150	55430	5543	87	9 7	u5	45 1	17806 1	781	15 1	55	5	130	13 2	97 30	5 05	0 00	0 00	8 0.8	0 00	0	00 3	0.1 2	0.2	606 60.6	0 0.0		27 2	2 2	0.2 9	0.9 (9 0.9
7945 LGW B13 29-30 Peroxide 1:100	2	2.50	250 1	.00	51 6 .	1 3	0.3 1	18 11.8	17795	1779	27(696 2770	2006	201	505 3	0 29	94 294	1195	120	88407	8841	90	9	65	56 1	15525 1	553	25 3	79	8	97	10 1	91 19	1 1.1	3 0.3	0 0.0	9 0.9	0 0.0	0	0.0 1	0.1 2	0.2	189 18.9	0 0.0	0 0.0	9 0	9 0	0.0 3	0.3	5 0.5
7946 LGW B13 30-32 Peroxide 1:100	2	2.50	250 1	.00	68 6.	8 3	0.3 1	20 12.0	19002	1900	25	394 2539	2133	213 /	235 5	23 260	67 266	1649	165	77556	7756	109	11 /	126	43 5	5795	579	11 1	77	8	82	8 2	37 24	9 0.9	7 0.7	0 0.0	10 1.0	0 0.0	0 0	0.0 1 /	0.1 2	0.2	319 31.9	0 0.0	0 0.0	13 1	3 0	0.0 4	0.4	5 0.5
7947 LGW B13 32-35 Peroxide 1:100	2	2.50	250 1	.00	81 8.	1 11	1.1	.34 13.4	17805	1781	61	.11 611	9939	994 8	925 8	2 305	45 305	1165	116	23055	2306	175	18 ?	155	35 4	41139 4	114	13 1	98	10	155	16 2	75 28	5 1.5	0.0	0 0.0	11 1.1	0 0.0	0 /	0.0 1 /	0.1 2	0.2	708 70.8	0 0.0	0.0	70 7	.0 1	0.1 4	0.4 1	10 1.0
7948 LGW B13 35-37 Peroxide 1:100	2	2.50	250 1	.00	if 6.	6 10	1.0 18	.89 18.9	19759	1976	95	/90 959	4649	465 /	819 4	39	22 398	870	87	47496	4750	136	14 7	10	71 6	<i>5</i> 2985 6 ′	299	30 3	170	17	180	18 2	62 26 5	3 5.3	6 0.6	0 0.0	14 1.4	0 0.0	0 /	0.0 5 /	0.5 3	0.3 5	575 57.5	0 0.0	3 0.3	64 6	.4 3	0.3 6	0.6 (6 0.6
7949 LGW B13 37-38 Peroxide 1:100	2	2.50	250 1	.00	12 7.	2 1	0.1 9	<u>n 9.2</u>	19902	1990	/ 85'	.34 853	2548	255 7	611 2	51 8	7 85	545	55	11339	1134	110	11 1	925	192 16	.65868 16	6587 1	154 15	1298	3 130	204	20 4	58 4 7 I	9 1.9	0.0	0 0.0	10 1.0	0 0.0	0 /	0.0 0 /	0.0 3	0.3 1	169 16.9	0 0.0	· 11 1.1	35 3	5 0	0.0	0.0 7	2 0.2
7950 LGW B9 9-12 Peroxide 1:100	2	2.50	250 1	.00	65 6 .	5 10	1.0 3	<i>.</i> 9 3.9	18088	1809	- 78/	<i>J</i> 05 781	5097	510 5	795 5	300	02 308	2372	237	5625	562	83	8 I'	140	114 1	14520 1/	452	54 5	100	10	154	15 4	37 44	6 0.6	3 0.3	0 0.0	8 0.8	0 0.0	0 /	0.0 0 0	0.0 1	0.1 (605 60.5	0.0	0.0	12 1	.2 0	0.0 0	0.0	4 0.4
7951 LGW B9 12-14 Peroxide 1:100	2	2.50	250 1	.00	82 8 .	2 12	1.2 6	<i>,</i> 4 6.4	17508	1751	70'	J17 702	13023	1302 1'	943 12	94 330	07 336	3189	319	5750	575	131	<u>13</u> 1/	440	144 3	57512 3	3751 1	196 20	422	42	524	52 11	24 112 1	8 2.8	8 0.8	0 0.0	12 1.2	0 0.0	0 /	0.0 1 (0.1 2	0.2 7	716 71.6	0.0	1 0.1	53 5	3 0	0.0 4	0.4 1'	12 1.2
7952 LGW B9 14-15 Peroxide 1:100	2	2.50	250 1	.00	62 6 .	2 11	1.1 1	18 11.8	16286	1629	207	26 203	6538	654 5	753 5	15 342	64 342	338	34	1776	178	100	<u>10 1</u>	71	17 8	31612 87	8161	124 12	316	32	204	20 7:	52 75 1	08 10.8	0 0.0	0 0.0	20 2.0	0 0.0	1 (0.1 3 (0.3 4	0.4 2	213 21.3	0 0.0	20 2.0	37 3.	1 1	0.1 7	0.7 1	12 1.2
7953 LGW B9 15-16 Peroxide 1:100	2	2.50	250 1	.00	13 7.	3 5	0.5 11	12 11.2	13685	1368	286	64 286	8131	813 9	129 9	3 305	43 305	1422	142	4064	406	86	9 3	196	40 9	9329 9	933	18 2	57	6	252	25 3	50 35	1 1.1	5 0.5	0 0.0	9 0.9	0 0.0	0 (0.0 1 (0.1 2	0.2 5	536 53.6	0 0.0	1 0.1	86 8	.6 2	0.2 7	0.7 10	16 1.6
7954 LGW B9 16-19 Peroxide 1:100		2.50	250 10	.00	15 7.	5 18	1.8 10	J6 10.6	14227	1423	570	01 570	11191	1119 9	494 9	9 38	72 385	858	86	15661	1566	156	<u>16 </u>	168	117 4	16704 4	670	21 2	71	7	209	21 1	⁹⁹ 20	9 0.9	3 0.3	0 0.0	7 0.7	0 0.0	1	<u>0.1 2 (</u>	0.2 2	0.2 4	455 45.5	0 0.0	0 0.0	47 4.	1 2	0.2 11	1.1 1/	14 1.4
7955 LGW B9 19-20 Peroxide 1:100	2	2.50	250 10	.00	13 1.	3 13 9 11	1.3 4	46 14.6	16193	1619	501	10 501	11089	1109 9	220 9.	2 34	68 <u>340</u>	1026	103	8921	892	12/	13 L	524	152 3	19553 39	1540	22 2	9/	10	227	23 2	29 23	2 1.2	8 0.8	0 0.0	13 1.3	0 0.0		<u> </u>	0.2 2	0.2 4	490 49.0	0 0.0		80 8.	0 2	0.2 7	0.7 1	12 1.2
7950 LGW B9 20-21 Peroxide 1:100		2.50	250 1	.00	00 0. (5 4	0 11 5 0	I.I 9	8 7.8 40 14.0	18095	1742	10	30 / 11	5265	527	017 5	2 38	00 380 11 277	04/	10	8/0/	8/1	121	11 2	451	343 21	10495 21	1549	33 3 27 2	0		201	20 2	12 14	0 3.3	2 0.2	0 0.0	21 2.1 19 1.9	0 0.0	1		0.2 2	0.2 3	363 36.3	0 0.0		05 0	<u>9</u> <u>2</u> 5 2	0.2 14	1.4 1	10 1.0
7958 I CW R9 23-24 Perovide 1:100		2.50	250 1	00	17 4	3 0 7 2	0.0 1	56 56	17417	1742	100	031 1503	3203	321 3	194 3	Q 13	11 3/1	193	20	38425	3843	61	6 2	383	238 Y	28040 22 177907 Y	2803	50 5	374	37	202	20 1	+) 1+ . 63 16	6 06	0 0.0	0 0.0	8 08	0 0.0	0		0.4 2	0.2 2	162 162	0 0.0		94 0	4 0	0.2 10	01	3 03
7959 LGW B9 24-25 Perovide 1:100		2.50	250 1	00	01 9	1 12	1.2 9	96 9.6	23393	2339	36	086 3609	19882	1988 1	131 13	33 23	47 234	2363	236	14151	1415	110	11 1	893	489 /	47695 4	1770 1	229 23	499	50	335	34 7	35 74	2 1.2	3 0.3	0 0.0	19 1.9	0 00	3	03 0	0.0 1	0.1	559 55.9	0 00		63 6	3 0	0.0 7	0.7	48 48
7960 LGW B9 25-26 Peroxide 1:100	2	2.50	250 1	.00	is 6	8 6	0.6 6	65 6.5	16041	1604	55	154 555	8625	863	510 7	51 23	95 236	846	85	6371	637	74	1 1	732	173 3	32927 3	293	45 4	152	15	227	23 2	65 26	6 2.6	0 0.0	0 0.0	18 1.8	0 0.0	0	0.0 0	0.0 2	0.2	388 38.8	0 0.0		42 4	2 0	0.0 3	0.3	5 0.5
7961 LGW B6 11-13 Peroxide 1:100	2	2.50	250 1	.00	65 6.	5 24	2.4 14	44 14.4	16424	1642	17:	330 1733	14224	1422 /	812 5	36	80 368	995	100	99704	9970	312	31 7	34	33 8	89798 8	980	63 6	433	43	232	23 6	13 61	6 4.6	18 1.8	0 0.0	14 1.4	0 0.0	0	0.0 8 /	0.8 2	0.2 3	3182 318.2	0 0.0	2 0.2	117 1	1.7 6	0.6 75	7.5 1	18 1.8
7962 LGW B6 13-15 Peroxide 1:100	2	2.50	250 1	.00	i5 6 .	5 11	1.1 10	04 10.4	16284	1628	13/	493 1349	9601	960 f	178 6	8 34	59 343	651	65	34860	3486	191	19 2	465	246 1/	80618 18	8062	65 7	394	39	474	47 2	64 26 1	41 14.1	0 0.0	0 0.0	14 1.4	0 0.0	0 /	0.0 2 /	0.2 26	2.6 1	1308 130.8	0 0.0	3 0.3	242 2/	4.2 1	0.1 17	1.7 (9 0.9
7963 LGW B6 15-17 Peroxide 1:100	2	2.50	250 1	.00	65 6.	5 1	0.1 12	29 12.9	16178	1618	28	/03 280	4487	449 5	225 5	23 290	33 296	494	49	6166	617	52	5 7	07	21 1	15568 1	1557 1	122 12	434	43	997	100 1	09 11 :	0 5.0	0 0.0	0 0.0	27 2.7	0 0.0	0 /	0.0 0 /	0.0 13	1.3 7	286 28.6	0 0.0	2 0.2	433 4?	<i>i</i> .3 0	0.0 0	0.0	1 0.1
7964 LGW B2 13-15 Peroxide 1:100	2	2.50	250 1	.00	9 <mark>9</mark>	9 17	1.7 9	<i>J</i> O 9.0	19881	1988	i 18f	305 1860	13081	1308 1	143 11	14 2	8 22	2953	295	24645	2464	93	9 ľ	773	177 1?	.39711 1?	3971	116 12	199	20	423	42 11	29 113	3 0.3	1 0.1	0 0.0	8 0.8	0 0.0	0 /	0.0 0 (0.0 1	0.1	147 14.7	0 0.0	16 1.6	38 3	.8 0	0.0 2	0.2 ľ	10 1.0
7965 LGW B2 15-17 Peroxide 1:100	2	2.50	250 1	.00	i9 6 .	9 8	0.8 6	<i>i</i> 4 6.4	16882	1688	56	<i>9</i> 5 570	6659	666 7	763 7	76 273	62 273	2524	252	4026	403	66	1 5	87	59 1'	17005 1	1701	176 18	274	27	234	23 10	04 100	4 1.4	6 0.6	0.0	13 1.3	0 0.0	0 /	0.0 0 /	0.0 1	0.1 2	331 33.1	0 0.0	1 0.1	26 2	.6 0	0.0 2	0.2 /	4 0.4
7966 LGW B2 17-19 Peroxide 1:100	2	2.50	250 1	.00	17 <mark>7</mark> .	7 12	1.2 6	j 4 6.4	17867	1787	49	35 494	7821	782 7	137 7	74 240	12 240	1612	161	33254	3325	81	8 1 ^r	177	118 9	/3382 9	338	162 16	227	23	351	35 8	44 84 3	i6 <u>5.6</u>	0 0.0	0 0.0	25 2.5	0 0.0	3 /	0.3 1 /	0.1 2	0.2 2	242 24.2	0 0.0	7 0.7	51 5	.1 1	0.1 3	0.3 8	8 0.8
7967 LGW B2 19-22 Peroxide 1:100	2	2.50	250 1	.00	1 7.	1 6	0.6 15	51 15.1	18046	1805	292	201 2920	6032	603 5	567 5	57 466	19 466.	69	7	162158	16216	85	9 2	313	231 20	.03871 20	0387	17 2	0	0	147	15 1	61 16	6 1.6	3 0.3	0 0.0	16 1.6	0 0.0	0 (<u>0.0 1 (</u>	0.1 2	0.2 5	518 51.8	0 0.0	0 0.0	22 2	2 1	0.1 3	0.3 9	9 0.9
7968 LGW B2 22-24 Peroxide 1:100	2	2.50	250 1	.00	1 7.	1 8	0.8 9	<u>A 9.1</u>	18715	1871	154	402 1540	6349	635 5	736 5	412	65 412	292	29	85967	8597	95	9 8	342	84 4/	4623 4	462	10 1	48	5	204	20 1	32 13	6 1.6	8 0.8	0 0.0	15 1.5	0 0.0	0 (<u>0.0 3 (</u>	0.3 2	0.2 5	596 59.6	0 0.0	0 0.0	101 10	.1 2	0.2 8	0.8 8	8 0.8
7969 LGW B2 24-25 Peroxide 1:100	2	2.50	250 1	.00	85 8 .	5 15	1.5 9	.6 <mark>9.6</mark>	19460	1946	56	45 565	10382	1038 1	089 10	09 27	66 271	769	11	28441	2844	92	9 5	50	55 6	J1715 67	5172	50 5	160	16	505	50 5	11 51 1	05 10.3	5 0.5	0 0.0	35 3.5	0.0	0 (<u>d.0 0 (</u>	0.0 2	0.2 3	361 36.1	0 0.0	4 0.4	58 5	.8 0	0.0 4	0.4 5	5 0.5

Watarlah (Dtv) I td. D.(Dow 11508 Hatfield 0028		1					
(T) 012 2401 044/1066								
(1) 012-3491-044/1066	(F) 012-349-1072 (E) Idewet@wateriab.co.za							
Project	Jasper Muller & Associates							
Client	Mr J Fourie			AP				
Date	29/11/2006							
Report No	18433							
Sample Series	7934-7969							
Analyza	nH & Sulphoto				Values in black • m	n/l (liquid)		
Analyses Order No	I FT 5401	-	WATEDI	AD	Values in place . Ing	g/1 (liquiu) sa (day solid	\	
Diuer No	LEI 5091	-	WAILN	AD	values in reu : ing/r	rg (my sonu)	
Project No	New Largo							
Lab #	Sample ID	Extract	Sample Dry Mass	Volume	Mass (g/l)	SO4	SO4	Oxidized pH
	PEROXIDE EXTRACTS							
7934	LGW B20 9-11	Peroxide 1:100	2.50	250	10.00	15	1500	2.8
7935	LGW B20 11-12	Peroxide 1:100	2.50	250	10.00	86	8600	2.4
7936	LGW B20 13-15	Peroxide 1:100	2.50	250	10.00	229	22900	2.0
7937	LGW B20 15-17	Peroxide 1:100	2.50	250	10.00	1136	113600	2.4
7938	LGW B20 17-19	Peroxide 1:100	2.50	250	10.00	471	47100	2.2
7939	LGW B20 19-20	Peroxide 1:100	2.50	250	10.00	98	9800	2.4
7940	LGW B13 18-21	Peroxide 1:100	2.50	250	10.00	279	27900	6.1
7941	LGW B13 22-24	Peroxide 1:100	2.50	250	10.00	33	3300	3.7
7942	LGW B13 24-26	Peroxide 1:100	2.50	250	10.00	72	7200	3.7
7943	LGW B13 26-28	Peroxide 1:100	2.50	250	10.00	33	3300	3.6
7944	LGW B13 28-29	Peroxide 1:100	2.50	250	10.00	<5	<500	2.7
7945	LGW B13 29-30	Peroxide 1:100	2.50	250	10.00	76	7600	4.1
7946	LGW B13 30-32	Peroxide 1:100	2.50	250	10.00	80	8000	4.7
7947	LGW B13 32-35	Peroxide 1:100	2.50	250	10.00	183	18300	2.2
7948	LGW B13 35-37	Peroxide 1:100	2.50	250	10.00	151	15100	2.3
7949	LGW B13 37-38	Peroxide 1:100	2.50	250	10.00	561	56100	2.6
7950	LGW B9 9-12	Peroxide 1:100	2.50	250	10.00	<5	<500	2.9
7951	LGW B9 12-14	Peroxide 1:100	2.50	250	10.00	67	6700	2.7
7952	LGW B9 14-15	Peroxide 1:100	2.50	250	10.00	447	44700	2.3
7953	LGW B9 15-16	Peroxide 1:100	2.50	250	10.00	33	3300	2.5
7954	LGW B9 16-19	Peroxide 1:100	2.50	250	10.00	24	2400	1.9
7955	LGW B9 19-20	Peroxide 1:100	2.50	250	10.00	97	9700	2.0
7956	LGW B9 20-21	Peroxide 1:100	2.50	250	10.00	350	35000	2.0
7957	LGW B9 21-23	Peroxide 1:100	2.50	250	10.00	313	31300	2.0
7958	LGW B9 23-24	Peroxide 1:100	2.50	250	10.00	845	84500	2.2
7959	LGW B9 24-25	Peroxide 1:100	2.50	250	10.00	127	12700	2.2
7960	LGW B9 25-26	Peroxide 1:100	2.50	250	10.00	116	11600	2.2
7961	LGW B6 11-13	Peroxide 1:100	2.50	250	10.00	25	2500	1.9
7962	LGW B6 13-15	Peroxide 1:100	2.50	250	10.00	39	3900	2.2
7963	LGW B6 15-17	Peroxide 1:100	2.50	250	10.00	62	6200	2.3
7964	LGW B2 13-15	Peroxide 1:100	2.50	250	10.00	575	57500	2.5
7965	LGW B2 15-17	Peroxide 1:100	2.50	250	10.00	59	5900	2.4
7966	LGW B2 17-19	Peroxide 1:100	2.50	250	10.00	342	34200	2.2
7967	LGW B2 19-22	Peroxide 1:100	2.50	250	10.00	586	58600	2.2
7968	LGW B2 22-24	Peroxide 1:100	2.50	250	10.00	228	22800	2.3
7969	LGW B2 24-25	Peroxide 1:100	2.50	250	10.00	318	31800	2.1

Appendix C

PIT DECANT ELEVATION MAP

CONFIDENTIAL

NSD

Appendix D

KINETIC LEACH RESULTS

CONFIDENTIAL

NSD

Table 11-1 – 20-Weeks Kinetic Leach Test Results for DMS Plant discard sample (SNL-WELGE-CD-01).

Chemical Parameter	Unit:	WUL Limits																					
Week No.			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Input Vol. (DI Water)	mL		750	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Output Vol. (Leachate)	mL		510	400	390	430	510	430	350	450	350	340	250	300	300	360	440	430	460	470	450	430	420
рН	pH Units	7.7	6.91	7.07	6.72	6.97	7.14	7.22	7.06	7.03	6.99	6.64	6.59	6.28	6.33	6.87	7	7.12	7.09	7.15	7.03	6.93	6.9
EC	µS/cm	NL	694	964	81	717	705	536	577	551	899	1 000	971	1 070	1 080	696	550	519	466	493	483	523.7	507
TDS	mg/L	3 309	589	672	739	534	512	429	531	434	703	764	722	748	561	535	416	429	364	415	412	447	469
Alkalinity (to pH 4.5)	mg CaCO ₃ /L	NL	21	15	12.6	14.7	18.2	15	13.4	16.8	15.1	10.3	12.6	8.1	7.3	10.3	12.7	12.6	13.4	12.3	12.5	7.8	9.5
Sulfate (SO ₄ ²⁻)	mg/L	2 130	390.3	511.3	440.6	356	349.1	256.2	284.8	272	523	617.6	591.4	646.6	652.1	397.6	278.8	277.7	236	236.5	239.2	273	256.6
Chloride (Cl ⁻)	mg/L	3.7	3.503	1	0.1	1	1	1	1	1	1	1	1.063	1.061	1	1	1	1	1	1	1	1	1
Aluminum (Al ³⁺)	mg/L	NL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Antimony (Sb)	mg/L	NL	0.003	0.002	0.001	0.001	0.002	0.001	-	-	-	-	0.003	-	-	-	-	0.001	-	-	-	-	0.001
Arsenic (As)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.002	-	-	-	-	0.01
Barium (Ba)	mg/L	NL	0.185	0.202	0.682	0.18	0.201	0.183	-	-	-	-	0.034	-	-	-	-	0.156	-	-	-	-	0.01
Beryllium (Be)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Bismuth (Bi)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Boron (B)	mg/L	NL	0.145	0.113	0.169	0.085	0.087	0.061	-	-	-	-	0.029	-	-	-	-	0.034	-	-	-	-	0.01
Cadmium (Cd)	mg/L	NL	0.02	0.006	0.002	0.001	0.001	0.001	-	-	-	-	0.002	-	-	-	-	0.001	-	-	-	-	0.0001
Calcium (Ca ²⁺)	mg/L	568	122.4	3.9	140.7	34.6	117.7	75.6	78.8	79.9	146	152.2	158.9	180.8	168.6	107.2	82.9	73.8	60.9	77.2	79.4	87.23	81
Chromium (Cr)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Cobalt (Co)	mg/L	NL	0.109	0.016	0.007	0.006	0.003	0.007	-	-	-	-	0.057	-	-	-	-	0.001	-	-	-	-	0.01
Copper (Cu ⁺)	mg/L	NL	0.025	0.003	0.001	0.001	0.001	0.001	-	-	-	-	0.007	-	-	-	-	0.001	-	-	-	-	0.001
Iron (Fe)	mg/L	0.13	0.005	0.01	0.005	0.005	0.005	0.005	0.01	0.005	0.01	0.05	0.005	1.38	0.49	0.01	0.005	0.005	0.01	0.01	0.03	0.02	0.005
Lead (Pb ²⁺)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Lithium (Li ⁺)	mg/L	NL	0.025	0.007	0.004	0.005	0.005	0.006	-	-	-	-	0.008	-	-	-	-	0.002	-	-	-	-	0.001
Magnesium (Mg ²⁺)	mg/L	196	33.83	1.01	41.72	12.96	31.94	21.92	22.93	20.52	37.73	40.45	42.49	47.24	44.9	27.03	25.83	24.59	19.41	25.03	25.6	27.11	26.17
Manganese (Mn)	mg/L	2.4	1.32	0.01	0.17	0.03	0.09	0.04	0.05	0.03	0.11	0.51	0.7	0.8	0.87	0.3	0.11	0.05	0.04	0.04	0.05	0.09	0.14
Molybdenum (Mo)	mg/L	NL	0.001	0.002	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001

	_	_

	Unit:	WUL Limits																					
Week No.			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Nickel (Ni)	mg/L	NL	0.199	0.04	0.03	0.026	0.016	0.036	-	-	-	-	0.08	-	-	-	-	0.008	-	-	-	-	0.01
Phosphorus (P)	mg/L	NL	0.006	0.005	0.005	0.006	0.007	0.014	0.005	0.011	0.005	0.007	0.015	0.005	0.005	0.007	0.007	0.005	0.005	0.005	0.005	0.005	0.005
Potassium (K ⁺)	mg/L	0	8.36	1.07	1.96	1.2	0.9	0.83	0.55	0.58	0.9	1.02	8.88	1.63	1.97	1.47	1.12	0.55	0.56	0.53	0.49	0.46	0.66
Selenium (Se)	mg/L	NL	0.001	0.026	0.007	0.009	0.009	0.001	-	-	-	-	0.001	-	-	-	-	0.006	-	-	-	-	0.001
Silver (Ag)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Sodium (Na⁺)	mg/L	32	4.87	2.64	1.38	3.88	4.2	3.43	2.34	2.36	2.27	1.9	1.83	3.51	2.74	1.73	2.22	2.15	2.75	3.02	2.34	1.84	0.2
Strontium (Sr)	mg/L	NL	0.578	0.651	0.396	0.446	0.463	0.412	-	-	-	-	0.851	-	-	-	-	0.374	-	-	-	-	0.35
Tellurium (Te)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Thallium (TI)	mg/L	NL	0.05	0.05	0.05	0.05	0.05	0.05	-	-	-	-	0.05	-	-	-	-	0.05	-	-	-	-	0.05
Thorium (Th)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Tin (Sn)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Titanium (Ti)	mg/L	NL	0.05	0.05	0.05	0.05	0.05	0.05	-	-	-	-	0.05	-	-	-	-	0.05	-	-	-	-	0.05
Uranium (U)	mg/L	NL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-	-	-	-	0.0001	-	-	-	-	0.0001	-	-	-	-	0.0001
Vanadium (V)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Zinc (Zn)	mg/L	NL	8.92	2.88	0.941	1.25	0.623	0.791	_	-	-	-	2.15	-	-	-	-	0.765	-	-	-	-	0.89
Zirconium (Zr)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Tungsten (W)	ug/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	_	-	-	-	0.001	-	-	-	-	0.001	-	-	-	-	0.001
Mercury (Hg)	ug/L	NL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-	-	-	-	0.0001	-	-	-	-	0.0001	-	-	-	-	0.0001

Notes:

"-" Not analysed

"NL" No WUL Limit

Table 11-2 – 7-Weeks Kinetic Leach Test Results for Destoning Plant reject sample (SNL-PITD_DESTON-02).

Chemical Parameter	Unit:	WUL Limits									
Week No.			0	1	2	3	4	5	6	7	8
Input Vol. (DI Water)	mL		750	500	500	500	500	500	500	500	500
Output Vol. (Leachate)	mL		460	500	400	400	400	370	400	350	400
рН	pH Units	7.7	7.66	7.68	7.48	7.73	7.7	7.57	7.59	7.37	7.47
EC	μS/cm	NL	981	854	449	694	574	731	622	761	647
TDS	mg/L	3 309	745	661	378	562	496	606	540	589	22.3
Alkalinity (to pH 4.5)	mg CaCO ₃ /L	NL	85.3	48.9	20.4	23.2	22	18.3	22.4	22.9	344.3
Sulfate (SO ₄ ²⁻)	mg/L	2 130	505.1	486.3	237.5	366.8	290.2	415.3	333.3	411.2	1
Chloride (Cl ⁻)	mg/L	3.7	14.836	1	1	1	1	1	1	1	1
Aluminum (Al ³⁺)	mg/L	NL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Antimony (Sb)	mg/L	NL	0.001	0.001	0.001	0.02	0.056	0.01	-	-	-
Arsenic (As)	mg/L	NL	0.01	0.01	0.06	0.01	0.01	0.01	-	-	0.01
Barium (Ba)	mg/L	NL	0.265	0.161	0.225	0.3	0.11	0.19	-	-	-
Beryllium (Be)	mg/L	NL	0.001	0.001	0.001	0.001	0.013	0.001	-	-	-
Bismuth (Bi)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Boron (B)	mg/L	NL	0.19	0.078	0.058	0.17	0.077	0.12	-	-	-
Cadmium (Cd)	mg/L	NL	0.001	0.0001	0.0001	0.01	0.0001	0.0001	-	-	-
Calcium (Ca ²⁺)	mg/L	568	134.8	131	55.7	116.9	103.5	136.7	110.9	127.1	111.5
Chromium (Cr)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Cobalt (Co)	mg/L	NL	0.027	0.001	0.001	0.001	0.001	0.001	-	-	-
Copper (Cu ⁺)	mg/L	NL	0.013	0.001	0.001	0.001	0.001	0.001	-	-	0.001
Iron (Fe)	mg/L	0.13	0.005	0.005	0.005	0.01	0.01	0.01	0.005	0.005	0.005
Lead (Pb ²⁺)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.02	-	-	-
Lithium (Li ⁺)	mg/L	NL	0.025	0.006	0.002	0.01	0.021	0.001	-	-	-
Magnesium (Mg ²⁺)	mg/L	196	55.65	45.21	18.18	35.45	29.6	37.65	30.71	37.23	32.15
Manganese (Mn)	mg/L	2.4	0.84	0.38	0.03	0.02	0.01	0.02	0.03	0.04	0.02
Molybdenum (Mo)	mg/L	NL	0.007	0.009	0.005	0.01	0.062	0.001	-	-	-
Nickel (Ni)	mg/L	NL	0.04	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.01
Phosphorus (P)	mg/L	NL	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Potassium (K ⁺)	mg/L	0	9.04	6.72	2.7	3.42	2.14	2.28	2.35	1.12	1.57
Selenium (Se)	mg/L	NL	0.009	0.017	0.001	0.03	0.014	0.01	-	-	-

	Unit:	WUL Limits									
Week No.			0	1	2	3	4	5	6	7	8
Silver (Ag)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Sodium (Na ⁺)	mg/L	32	4.15	4.5	2.85	3.42	2.14	2.56	0.21	2.05	2.83
Strontium (Sr)	mg/L	NL	2.41	1.38	0.755	1.24	0.947	1.06	-	-	-
Tellurium (Te)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Thallium (TI)	mg/L	NL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-	-	-
Thorium (Th)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Tin (Sn)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Titanium (Ti)	mg/L	NL	0.05	0.05	0.05	0.05	0.05	0.05	-	-	-
Uranium (U)	mg/L	NL	0.0001	0.002	0.0001	0.0001	0.0001	0.0001	-	-	-
Vanadium (V)	mg/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Zinc (Zn)	mg/L	NL	0.674	0.18	0.046	0.09	0.132	0.12	-	-	-
Zirconium (Zr)	mg/L	NL	0.001	0.001	0.001	0.001	0.011	0.001	-	-	-
Tungsten (W)	ug/L	NL	0.001	0.001	0.001	0.001	0.001	0.001	-	-	-
Mercury (Hg)	ug/L	NL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-	-	-

Notes:

"-" Not analysed

"NL" No WUL Limit

Appendix E

KINETIC LEACH TRENDS

CONFIDENTIAL

NSD

0.008

0.006

0.004

0.002

0

0

2

4

----SNL-WELGE-CD-01

6

8

Beryllium

NSD

0.4

0.3

0.2

0.1

0

0

2

4

----SNL-WELGE-CD-01

6

8

10

Week

12

14

16

18

20

wsp

0.025

0.02

0.015

0.01

0.005

----SNL-WELGE-CD-01

Week

ium (mg/L)

Lithi

----SNL-WELGE-CD-01

Week

----SNL-WELGE-CD-01

wsp

wsp

Appendix F

ACRONYMS

CONFIDENTIAL

vsp

Glossary

Term	Definition	Source
Acidity	The titratable acid as measured in accordance with standard methods. It is normally reported as milligrams per litre as calcium carbonate $(CaCO_3)$.	(INAP, 2012)
Acute toxicity	Adverse effects occurring after oral or dermal administration of a single dose of a substance, or multiple doses given within 24 h, or an inhalation exposure of 4 h	(SANS, 2014)
Alkalinity	The titratable alkalinity, using a standard acid titrant, as performed in accordance with standard methods. It is normally reported as milligrams per litre as calcium carbonate (CaCO ₃).	(INAP, 2012)
Anion	A monoatomic or polyatomic species having one or more elementary charges of the electron (negative charge).	(IUPAC, 2019)
Bioaccumulation	Net result of uptake, transformation and elimination of a substance in an organism due to all routes of exposure (air, water, sediment/soil and food)	(SANS, 2014)
Carcinogens	A chemical substance or a mixture of chemical substances which induce cancer or increase its incidence	(SANS, 2014)
Cation	A monoatomic or polyatomic species having one or more elementary charges of the proton (positive charge).	(SANS, 2014)
Composite sample	A sample made by the combination of several distinct subsamples.	(INAP, 2012)
Contaminant	Any physical, chemical, biological, or radiological substance or matter that has an adverse effect on human and ecological receptors as well as environmental media (e.g., air, water, soil, sediment).	(INAP, 2012)
Degradation	Decomposition of organic molecules to smaller molecules and eventually to carbon dioxide, water and salts	(SANS, 2014)
Dissolved solids	The weight of both organic and inorganic matter, in solution in a stated volume of water. The amount of dissolved solids is usually determined by filtering water through a glass or 0.45 µm pore-diameter filter, weighing the filtrate residue remaining after the evaporation of the water, and drying the salts to constant weight at 180°C.	(INAP, 2012)
Electrolytic conductivity	The ability of a solution to conduct electricity. It is indicative of the concentration of ionised constituents in a water sample or soil matrix. Also referred to as electro conductivity.	(INAP, 2012)
Explosive substance	Substance in solid, liquid, paste or gelatinous form (or a mixture of substances) which is in itself capable, by chemical reaction, of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings	(SANS, 2014)

Acronyms

Acronym	Term in full
ABA	Acid Base Accounting
AP	Acid Potential
ASLP	Australian Standard Leaching Procedure (AS 4439-1997) – a STLP
ATSDR	Agency for Toxic Substances and Disease Registry
DO	Dissolved Oxygen
GAI	Geochemical Abundance Index
GARD	Global Acid Rock Drainage
GHS	Global Harmonised System
ICP –AAS	Inductively Coupled Plasma – Atomic Absorption Spectroscopy
ICP	Inductively Coupled Plasma
ICP-MS	Inductively Coupled Plasma - Mass Spectrometry
ICP-OES	Inductively Coupled Plasma - Optical Emission Spectrometry
IUPAC	International Union of Pure and Applied Chemistry
LC	Leachable Concentration
LCT	Leachable Concentration Threshold
NP	Neutralisation Potential
NPR	Neutralisation Potential Ratio
QA/QC	Quality Assurance / Quality Control
s.d.	Standard Deviation
SANAS	South African National Accreditation System
SANS	South African National Standard
STLP (or SLP)	Short-term Leaching Procedure
тс	Total Concentration
тст	Total Concentration Threshold
TDS	Total Dissolved Solids
WCMR	Waste Classification and Management Regulations
wt. %	Weight percentage
XRF	X-Ray Fluorescence

Appendix G

DOCUMENT LIMITATIONS

CONFIDENTIAL

vsp

DOCUMENT LIMITATIONS

This document has been provided by WSP Group Africa Pty Ltd ("WSP") subject to the following limitations:

- i) This Document has been prepared for the particular purpose outlined in WSP's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- ii) The scope and the period of WSP's Services are as described in WSP's proposal, and are subject to restrictions and limitations. WSP did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by WSP in regard to it.
- iii) Conditions may exist which were undetectable given the limited nature of the enquiry WSP was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- iv) In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. WSP's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed WSP to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- vi) Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by WSP for incomplete or inaccurate data supplied by others.
- vii) The Client acknowledges that WSP may have retained sub-consultants affiliated with WSP to provide Services for the benefit of WSP. WSP will be fully responsible to the Client for the Services and work done by all its sub-consultants and subcontractors. The Client agrees that it will only assert claims against and seek to recover losses, damages or other liabilities from WSP and not WSP's affiliated companies. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any legal recourse, and waives any expense, loss, claim, demand, or cause of action, against WSP's affiliated companies, and their employees, officers and directors.
- viii) This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party because of decisions made or actions based on this Document.

vsp

Building 1, Maxwell Office Park Magwa Crescent West, Waterfall City Midrand, 1685 South Africa

wsp.com

CONFIDENTIAL