Appendix F

AVIFAUNA STATEMENT

Confidential

NSD

Komati Solar Energy Facility Amendment Letter

Avifauna Assessment

November 2024

Prepared for Ashlea Strong WSP Africa (Pty) Ltd. <u>Ashlea.Strong@wsp.com</u>

Compiled by Low de Vries (Pr. Sci. Nat., PhD: Zoology) Justin Nicolau (BSc (Hons): Biodiversity & Conservation) Volant Environmental (Pty) Ltd. <u>low@volantenvironmental.com</u>

Contents

1.	Intr	roduction	6
1.	1	Project Details	6
1.	2	Terms of Reference	6
1.	3	Project Location	6
1.	4	Description of Ecoregion	7
2.	Me	thods	
3.	Pro	posed Amendments	
3.	1	Solar Energy Facility	
3.	2	Grid Connections, Substations and Battery Energy Storage Facilities	10
3.	3	Ancillary Infrastructure	12
4.	Sen	nsitive Areas	13
5.	Pot	ential Impacts	
4.	1	Identification of potential impacts	15
6.	Ass	essment of Impacts	
6.	1	Komati Solar Energy Development	
	6.1	.1 Planning & Construction Phase	
	6.1	.2 Operational Phase	17
6.	2	Collective Impacts	
7.	Cor	nclusion and Recommendations	
8.	Ref	erences	20
Арре	endi	ix 1. Qualification of specialist	21
Арре	endi	ix 2. CV of Specialist	22

List of Figures

Figure 1. Boundaries of Solar PV A and Solar PV B	9
Figure 2. Amended boundaries of the Solar PV facilities A1, A2 and B	10
Figure 3. Locations of collector substations for each Solar PV site	11
Figure 4. Locations of the approved Battery Energy Storage Facilities	12
Figure 5. Sensitive areas found on or near the Project Area of Influence	14

Expertise of Bird Specialists

Low de Vries is a registered bat assessment specialist with SABAA and has consulted for numerous field projects, which included bird surveys and the removal of dangerous snakes in Mozambique, as well as several biodiversity surveys in South Africa. He obtained a PhD in Zoology while investigating the general ecology of aardwolves with special focus on home range, diet, and prey abundance. After his PhD, he spent 14 months on Marion Island assisting with field work on elephant seals, fur seals and killer whales. During his subsequent postdoctoral position at the University of Pretoria, he spent six years conducting research on the ecology of bats and has obtained extensive knowledge on bat behaviour and movements, as well as experience in bat handling.

Justin obtained a BSc in Zoology & Botany, followed by an Honours degree in Biodiversity and Conservation. He is a professional bird guide (over 15 years of experience), who has led tours across 4 continents (over 20 countries) and is well versed in field identification, ecology and bird calls and has a sound understanding of rigorous scientific data collection. He has served as a bird specialist for Enviro-Insight, EXM as well as Birdlife South Africa. He has led avifaunal research and atlassing projects both on mainland Africa in the renewable energy sector, as well as conducted data collection out at sea to Antarctica and along the west coast from South Africa to Namibia.

Disclaimer by Volant Environmental Director

I declare that the work presented in this report is my own and has not been influenced in any way by the developer. At no point has the developer asked me as the specialist to manipulate the results to make them more favourable for the proposed development. I consider myself bound to the rules and ethics of the South African Council for Natural Scientific Professions (SACNASP) and the EIA Regulations (2014, as amended). I have the necessary qualifications and expertise (*Pr. Sci. Nat. Zoological Science*) in conducting this specialist report.

Dr. Low de Vries

Acronyms & Glossary of Terms

AOI: Area of Influence, the area that is affected by the proposed development.

Buffer zone: A zone established around areas that are identified as sensitive for bats and includes flyways, foraging areas and bat roosts.

CITES: Convention on International Trade in Endangered Species of Wild Fauna and Flora.

Cumulative Impact: Impacts created due to past, present, and future activities and impacts associated with these activities.

EMPr: Environmental Management Programme: A legally binding working document, which stipulates environmental and socio-economic mitigation measures which must be implemented by several responsible parties throughout the duration of the proposed project.

Endemic: A species that is restricted to a particular area.

EIA (Environmental Impact Assessment): The process of identifying environmental impacts due to activities and assessing and reporting these impacts.

GPS: Global Positioning System device.

IUCN: International Union for Conservation of Nature.

MW: Megawatts.

NEMA: National Environmental Management Act.

Pre-construction phase: The period prior to the construction of a wind energy facility.

Red data species: Species included in the Critically Endangered, Endangered, Vulnerable or Rare categories as defined by the IUCN.

REDZ (Renewable Energy Development Zones): Areas where wind and solar photovoltaic power development can occur in concentrated zones.

S&EIA: Social and Environmental Impact Assessment (EIA): The process of identifying social and environmental impacts due to activities and assessing and reporting these impacts.

SABAA: South African Bat Assessment Association.

SACNASP: South African Council for Natural Scientific Professions.

SANBI: South African National Biodiversity Institute.

Scoping Report: A report contemplated in regulation 21 of the NEMA amended EIA regulations R326 dated 7 April 2017.

ToPS: Threatened or Protected Species.

1. Introduction

1.1 Project Details

Volant Environmental (Pty) Ltd was commissioned by WSP Africa (Pty) Ltd to conduct a thorough Pre-Construction Survey to assess the potentially Sensitive Areas of avifauna at a proposed solar energy facility (SEF) which will be known as the Komati Power Station Solar Photovoltaic and Battery Energy Storage Project near Komati in Mpumalanga Province, South Africa. The Komati Power Station Facility received an environmental authorisation (EA) (DFFE:14/12/16/3/3/2/2456) on 02 February 2024, but Eskom Holdings SOC (Ltd) have proposed an expansion of the authorised 100 MW Solar Photovoltaics (PV) Energy Facility (SEF), the150 MW Battery Energy Storage System (BESS) and part of the associated infrastructure

1.2 Terms of Reference

The report has been compiled under the following terms of reference and provides:

- An assessment of all impacts related to the proposed changes;
- Advantages and disadvantages associated with the changes;
- Comparative assessment of the impacts before the changes and after the changes; and
- Measures to ensure avoidance, management and mitigation of impacts associated with such proposed changes, and any changes to the EMPr.

1.3 Project Location

The proposed SEF is located near the town of Komatie in the Nkangala District Municipality, Mpumalanga, South Africa. The proposed PAOI can be accessed using multiple routes but primarily using the R542 that runs South of the proposed site or the R35 that runs East of the proposed site.

1.4 Description of Ecoregion

The proposed PAOI falls across the Grassland Bioregion with the majority of the PAOI consisting Eastern Highveld Grassland.

The extent of the Grassland Biome is relatively well defined on the basis of the specific known vegetation structure when seen in combination with the amount of rainfall in the summer and the average minimum temperatures in the winter. This biome occurs mainly on the high central plateau (Highveld), as well as the inland areas of the eastern seaboard and the established mountainous areas of KwaZulu-Natal and Eastern Cape. The biome is primarily characterised as flat to rolling, but also includes mountainous regions and escarpments. The effect of this biome being at a higher altitude result in larger temperature differences at different times of the year. The climate in winter months specifically, can be cold and dry with the occurrence and relative high frequency of frost. The presence of high amounts of moisture allows for grassland regions to be divided into two classes. Moist grassland primarily consists of sour grasses, leached and dystrophic soils and high canopy cover, high plant production and high fire frequency. Dry grasslands are seen as sweet, palatable grasses, where the soils are less leached and are eutrophic and canopy cover, plant production and fire frequency are lower than in moist grasslands. Grasslands are structurally simple and strongly dominated by grasses (*Poaceae*). It is noted that the moisture index affects canopy cover and decreases with lower mean annual rainfall but is influenced by the amount and type of grazing and by the presence of fire. This in turn allows for woody species to occur but are limited to specialised niches/habitats within the grassland biome. The Eastern Highveld Grassland is primarily known for its slightly to moderately undulating plains, that include some well-defined low hills and pan depressions. The vegetation in this biome is short dense grassland dominated by the usual highveld grass composition. Small, scattered rocky outcrops with wiry, sour grasses are also found within this vegetation.

The warmest month (with the highest average high temperature) is December (29.86 C) while the coldest month (with the lowest average low temperature) is June (9.0 C). The area receives an average of 181.1 mm of rain during January, which is the wettest month of the year.

2. Methods

The Pre-construction bird report for the Komati Power Station was reviewed, along with the current bird sensitivity buffers. Two site visits were completed on the 2nd and 30th of June 2023.

3. Proposed Amendments

3.1 Solar Energy Facility

Previously the Komati Power Station consisted of two sites, Solar PV A (127 Ha) and Solar PV B (50 Ha). This has been divided into Solar PV A1 (109 Ha), Solar PV A2 (21 Ha) and Solar PV B (30 Ha) as seen in Figure 1 and Figure 2 below. Solar PV A2 is a section of the what was previously known as Solar PV A, and is not an addition. Overall there is a 20 Ha reduction in the buildable areas when the footprints of the amended Solar PVs are considered. The solar modules will be placed I rows with space for perimeter roads and fencing on the boundaries and O&M access roads between the modules.

Figure 1. Boundaries of Solar PV A and Solar PV B

Figure 2. Amended boundaries of the Solar PV facilities A1, A2 and B

3.2 Grid Connections, Substations and Battery Energy Storage Facilities

For the amendment the 132 kV Grid connection that was previously approved will be removed. The previously approved substations will be removed and three new substations is proposed for each of the Solar sites (Figure 3). The footprints of these collector substations will fall within the boundaries of the respective Solar PV sites are as follow:

- Substation footprint A1 1.5 Ha
- Substation footprint A2 0.36 Ha

• Substation footprint B – 0.36 Ha

It is proposed that the Area A Battery Enery Storage Facilty (BESS) is extended, however, this expansion will be on the existing Komati Power Station. Three BESS have been aproved and range in size from 2 Ha to 6 Ha (Figure 4).

Figure 3. Locations of collector substations for each Solar PV site

Figure 4. Locations of the approved Battery Energy Storage Facilities

3.3 Ancillary Infrastructure

No amendments have been made to the ancillary infrastructure and will only be confirmed after the conceptual design has been completed. The following infrastructure is, however, expected:

- Access roads;
- Perimeter roads;
- Below ground electrical cables;
- Above ground overhead lines;

- Meteorological Station;
- Operations and Maintenance (O&M) Building including control room, server room, security equipment room, offices, boardroom, kitchen, and ablution facilities);
- Spares Warehouse and Workshop;
- Hazardous Chemical Store;
- Security Building;
- Parking areas and roads;
- Temporary laydown areas;
- Temporary concrete batching plant
- Construction camps and temporary laydown areas; and
- Onsite substations.

4. Sensitive Areas

The only sensitive areas found on or near the proposed Komati Power Station Solar Photovoltaic and Battery Energy Storage Project where two wetlands, and each will require a 200 m buffer. The buffer of one of these wetlands overlaps with Solar PV A 1, whereas the other overlaps with Solar PV A 2 (Figure 5). As these buffers should be considered a No-Go no construction may take place within these areas and the boundaries will have to be altered.

Figure 5. Sensitive areas found on or near the Project Area of Influence

5. Potential Impacts

Outlined below are the potential impacts and associated risk factors identified during the surveys in 2023 that may be generated by the proposed development.

According to Birdlife South Africa's Best Practice Guidelines on Birds and Solar Energy, the associated concerns with PV facilities are summarized below:

• Displacement of species of conservation concern.

- Loss of habitat and disturbance during construction and operational phases.
- Collision with solar panels and power line infrastructure.

The proposed Komati SEF development will cover an area of approximately 157 ha, located within the Eastern Highveld Grassland vegetation type. This habitat represents the vegetation type of the surrounding area, whilst the development area itself is transformed, with large sections of developed areas and agriculture present. Of the 29 species of concern that have been reported in the broader area, only two were recorded during the site visit, both Peregrine Falcon and Black-Winged Kite being of least concern. The development is unlikely to have a significant impact on these species, but direct habitat loss and displacement will likely affect common local bird assemblages.

4.1 Identification of potential impacts

Potential impacts on avifauna associated with the proposed development are outlined in more detail below:

Habitat loss, displacement, and disturbance of avifauna

As a result of direct habitat loss to accommodate the construction of the solar energy facility, avifauna of all sizes will be affected to varying degrees. Smaller passerines will be highly susceptible to these changes, losing potential feeding, roosting, and breeding habitat. These habitat loss impacts are permanent in nature, whilst disturbances may be limited to the construction and operational phases, after which some species will begin to reutilize suitable parts of the development site again. Larger raptors and terrestrial species with larger home ranges and a tendency to show higher sensitivity to disturbances might be less likely and/or slower to return to the development area.

Collison risk and electrocutions with powerlines and infrastructure

Due to their size, small passerines carry less risk regarding collisions with overhead lines and the risks of electrocutions on power line infrastructure. Larger species of raptor and terrestrial birds are thus at a higher risk, and large raptors are prone to electrocution due to their tendency to

roost, rest, and hunt from power lines and power line structures. This is of concern as many of these species are red-listed and are also prone to impacts from habitat loss and disturbance and can thus be severely affected by solar developments across all their accompanying impacts.

6. Assessment of Impacts

Impact assessments for the Komati SEF planning, construction and operational phases are outlined below. These impacts were assessed during the surveys in 2023 and no additional mitigation measures are proposed for the amendment.

6.1 Komati Solar Energy Development

6.1.1 Planning & Construction Phase

Impact Type	Direct Av	Direct Avifaunal Impacts During Construction – habitat loss & disturbance							
	Spatial	patial Duration Intensity Probability Reversibility Significance & Status Confider						Confidence	
	Extent					No	With	Level	
						Mitigation	Mitigation		
	Local	Short-	Medium	High	High	Medium-	Low &	High	
Komati		term				Low &	Negative		
						Negative			

Mitigation & Management Actions

- Limit destruction of habitat during construction phase strictly to the development footprint
- All building waste produced during construction should be removed and disposed of at an official waste management facility.
- Any liquid or chemical spills should be dealt with immediately to avoid contamination of the environment on site.
- No construction should take place near to any active raptor or priority species nests should these be located prior to the implementation of the construction phase. Nesting should be allowed to run until completion and until chicks have successfully fledged before disturbance in the area recommences.
- Where trenches or holes are required to be dug, these are to be filled shortly afterwards. These open holes serve as potential pit-fall traps for fledgling birds and should not be left open for extended periods of time.
- Nesting sites and/or sensitive microhabitats should be avoided where possible, especially during the peak summer breeding seasons.
- An environmental induction prior to construction for all staff and contractors to explain that no animals are to be harmed or hunted, and that all necessary process to limit littering, chemical pollution, fires are implemented on site.
- Low speed limits should be adhered to on site, to avoid collisions with avifauna, especially nocturnal species (e.g. owls, nightjars, and thickknees) that actively hunt and inhabit the roads after dark.

6.1.2 Operational Phase

Impact Type	Direct Avifaunal Impacts During Operation – disturbance and collision risk							
	Spatial	Duration	Intensity	Probability	Reversibility	Significance & Status Confide		Confidence
	Extent					No	With	Level
						Mitigation	Mitigation	
	Local	Long-term	Medium-	Moderate	High	Medium-	Low &	High
Komati			Low			Low &	Negative	
						Negative		
Mitigation & M	lanagemei	nt Actions						
• If raptor or other bird species are found on any power line infrastructure, these should be left undisturbed until nesting and fledging of the chicks has taken place. If any nests are deemed to be of risk to the safety of the power line, nests of non-priory species should be removed before/after breeding has taken place. If the nest is of a priority species, an avifaunal specialist should be contacted to best advise on how to move forward with the best interests of the priority species in mind.								
 Monthly 	y monitoring	; is recommend	ed post constrı	uction, especially f	for the first year, to	note any high-risl	k areas, whether on ∢	the power lines

• Monthly monitoring is recommended post construction, especially for the first year, to note any high-risk areas, whether on the power lines themselves or associated infrastructure. Regular carcass searches will help pin-point high risk areas, and mitigation measures such as bird flappers can be installed in these zones to mitigate further injuries and death to local avifauna.

6.2 Collective Impacts

Collective impacts that are likely to occur due to the construction of the Komati Solar Energy development, and other developments that may arise in the general area and their effect on local avifauna.

Impact Type	Broad-sca	Broad-scale avifaunal impacts							
	Spatial	Duration	Intensity	Probability	Reversibility	Significar	nce & Status	Confidence	
	Extent					No	With	Level	
						Mitigation	Mitigation		
	Localized	Long-	Low	Medium	Low	Low &	Low &	Medium-	
Komati		term				Negative	Negative	High	
Mitigation &	Managemer	nt Actions							
Minir	nize the develo	pment area as i	much as possik	le, focusing on ar	eas of transformed	habitat and low a	avifaunal sensitivity.		
 The c 	eveloped area	s should be clea	ared of any de	bris (e.g., building	rubble) that may a	ttract prey item	s and thus raptors (especially owls),	
that r	nay increase th	e risk of collisio	ns with power	lines and associat	ed structures.				
 All pe 	rimeter fencing	g should allow f	or small fauna	and terrestrial avi	fauna (e.g. francolii	n, spurfowl, butto	onquails, thick-knee	s, korhaans, and	
busta	rds) to pass th	rough unrestric	ted. Only the	developed sites s	hould be fenced of	f, limiting the fe	ncing of as much u	ndeveloped and	
natur	al habitats as p	ossible. Double	layered fences	, which can trap fa	iuna should not be ι	ised, and electric	strands should be lo	ocated internally	
if nec	essary, and not	on the externa	I sides of the f	ence which can po	ose as a rísk to fauna	а.			

7. Conclusion and Recommendations

Compared to the previous impact assessment undertaken by Volant Environmental, it is unlikely that the amendments to the Komati SEF would change (*i.e.* increase or decrease) the current rated impacts to birds. The current Komati SEF development would contribute to approximately 157 ha of habitat loss in an already transformed area, with **LOW** avifaunal significance, and thus supports the sensitivity rating of the Screening Tool. The vegetation present on the development site yielded few species of concern, and at low abundance. No nesting sites or roost sites of red-listed species were located on site. No significant seasonal variation in species assemblages and movements across the development site are likely to occur, less so for probable species of concern, thus the overall impact of the development on avifauna is considered to be **LOW**.

The impacts expected by the amended development of the Komati SEF will comprise of habitat destruction and the displacement, and disturbance of local bird assemblages, as well as the direct mortalities of avifauna which are likely to arise from electrocution from power line infrastructure, and expected collisions with solar panels, overhead power lines and any associated infrastructure. The displacement, habitat destruction and disturbance of avifauna, however, is likely to be restricted to the development site itself. Small passerines are most likely to be affected by the construction of the development site, however, none of which were recorded on site, are red-list species. Impacts on larger non-passerines might occur, but none of which were recorded on site and likely occur uncommonly in the area.

To further reduce risk on avifauna, mitigation measures during both the construction and postconstruction phases can be executed. These mitigation measures include restricting habitat loss and limiting disturbance to the footprint of the development area itself, whilst bird flappers can be successfully used to reduce collisions with overhead powerlines and associated infrastructure, especially in areas of high-risk areas which will become apparent during the monitoring phase. With these mitigation measures in place, impact on avifauna by the development of this site will be further reduced, maintaining a low risk, and thus no fatal flaws are assigned to the development of this site with respect to avifauna.

Impact Statement

The proposed development footprint of the amended Komati SEF is considered suitable for development. No avifaunal impacts associated with the Komati SEF that cannot be mitigated to an adequate level were detected. Based on our findings and the area of development provided for this assessment, the amended Komati SEF should be allowed to proceed into the EIA phase from an avifaunal viewpoint.

8. References

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V & Brown, C.J. (eds). (1997). The atlas of southern African birds. Vol. 1&2. Birdlife South Africa, Johannesburg.

Jenkins, A.R., Ralston-Paton, S., Smit-Robinson, H.A. 2017. Best Practise guidelines for birds and solar facilities.

Ladislav, M., Rutherford, M.C., (2006). The vegetation of South Africa, Lesotho and Swaziland, South African National Biodiversity Institute.

Olson et al (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience. 51: 11.

South African National Biodiversity Institute. (2018) Beta Vegetation Map of South Africa, Lesotho, and Swaziland (File Geodatabase) [File geodatabase] 2018. Available from the Biodiversity GIS website (<u>http://bgis.sanbi.org/SpatialDataset/Detail/670</u>)

Appendix 1. Qualification of specialist

Appendix 2. CV of Specialist

Key areas of expertise

- Bat Specialist Conducting surveys on bat diversity and abundance and researh on bat ecology.
- Environmental Writing and collating Basic Assessment (BA) for proposed Assessment Wind Energy Facilities Practitioner

Personal details

Full Name	John Low de Vries
DOB	7 November 1984
Nationality	South African
Marital Status	Married
Email	low@volantenvironmental.com
Phone	+27 82 323 5475
ID number	841107 5188087

Education

Completed	Degree and Institution
2002	Matric, Hoërskool Jeugland, Kempton Park, South Africa
2006	B. Sc Zoology, University of Pretoria, Pretoria, South Africa
2007	B. Sc (Hons) Zoology, University of Pretoria, Pretoria, South Africa
2014	PhD Zoology, University of Pretoria, Pretoria, South Africa

Memberships & Certificates

- SACNASP Registered Professional Natural Scientist in the field of Zoological Science Registration Number: 124178
- Bat Assessment Specialist with South African Bat Assessment Association (SABAA)

Other Training

- Multivariate statistical modelling (Cape Town, South Africa)
- Bat handling and identification course (AfricanBats)
- Snake handling (Chameleon Village (South Africa)
- ArcGis online course
- First Aid level 2 (Johannesburg, South Africa)

Publications

Wood, M., **de Vries**, JL., Monadjem, A., Markotter, W. A critical review of factors influencing interspecific variation in home range size of bats. Mammal Review. *In submission*

Markotter W, **de Vries, J.L,** Paweska, J. 2022. Wing tattoos: A cost-effective and permanent method for marking bats. *In review*

Geldenhuys, M., **de Vries, JL.,** Dietrich, M., Mortlock, M., Epstein, J. H., Weyer, J., Paweska, J T., Markotter, W. Longitudinal surveillance of diverse coronaviruses within a *Rousettus aegyptiacus* maternal colony towards understanding viral maintenance and excretion dynamics. *In submission*

Markotter, W., Coertse, J., **de Vries, JL.**, Geldenhuys, M., Mortlock, M. 2020. Batborne viruses in Africa: A critical review. Journal of Zoology. 311:2. 77-98

de Vries JL, Marneweck D, Dalerum F, Page-Nicholson S, Mills MGL, Yarnell RW, Sliwa A, Do Linh San E. 2016. A conservation assessment of *Proteles cristata*. In Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The Red List of

Mammals of South Africa, Swaziland, and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.

Dalerum F, Le Roux A, **de Vries JL**, Kamler JF, Page-Nicholson S, Stuart C, Stuart M, Wilson B, Do Linh San E. 2016. A conservation assessment of *Otocyon megalotis*. In Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The Red List of Mammals of South Africa, Swaziland, and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.

Dalerum, F., **de Vries, J.L.,** Pirk, C.W.W., Cameron, E.Z. 2016. Spatial and temporal dimensions to the taxonomic diversity of arthropods in an arid grassland savannah. *Journal of Arid Environments*. 144. 21-30

Kotze, R., Bennett, N., Cameron, E.Z., **de Vries, J.L.**, Marneweck, D.G., Pirk, C.W.W., Dalerum, F. 2012. Temporal patterns of den use suggest polygamous mating patterns in an obligate monogamous mammal. *Animal Behaviour*. 84. 1573-1578

de Vries, J.L., Pirk, C.W.W., Bateman, P.W., Cameron, E.Z., Dalerum, F. 2011. Extension of the diet of an extreme foraging specialist, the aardwolf (*Proteles cristata*). *African Zoology*. 6:1 194-196.

de Vries, J. L., Oosthuizen, M. K., Sichilima, A. M., Bennett, N. C. 2008. Circadian rhythms of locomotor activity in Ansell's mole-rat: are mole-rat's clocks ticking? *Journal of Zoology*. 276:4. 343-349

Employment & work-related experiences

2020 - present	Director and founder of Volant Environmental
2016 - present	Postdoctoral fellow, University of Pretoria
2015 - 2016	Postdoctoral fellow, NZG
2014 - 2015	Marion Island field assistant, University of Pretoria
2013	Documentary presenter, Oxford Scientific Films
2010 - 2011	Wildlife Education Trainer, Enviro- Insight
2010 - 2011	Game Raning Lecturer, Damelin Centurion
2009 - 2018	Lecturer and tutor, University of Pretoria

Rece	ent Project Exper	rience			
For fur	ther details please contact	me directly und	er low@volantenv	vironmental.com	
Time span	Nature of project	Capacity	Industry / Sector	Client / Developer	Country (Province)
2022	Thand Tau Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Free State)
2022	Camden Bird Impact Assessment	Bird Specialist	Renewable Energy / Onshore Wind	EDF Renewables	South Africa (Mpumalanga)
2022	Castle Wind Energy walkthrough	Bat Specialist	Renewable Energy / Onshore Wind	Savannah Environmental	South Africa (Northern Cape)
2022	Doringbaai Wind Energy Facility	Bat Specialist	Renewable Energy / Onshore Wind	WKN-Windcurrent	South Africa (Western Cape)
2022	Aggeneys Bat Impact Assessment Review	Bat Specialist	Renewable Energy / Onshore Wind	Genesis Eco- Energy Developments (Pty) Ltd	South Africa (Northern Cape)
2021	Dordrecht Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	ACED (Pty) Ltd	South Africa (Eastern Cape)
2021	Indwe Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	ACED (Pty) Ltd	South Africa (Eastern Cape)
2021	Waschbank Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	ACED (Pty) Ltd	South Africa (Eastern Cape)
2021	Gorachouqua Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Northern Cape)
2021	Khoemana Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Northern Cape)
2021- 2022	Dalmanutha Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Mpumalanga)
2020- 2021	Bergrivier Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Genesis Eco- Energy Developments (Pty) Ltd	South Africa (Western Cape)
2020- 2021	Botterblom Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Genesis Eco- Energy	South Africa (Northern Cape)

				Developments (Pty) Ltd	
2012	Dangerous snake removal	Herpetologist	Mining (Coal)	Anadarko	Mocimboa da Paia, Mozambique

Low de Vries PhD Zoology Pr. Sci. Nat. Zoological Science

Pre-Construction Assessment of Birds for the Proposed Komati Solar Energy Facility

August 2023

Prepared for Megan Govender WSP Africa (Pty) Ltd. <u>Megan.Govender@wsp.com</u>

Compiled by Low de Vries (Pr. Sci. Nat., PhD: Zoology) Justin Nicolau (BSc (Hons): Biodiversity & Conservation) Volant Environmental (Pty) Ltd. <u>low@volantenvironmental.com</u>

Contents

ACRONYMS & GLOSSARY OF TERMS	8
1. Introduction	9
1.1 Project Details	9
1.2 Project Location	9
1.3 Description of Ecoregion	С
1.4 Assumptions and Limitations12	2
2. Methods	3
2.1 Regulatory Requirements	3
2.1.1 Screening Report	3
2.1.2 Birds and Solar Energy Best Practise Guidelines14	4
2.2 Desktop survey 14	4
2.3 Field surveys1!	5
2.3.1 Site Visits	5
2.3.2 Scoping Survey1	5
2.3.3 Driven and Walked Transects1!	5
2.4 Impact Assessment	6
3. Results	7
3.1 Desktop Survey	7
3.1.1 Previous Studies in the Region:	7
3.1.1.5 Solar Photovoltaic Power Plant at Eskom Duvha Power Station	С
3.1.2 Potential Species Present in the Area2	1
3.1.3 Nature Reserves in the Area24	4
3.1.4 Important Bird Areas	5
3.2. Observed Species	6
3.2.1 Walked and Driven Transects	7

3	8.3	Sen	nsitive Bird Areas	28		
4.	Pot	tenti	al Impacts	28		
4	l.1	Ide	ntification of potential impacts	29		
5.	Ass	sessn	nent of Impacts	30		
5	5.1	Kor	nati Solar Energy Development	30		
	5.1	1	Planning & Construction Phase	30		
	5.1	2	Operational Phase	31		
5	5.2	Col	lective Impacts	32		
6.	Со	nclus	sion and Recommendations	32		
7.	Ref	ferer	nces	34		
Арр	bend	ix 1.	Qualification of specialist	36		
Арр	bend	ix 2:	Potential species present	37		
Арр	ppendix 4. CV of Specialist					

List of Figures

Figure 1. Location of the Komati Solar Energy Facility	10
Figure 2. Examples of vegetation found on the Project Area of Influence	12
Figure 3. Transects across the Project Area of Influence	16
Figure 4. Important Bird Areas located near the Proposed Area of Influence	26

List of Tables

Table 1. Bird reports for Renewable Energy Facilities (and other developments) in the region of	
the proposed SEF 1	8
Table 2. Priority species that could potentially occur on the Project Area of Influence	2
Table 3. The identified public/privately owned protected areas identified close to the proposed	
SEF site 2	4
Table 4. Species recorded during transect 2	7
Table 5: List of potential species that could be present at the Project Area of Influence with	
Priority Species in Bold	7

EXPERTISE OF BIRD SPECIALISTS

Low de Vries is a registered bat assessment specialist with SABAA and has consulted for numerous field projects, which included bird surveys and the removal of dangerous snakes in Mozambique, as well as several biodiversity surveys in South Africa. He obtained a PhD in Zoology while investigating the general ecology of aardwolves with special focus on home range, diet, and prey abundance. After his PhD, he spent 14 months on Marion Island assisting with field work on elephant seals, fur seals and killer whales. During his subsequent postdoctoral position at the University of Pretoria, he spent six years conducting research on the ecology of bats and has obtained extensive knowledge on bat behaviour and movements, as well as experience in bat handling.

Justin obtained a BSc in Zoology & Botany, followed by an Honours degree in Biodiversity and Conservation. He is a professional bird guide (over 15 years of experience), who has led tours across 4 continents (over 20 countries) and is well versed in field identification, ecology and bird calls and has a sound understanding of rigorous scientific data collection. He has served as a bird specialist for Enviro-Insight, EXM as well as Birdlife South Africa. He has led avifaunal research and atlassing projects both on mainland Africa in the renewable energy sector, as well as conducted data collection out at sea to Antarctica and along the west coast from South Africa to Namibia.

Disclaimer by Volant Environmental Director

I declare that the work presented in this report is my own and has not been influenced in any way by the developer. At no point has the developer asked me as the specialist to manipulate the results to make them more favourable for the proposed development. I consider myself bound to the rules and ethics of the South African Council for Natural Scientific Professions (SACNASP) and the EIA Regulations (2014, as amended). I have the necessary qualifications and expertise (*Pr. Sci. Nat. Zoological Science*) in conducting this specialist report.

Dr. Low de Vries

COMPLIANCE WITH APPENDIX 6 OF THE 2014 EIA REGULATIONS, AS AMENDED

Requirements of Appendix 6 – GN R326 2014 EIA Regulations, 7 April 2017	Specialist Report
1. (1) A specialist report prepared in terms of these Regulations must contain	Appendix 4
a) details of:	
i. the specialist who prepared the report; and	
ii. the expertise of that specialist to compile a specialist report including a curriculum vitae;	
b) a declaration that the specialist is independent in a form as may be specified by the competent	Declaration
authority;	
c) an indication of the scope of, and the purpose for which, the report was prepared;	Project Details
cA. an indication of the quality and age of base data used for the specialist report;	Methods
cB. a description of existing impacts on the site, cumulative impacts of the proposed development	Assessment of
and levels of acceptable change;	Impacts
d) the date and season of the site investigation and the relevance of the season to the outcome of	Field surveys
the assessment;	
e) a description of the methodology adopted in preparing the report or carrying out the specialised	Methods
process inclusive of equipment and modelling used;	
f) details of an assessment of the specific identified sensitivity of the site related to	Sensitive Bird
the proposed activity or activities and its associated structures and infrastructure,	Areas
inclusive of a site plan identifying site alternatives;	
g) an identification of any areas to be avoided, including buffers;	Sensitive Bird
	Areas
h) a map superimposing the activity including the associated structures and infrastructure on the	Project Location
environmental sensitivities of the site including areas to be avoided, including buffers;	
i) a description of any assumptions made and any uncertainties or gaps in knowledge;	Assumptions and
	Limitations
j) a description of the findings and potential implications of such findings on the impact of the	Conclusion and
proposed activity or activities;	Recommendations
k) any mitigation measures for inclusion in the EMPr;	Assessment of
	Impacts
I) any conditions for inclusion in the environmental authorisation;	Assessment of
	Impacts
m) any monitoring requirements for inclusion in the ENIPP of environmental authorisation;	Assessment Oj
n) a reasoned oninion	Impuets
i whether the proposed activity activities or portions thereof should be authorised.	
(A) regarding the accentability of the proposed activity or activities and	Conclusion
ii. if the opinion is that the proposed activity, activities or portions thereof should be authorised, any	
avoidance, management and mitigation measures that should be included in the EMPr, and where	
applicable, the closure plan;	
o) a description of any consultation process that was undertaken during the course	NA

of preparing the specialist report;	
p) a summary and copies of any comments received during any consultation process and where	NA
applicable all responses thereto; and	
q) any other information requested by the competent authority.	NA
2) Where a government notice gazetted by the Minister provides for any protocol or minimum	NA
information requirement to be applied to a specialist report, the requirements as indicated in such	
notice will apply.	

ACRONYMS & GLOSSARY OF TERMS

AOI: Area of Influence, the area that is affected by the proposed development.

Buffer zone: A zone established around areas that are identified as sensitive for bats and includes flyways, foraging areas and bat roosts.

CITES: Convention on International Trade in Endangered Species of Wild Fauna and Flora.

Cumulative Impact: Impacts created due to past, present, and future activities and impacts associated with these activities.

EMPr: Environmental Management Programme: A legally binding working document, which stipulates environmental and socio-economic mitigation measures which must be implemented by several responsible parties throughout the duration of the proposed project.

Endemic: A species that is restricted to a particular area.

EIA (Environmental Impact Assessment): The process of identifying environmental impacts due to activities and assessing and reporting these impacts.

GPS: Global Positioning System device.

IUCN: International Union for Conservation of Nature.

MW: Megawatts.

NEMA: National Environmental Management Act.

Pre-construction phase: The period prior to the construction of a wind energy facility.

Red data species: Species included in the Critically Endangered, Endangered, Vulnerable or Rare categories as defined by the IUCN.

REDZ (Renewable Energy Development Zones): Areas where wind and solar photovoltaic power development can occur in concentrated zones.

S&EIA: Social and Environmental Impact Assessment (EIA): The process of identifying social and environmental impacts due to activities and assessing and reporting these impacts.

SABAA: South African Bat Assessment Association.

SACNASP: South African Council for Natural Scientific Professions.

SANBI: South African National Biodiversity Institute.

Scoping Report: A report contemplated in regulation 21 of the NEMA amended EIA regulations R326 dated 7 April 2017.

ToPS: Threatened or Protected Species.

1. Introduction

1.1 Project Details

Volant Environmental (Pty) Ltd was commissioned by WSP Africa (Pty) Ltd to conduct a thorough Pre-Construction Survey to assess the potentially Sensitive Areas of avifauna at a proposed solar energy facility (SEF) which will be known as the Komati Power Station Solar Photovoltaic and Battery Energy Storage Project near Komati in Mpumalanga Province, South Africa. Project Area of Influence (PAOI) of the proposed SEF is divided into two sites, with Site 1 covering an area of *ca*. 115 ha and Site B *ca*. 25 ha. The SEF will include the development of a PV facility with a capacity of 100 MW and a BESS of up to 150 MW.

1.2 Project Location

The proposed SEF is located around the town of Komatie in the Nkangala District Municipality, Mpumalanga, South Africa (Figure 1). The proposed PAOI can be accessed using multiple routes but primarily using the R542 that runs South of the proposed site or the R35 that runs East of the proposed site. The combined PAOI (PAOI = SEF boundaries) that we were asked to perform the assessments on covers an area of *ca* 140 ha and is situated on the Komatie power station facility as well as undeveloped land around the town of Komatie.

Figure 1. Location of the Komati Solar Energy Facility

1.3 Description of Ecoregion

The proposed PAOI falls across the Grassland Bioregion with the majority of the PAOI consisting Eastern Highveld Grassland.

The extent of the Grassland Biome is relatively well defined on the basis of the specific known vegetation structure when seen in combination with the amount of rainfall in the summer and the average minimum temperatures in the winter. This biome occurs mainly on the high central plateau (Highveld), as well as the inland areas of the eastern seaboard and the established

mountainous areas of KwaZulu-Natal and Eastern Cape. The biome is primarily characterised as flat to rolling, but also includes mountainous regions and escarpments. The effect of this biome being at a higher altitude result in larger temperature differences at different times of the year. The climate in winter months specifically, can be cold and dry with the occurrence and relative high frequency of frost. The presence of high amounts of moisture allows for grassland regions to be divided into two classes. Moist grassland primarily consists of sour grasses, leached and dystrophic soils and high canopy cover, high plant production and high fire frequency. Dry grasslands are seen as sweet, palatable grasses, where the soils are less leached and are eutrophic and canopy cover, plant production and fire frequency are lower than in moist grasslands. Grasslands are structurally simple and strongly dominated by grasses (*Poaceae*). It is noted that the moisture index affects canopy cover and decreases with lower mean annual rainfall but is influenced by the amount and type of grazing and by the presence of fire. This in turn allows for woody species to occur but are limited to specialised niches/habitats within the grassland biome. The Eastern Highveld Grassland is primarily known for its slightly to moderately undulating plains, that include some well-defined low hills and pan depressions. The vegetation in this biome is short dense grassland dominated by the usual highveld grass composition. Small, scattered rocky outcrops with wiry, sour grasses are also found within this vegetation.

The warmest month (with the highest average high temperature) is December (29.86 C) while the coldest month (with the lowest average low temperature) is June (9.0 C). The area receives an average of 181.1 mm of rain during January, which is the wettest month of the year.

Figure 2. Examples of vegetation found on the Project Area of Influence

1.4 Assumptions and Limitations

- The assumption was made that all sources of information used during the completion of this report, are reliable and accurate.
- Vantage point surveys and transects are only conducted during daylight. Therefore, any bird movement occurring at night was recorded under *ad hoc* conditions. Some waterbirds and Palearctic and intra-African migrants are known to make regular flights and migratory movements at night.
- Although very useful, the SABAP1 bird data set is more than two decades old. This dataset does however provide an adequate baseline to use when assessing species presence, distribution, and abundance. The use of SABAP2 in conjunction with SABAP1 will provide substantial data to be used during initial desktop assessments. This data was, however, mostly obtained by citizen scientists, and its accuracy is dependent on the individual's skill set.

2. Methods

2.1 Regulatory Requirements

2.1.1 Screening Report

The Minister of Environment, Forestry and Fisheries gave notice that the submission of a report generated from the national web-based environmental screening tool, as contemplated in Regulation 16(1)(b)(v) of the Environmental Impact Assessment Regulations, 2014, published under Government Notice No. R982 in Government Gazette No. 38282 of 4 December 2014, as amended, will be compulsory from 4 October 2019 when submitting an application for environmental authorisation in terms of regulation 19 and regulation 21 of the Environmental Impact Assessment Regulations, 2014.

In addition, a set of protocols that an applicant needs to adhere to in the Environmental Authorisation (EA) process were developed and on 20 March 2020, the Minister of Forestry, Fisheries and the Environment gazetted the Protocols for national implementation purposes. The gazette '*Procedures to be followed for the Assessment and Minimum Criteria for Reporting of Identified Environmental Themes in terms of Section 24(5)(a) and (h) of the National Environmental Management Act (1998) when Applying for Environmental Authorisation', has protocols that have been developed for environmental themes which include agriculture, avifauna, biodiversity (Terrestrial and Aquatic Biodiversity), noise, defence and civil aviation.*

The protocols set requirements for the assessment and reporting of environmental impacts of activities requiring EA. The higher the sensitivity rating of the features on the proposed site as identified by the screening tool report, the more rigorous the assessment and reporting requirements.

Based on the screening report generated on 04/08/2023, the Avian Combined Sensitivity Theme is indicated as **Low** sensitivity for the PAOI.

2.1.2 Birds and Solar Energy Best Practise Guidelines

Based on Appendix 2 (Minimum requirements for avifaunal impact assessment) in the "Best-Practice Guidelines for assessing and monitoring the impact of solar energy facilities on birds in southern Africa" (Jenkins et al., 2017) monitoring at a potential SEF must follow a tiered approach with three stages.

During Stage 1 a preliminary assessment is conducted. This assessment should give an overview of likely impacts and potential red flags. During this stage methodologies for the monitoring phase should be planned.

Stage 2 includes an in-depth study with structured data collection following set methodologies on which to base the Impact Assessment Report.

The final tier is Stage 3 during which an Impact assessment is done based on the data collected during Stage 2.

2.2 Desktop survey

A thorough desktop study was undertaken to estimate the likelihood of specific species of avifauna being present at the proposed SEF. This included investigations into available literature, including Southern African Bird Atlas Project 1 (Harrison et al, 1997), The Southern African Bird Atlas Project (http://sabap2.adu.org.za/v1/index.php), The Important Bird Areas 2 report (http://www.birdlife.org.za/conservation/important-bird-areas), the IUCN 2013 Red List (http://www.iucnredlist.org/), Birdlife South Africa Checklist of Birds in South Africa (2014) and any other birds surveys or monitoring reports for nearby WEF or facilities which included avifaunal monitoring as determined from the REEA (2022 Q1) information. Lack of public access to existing monitoring reports is a recurring problem in the industry and one that severely hampers preconstruction monitoring studies and the recommendations therein, a problem to be addressed by relevant NGOs and governmental institutions.

A search was conducted to identify any protected areas present within 100 km of the proposed SEF project area using the South African Protected Area Data (SAPAD 2022 Q1).

2.3 Field surveys

All methods used for field surveys were implemented according to the Best Practice Guidelines for Birds & Solar Energy in South Africa (Jenkins *et al.*, 2017). This document was strictly followed.

2.3.1 Site Visits

Due to the size of the site and the Low Sensitivity status for birds the site falls under Regime 1, and only requires one site visit. Two site visits were completed on the 2nd and 30th of June 2023.

2.3.2 Scoping Survey

An initial Scoping Survey was performed by walking across the project area and investigating areas surrounding the PAOI as a ground-truthing exercise. This was done to identify potentially sensitive areas and hotspots for birds and to locate possible nesting sites.

2.3.3 Driven and Walked Transects

The vegetation on the PAOI consists of transformed and developed lands with areas of agriculture. Due to the size of the site three walked transects of *ca* 1 km and one driven transect was done (Figure 3). These methods fall within the requirements of the Best Practice Guidelines, and all bird species observed were recorded, in addition to the distance and azimuth to the animals. Avifaunal species were identified based on sight and calls. All incidental observations were noted to construct a species list for the area.

Figure 3. Transects across the Project Area of Influence

2.4 Impact Assessment

All potential impacts and associated risk factors that may be generated by the development were identified and assessed. In order to ensure that the impacts identified are broadly applicable and inclusive, all the likely or potential impacts that may be associated with the development are listed, classified, and discussed.

According to Birdlife South Africa, the main concerns with PV facilities are the following:

• Displacement or the exclusion of nationally and/or globally threatened, rare, endemic, or rangerestricted bird species from important habitats.

• Loss of habitat and disturbance of resident bird species caused by construction, operation and maintenance activities.

- Collision with the solar panels, which may be mistaken for water bodies.
- Collision and electrocution caused when perching on or flying into associated power line infrastructure.

• Habitat destruction and disturbance/exclusion of avifauna through construction (short-term) and maintenance (long-term) of new power line infrastructure.

• Habitat destruction and disturbance of birds caused by the construction and maintenance of new roads and other infrastructure.

Our assessment of the impact of the proposed SEF was based on these concerns.

3. Results

3.1 Desktop Survey

3.1.1 Previous Studies in the Region:

All nearby existing and proposed WEFs and SEF facilities were searched for online to find additional data regarding bird findings that might be of importance to the proposed SEF. Investigations into available literature on other surveys or monitoring reports from nearby (100 km) the proposed SEF application were undertaken (Table 1) as determined from the REEA (2022 Q1) information. These reports identified the potential impact of the proposed energy-generating facilities on bird populations present and the mitigation strategies followed. Extensive lists of bird species, that could be present on or near the proposed SEF, were also compiled using previous study data and publicly available information.

Table 1. Bird reports for Renewable Energy Facilities (and other developments) in the region of the proposed SEF.

Project	Report details	Consultant
Camden 1 Wind Energy Facility	Camden I Wind Energy Facility	WSP Global Inc.
Camden 2 Wind Energy Facility	Camden 2 Wind Energy Facility	WSP Global Inc.
Camden 1 Solar Energy Facility	Camden 1 Solar Energy Facility	WSP Global Inc.
Solar Photovoltaic Power Plant at Eskom Arnot Power Station	Solar Photovoltaic Power Plant at Eskom Arnot Power Station	ILISO Consulting (Pty) Ltd
Solar Photovoltaic Power Plant at Eskom Duvha Power Station	Solar Photovoltaic Power Plant at Eskom Duvha Power Station	ILISO Consulting (Pty) Ltd
Proposed Haverfontein Wind Energy Project, Carolina, Mpumalanga Province of South	Proposed Haverfontein Wind Energy Project, Carolina, Mpumalanga Province of South	Coastal & Environmental Services

3.1.1.1 Camden I Wind Energy Facility

- The South African Bird Atlas Project 2 (SABAP2) data showed that a total of 234 bird species could potentially occur within the broader area of the proposed WEF PAOI.
- Of these, 37 species were classified as priority species and 16 of these were identified on the South African Red List species. Of the priority species, 25 were likely to occur regularly in the development area.
- The project site is not located in an Important Bird Area (IBA), but it is located between three IBAs.
- Due to the close proximity of the site to the IBAs, it is possible that some highly mobile priority species which are also IBA trigger species, and which occur either permanently or sporadically in the IBAs, might be impacted by the project.
- Specific environmental sensitivity areas have been identified from an avifaunal perspective indicating where mitigation strategies should be applied.

3.1.1.2 Camden 2 Wind Energy Facility

- The Camden II WEF project area was classified as Medium to High sensitivity when the DFFE Screening Tool was utilized.
- This was determined based on the potential presence of several SCC namely Grey Crowned Crane (Globally and Regionally Endangered), Martial Eagle (Globally and Regionally Endangered), Southern Bald Ibis (Globally and Regionally Vulnerable), White-bellied Korhaan (Regionally Vulnerable), Secretarybird (Globally Endangered and Regionally Vulnerable) and Wattled Crane (Globally Vulnerable and Regionally Critically Endangered).
- This classification was confirmed during on-site visits and field surveys conducted throughout the study period.
- It was stated that the development in the sensitivity grassland must be limited as far as possible.
- It was stated that a 100m all infrastructure exclusion zone must be implemented around drainage lines and associated wetlands.

• After the pre-construction survey was completed, the avifauna specialist was informed of a potential Martial Eagle nest located near the Camden II WEF. A 5km no turbine exclusion zone around this nest was therefore suggested.

3.1.1.3 Camden 1 Solar Energy Facility

- It was determined that the proposed solar energy facility will have a moderate impact on priority avifauna which could be reduced to low impact through appropriate mitigation.
- No fatal flaws were discovered during the onsite investigations of the proposed SEF.
- It was stated that the development in the sensitivity grassland must be limited as far as possible.
- It was stated that a 100m all infrastructure exclusion zone must be implemented around drainage lines and associated wetlands.

3.1.1.4 Solar Photovoltaic Power Plant at Eskom Arnot Power Station

- It was stated that according to Birdlife South Africa, the study area does not fall within any Important Bird Areas (IBA).
- The avifaunal species found in the study area were seen as all commonly occurring species, which are well adapted to the already transformed habitat within the proposed development site.
- No avifaunal Species of Conservation Concern (SCC) were identified during the site survey.

3.1.1.5 Solar Photovoltaic Power Plant at Eskom Duvha Power Station

- It was stated that according to Birdlife South Africa, the study area does not fall within any Important Bird Areas (IBA).
- In terms of avifaunal SCC, only Southern Bald Ibis was identified and reported during the site survey.

• It was however determined that there is a high probability that African Marsh Harriers and African Grass Owls may possibly use the study area specifically for foraging purposes around the wetland sections.

3.1.1.6 Proposed Haverfontein Wind Energy Project, Carolina, Mpumalanga Province of South Africa

- The target species list identified for this study site was determined to be: Southern Bald Ibis, African Marsh Harrier, Blue Crane, Grey Crowned Crane, Denham's Bustard, Whitebellied Korhaan, Yellow-billed Stork, Greater and Lesser Flamingo, Secretarybird and Blue Korhaan and White Stork.
- It was also stressed that smaller grassland dependent species such as larks and pipits will also be of concern for this project.
- The Nooitgedacht dam identified close to site also featured multiple water bird species. The flyways used to access this dam was an aspect that needed further reporting and assessment.

3.1.2 Potential Species Present in the Area

Based on a list of bird species drawn from the nine pentads that covers and surrounds the PAOI a total of 205 species have been identified of which 29 species have been identified as Priority Species (Appendix 2). Of the Priority Species, nine have an Overall Priority Score of 290 or higher, placing them in the top 30 Priority species (Table 2). These include Grey-Winged Francolin, Denham's Bustards, Blue Korhaan, Northern Black Korhaan, Grey Crowned Crane, Black Winged Pratincole, White Stork, Saddle Billed Stork, Southern Bald Ibis.

Table 2. Priority species that could potentially occur on the Project Area of Influence

Common name	Scientific name	Priority Score
Pheasants & Allies (Phasianidae)		
Grey-winged Francolin	Scleroptila afra	190
Bustards (Otididae)		
Denham's Bustard	Neotis denhami	300
Blue Korhaan	Eupodotis caerulescens	270
Northern Black Korhaan	Afrotis afraoides	180
Cranes (Gruidae)		
Grey Crowned Crane	Balearica regulorum	314
Coursers, Pratincoles (Glareolidae)		
Black-winged Pratincole	Glareola nordmanni	202
Storks (Ciconiidae)		
White Stork	Ciconia ciconia	220
Saddle-billed Stork	Ephippiorhynchus senegalensis	240
Ibises, Spoonbills (Threskiornithidae)		
Southern Bald Ibis	Geronticus calvus	330
Secretarybird (Sagittariidae)		·
Secretarybird	Sagittarius serpentarius	320
Kites, Hawks, Eagles (Accipitridae)		•
Black-winged Kite	Elanus caeruleus	174
African Harrier-Hawk	Polyboroides typus	190
Black-chested Snake Eagle	Circaetus pectoralis	230
Martial Eagle	Polemaetus bellicosus	350
Long-crested Eagle	Lophaetus occipitalis	190
Black Sparrowhawk	Accipiter melanoleucus	170
Montagu's Harrier	Circus pygargus	210
Yellow-billed Kite	Milvus aegyptius	No value
African Fish Eagle	Haliaeetus vocifer	290
Common Buzzard	Buteo buteo	210
Jackal Buzzard	Buteo rufofuscus	250
Barn Owls (Tytonidae)		
African Grass Owl	Tyto capensis	289
Owls (Strigidae)		
Marsh Owl	Asio capensis	180
Spotted Eagle-Owl	Bubo africanus	170
Caracaras, Falcons (Falconidae)		
Rock Kestrel	Falco rupicolus	No value

Greater	Kestrel	Falco rupicoloides	174
Amur Fa	lcon	Falco amurensis	210
Lanner F	alcon	Falco biarmicus	300
Larks (Al	audidae)		
Melodio	us Lark	Mirafra cheniana	180

3.1.3 Nature Reserves in the Area

A search was conducted to identify any protected areas present within 100 km of the proposed SEF project area using the South African Protected Area Data (SAPAD 2022 Q1). The reserves consist of privately as well as publicly owned land, used for wildlife conservation as well as specific livestock farming. These sites are all registered designated protected areas (SAPAD 2022, Q1).

Table 3. The identified public/privately owned protected areas identified close to the proposed SEF site

Name	Location From SEF Site
Heyns Private Nature Reserve	18 Km North
Burnside Private Nature Reserve	18 Km North
Witbank Nature Reserve	19 Km North
Vaalbank Private Nature Reserve	27 Km North
Botshabelo Nature Reserve	42 Km North
Bezuidenhoutshoek Nature Reserve	42 Km North
Buks Private Nature Reserve	52 Km North
Loskop Dam Nature Reserve	68 Km North
Annasdal Private Nature Reserve	67 Km North
Moutse Nature Reserve	90 Km Northwest
Uitzoek Private Nature Reserve	90 Km Northwest
Diana Ranch Private Nature Reserve	89 Km Northwest
Mabusa Nature Reserve	89 Km Northwest
Nederwelt Private Nature Reserve	56 Km Northeast
Grootrietvley Private Nature Reserve	75 Km Northeast
Langkloof Private Nature Reserve	77 Km Northeast
Greater Lakenvlei Protected Environment	81 Km Northeast
Cecilia Private Nature Reserve	50 Km Northeast
Nooitgedacht Dam Nature Reserve	56 Km East
Paulina Van Niekerk Private Nature Reserve	80 Km East

Rentia Kritzinger Private Nature Reserve	68 Km East
Chrissiesmeer Protected Environment	71 Km East
Ahlers Private Nature Reserve	70 Km Southeast
Rietvlei Private Nature Reserve	60 Km Southeast
Langcarel Private Nature Reserve	90 Km Southeast
Devon Protected Environment	75 Km West
Nicolaas Private Nature Reserve	90 Km West
Voortrekker Private Nature Reserve	95 Km West

3.1.4 Important Bird Areas

Important Bird and Biodiversity Areas (IBAs) are defined by BirdLife International, as sites of global significance for bird conservation, identified nationally through multi-stakeholder processes using globally standardised, quantitative, and scientifically agreed criteria. These areas are seen as the most important sites for conserving and should be considered during avifaunal impact assessments. The closest known IBA is the Amersfoort–Bethal–Carolina District IBA (Figure 4). This specific IBA stretches throughout Mpumalanga province and covers an area of 343 320 ha. This specific IBA is classified as an unprotected site which correlates to no official protection under the National Environmental Management: Protected Areas Act (2003). However, the conservation response is not completely absent from unprotected IBAs with input from civil society groups, a degree of monitoring, research and conservation action still taking place at sites of biological significance. Species found within this IBA that are of conservational concern is the globally threatened Botha's Lark, with 10% of the global population suspected to be present within this area. Other globally threatened species are Blue Crane, Southern Bald Ibis, Black Harrier, Blue Korhaan, Black-winged Pratincole, Secretarybird, Martial Eagle and Denham's Bustard. Regionally threatened species are African Grass Owl, Whitebellied Korhaan and Lanner Falcon. Restrictedrange and biome-restricted species are the previously mentioned Botha's Lark, Kurrichane Thrush and Buff-streaked Chat.

Figure 4. Important Bird Areas located near the Proposed Area of Influence

3.2. Observed Species

All species that were seen or heard during walked transects and ground-truthing across the development site were recorded. A total of 30 unique species were identified (Appendix 3). Of these species, two species of raptors were observed, namely Peregrine Falcon and Black-Winged Kite.

3.2.1 Walked and Driven Transects

The most recorded species was Speckled Pigeon, with a total of 164 individuals across the transect, followed by Cape Sparrow (Table 4). Neither of these are considered a priority species. The Peregrine Falcon was seen hunting Speckled Pigeons during walked transects, while the Black-Winged Kite was detected during the driven transects.

Table 4. Species recorded during transect

Name	Latin Name	Number observed
Speckled Pigeon	Columba guinea	164
Cape Sparrow	Passer melanurus	36
Helmeted Guineafowl	Numida meleagris	29
Ring-necked Dove	Streptopelia capicola	28
Cape White-eye	Zosterops virens	25
House Sparrow	Passer domesticus	21
Cape Longclaw	Macronyx capensis	21
Dark-capped Bulbul	Pycnonotus tricolor	19
Common Myna	Acridotheres tristis	17
Hadada Ibis	Bostrychia hagedash	16
Common Waxbill	Estrilda astrild	16
African Stonechat	Saxicola torquatus	12
Rock Martin	Ptyonoprogne fuligula	11
Blacksmith Lapwing	Vanellus armatus	9
Western Cattle Egret	Bubulcus ibis	8
Southern Fiscal	Lanius collaris	7
Red-knobbed Coot	Fulica cristata	7
Glossy Ibis	Plegadis falcinellus	7
Black-headed Heron	Ardea melanocephala	6
Cape Wagtail	Motacilla capensis	5
Speckled Mousebird	Colius striatus	5
Crowned Lapwing	Vanellus coronatus	4
Red-winged Starling	Onychognathus morio	4
Southern Masked Weaver	Ploceus velatus	3

African Pipit	Anthus cinnamomeus	3
Grey Heron	Ardea cinerea	2
Ant-eating Chat	Myrmecocichla formicivora	2
Peregrine Falcon	Falco peregrinus	1
Black-winged Kite	Elanus caeruleus	1

3.3 Sensitive Bird Areas

The habitat that the PAOI will be located on is relatively homogenous consisting largely of old transformed and developed. No areas of avifaunal sensitivity were located on the development area, or immediate surrounds.

4. Potential Impacts

Outlined below are the potential impacts and associated risk factors that may be generated by the proposed development.

According to Birdlife South Africa's Best Practice Guidelines on Birds and Solar Energy, the associated concerns with PV facilities are summarized below:

- Displacement of species of conservation concern.
- Loss of habitat and disturbance during construction and operational phases.
- Collision with solar panels and power line infrastructure.

The proposed Komati SEF development will cover an area of approximately 140 ha, located within the Eastern Highveld Grassland vegetation type. This habitat represents the vegetation type of the surrounding area, whilst the development area itself is transformed, with large sections of developed areas and agriculture present. Of the 29 species of concern that have been reported in the broader area, only two were recorded during the site visit, both Peregrine Falcon and Black-Winged Kite being of least concern. The development is unlikely to have a significant impact on these species, but direct habitat loss and displacement will likely affect common local bird assemblages.

4.1 Identification of potential impacts

Potential impacts on avifauna associated with the proposed development are outlined in more detail below:

Habitat loss, displacement, and disturbance of avifauna

As a result of direct habitat loss to accommodate the construction of the solar energy facility, avifauna of all sizes will be affected to varying degrees. Smaller passerines will be highly susceptible to these changes, losing potential feeding, roosting, and breeding habitat. These habitat loss impacts are permanent in nature, whilst disturbances may be limited to the construction and operational phases, after which some species will begin to reutilize suitable parts of the development site again. Larger raptors and terrestrial species with larger home ranges and a tendency to show higher sensitivity to disturbances might be less likely and/or slower to return to the development area.

Collison risk and electrocutions with powerlines and infrastructure

Due to their size, small passerines carry less risk regarding collisions with overhead lines and the risks of electrocutions on power line infrastructure. Larger species of raptor and terrestrial birds are thus at a higher risk, and large raptors are prone to electrocution due to their tendency to roost, rest, and hunt from power lines and power line structures. This is of concern as many of these species are red-listed and are also prone to impacts from habitat loss and disturbance and can thus be severely affected by solar developments across all their accompanying impacts.

5. Assessment of Impacts

Impact assessments for the Komati SEF planning, construction and operational phases are outlined below:

5.1 Komati Solar Energy Development

5.1.1 Planning & Construction Phase

Impact Type Direct Avifaunal Impacts During Construction – habitat loss & disturbance								
	Spatial	Duration	Intensity	Probability	Reversibility	Significar	ice & Status	Confidence
	Extent					No	With	Level
						Mitigation	Mitigation	
	Local	Short-	Medium	High	High	Medium-	Low &	High
Komati		term				Low &	Negative	
						Negative		
Mitigation & Management Actions								
 Limit d 	Limit destruction of habitat during construction phase strictly to the development footprint							
• All building waste produced during construction should be removed and disposed of at an official waste management facility.								
 Any liquid 	• Any liquid or chemical spills should be dealt with immediately to avoid contamination of the environment on site.							
• No construction should take place near to any active raptor or priority species nests should these be located prior to the implementation of								

- No construction should take place near to any active raptor or priority species nests should these be located prior to the implementation of the construction phase. Nesting should be allowed to run until completion and until chicks have successfully fledged before disturbance in the area recommences.
- Where trenches or holes are required to be dug, these are to be filled shortly afterwards. These open holes serve as potential pit-fall traps for fledgling birds and should not be left open for extended periods of time.
- Nesting sites and/or sensitive microhabitats should be avoided where possible, especially during the peak summer breeding seasons.
- An environmental induction prior to construction for all staff and contractors to explain that no animals are to be harmed or hunted, and that all necessary process to limit littering, chemical pollution, fires are implemented on site.
- Low speed limits should be adhered to on site, to avoid collisions with avifauna, especially nocturnal species (e.g. owls, nightjars, and thickknees) that actively hunt and inhabit the roads after dark.

5.1.2 Operational Phase

Impact Type	Direct Avifaunal Impacts During Operation – disturbance and collision risk							
	Spatial	Duration	Intensity	Probability	Reversibility	Significan	ce & Status	Confidence
	Extent					No	With	Level
						Mitigation	Mitigation	
	Local	Long-term	Medium-	Moderate	High	Medium-	Low &	High
Komati			Low			Low &	Negative	
						Negative		
Mitigation & Management Actions								
 If raptor or other bird species are found on any power line infrastructure, these should be left undisturbed until nesting and fledging of the chicks has taken place. If any nests are deemed to be of risk to the safety of the power line, nests of non-priory species should be removed before/after breeding has taken place. If the nest is of a priority species, an avifaunal specialist should be contacted to best advise on how to move forward with the best interests of the priority species in mind. 								
 Monthly monitoring is recommended post construction, especially for the first year, to note any high-risk areas, whether on the power lines 								

• Monthly monitoring is recommended post construction, especially for the first year, to note any high-risk areas, whether on the power lines themselves or associated infrastructure. Regular carcass searches will help pin-point high risk areas, and mitigation measures such as bird flappers can be installed in these zones to mitigate further injuries and death to local avifauna.

5.2 Collective Impacts

Collective impacts that are likely to occur due to the construction of the Komati Solar Energy development, and other developments that may arise in the general area and their effect on local avifauna.

Impact Type	Broad-scale avifaunal impacts							
	Spatial	Duration	Intensity	Probability	Reversibility	Significar	ice & Status	Confidence
	Extent					No	With	Level
						Mitigation	Mitigation	
	Localized	Long-	Low	Medium	Low	Low &	Low &	Medium-
Komati		term				Negative	Negative	High
Mitigation & M	1anagemer	t Actions						
 Minimi 	ze the develo	pment area as i	much as possib	le, focusing on ar	eas of transformed	habitat and low a	vifaunal sensitivity.	
 The de 	veloped areas	s should be clea	ared of any de	bris (e.g., building	rubble) that may a	ttract prey items	s and thus raptors (especially owls),
that ma	ay increase th	e risk of collisio	ns with power	lines and associat	ed structures.			
 All peri 	meter fencing	g should allow f	or small fauna	and terrestrial av	fauna (e.g. francolii	n, spurfowl, butto	onquails, thick-knee	s, korhaans, and
bustard	ds) to pass th	rough unrestric	ted. Only the	developed sites s	hould be fenced of	f, limiting the fe	ncing of as much u	ndeveloped and
natura	natural habitats as possible. Double layered fences, which can trap fauna should not be used, and electric strands should be located internally							
if nece	ssary, and not	on the externa	I sides of the f	ence which can po	ose as a rísk to fauna	а.		
if nece:	ssary, and not	on the externa	l sides of the f	ence which can po	ose as a risk to fauna	а.		

6. Conclusion and Recommendations

The current Komati SEF development would contribute to approximately 140 ha of habitat loss in an already transformed area, with **LOW** avifaunal significance, and thus supports the sensitivity rating of the Screening Tool. The vegetation present on the development site yielded few species of concern, and at low abundance. No nesting sites or roost sites of red-listed species were located on site. No significant seasonal variation in species assemblages and movements across the development site are likely to occur, less so for probable species of concern, thus the overall impact of the development on avifauna is considered to be **LOW**.

The impacts expected by the development of the Komati SEF will comprise of habitat destruction and the displacement, and disturbance of local bird assemblages, as well as the direct mortalities of avifauna which are likely to arise from electrocution from power line infrastructure, and expected collisions with solar panels, overhead power lines and any associated infrastructure. The displacement, habitat destruction and disturbance of avifauna, however, is likely to be restricted to the development site itself. Small passerines are most likely to be affected by the construction of the development site, however, none of which were recorded on site, are red-list species. Impacts on larger non-passerines might occur, but none of which were recorded on site and likely occur uncommonly in the area.

To further reduce risk on avifauna, mitigation measures during both the construction and postconstruction phases can be executed. These mitigation measures include restricting habitat loss and limiting disturbance to the footprint of the development area itself, whilst bird flappers can be successfully used to reduce collisions with overhead powerlines and associated infrastructure, especially in areas of high-risk areas which will become apparent during the monitoring phase. With these mitigation measures in place, impact on avifauna by the development of this site will be further reduced, maintaining a low risk, and thus no fatal flaws are assigned to the development of this site with respect to avifauna.

Impact Statement

The proposed development footprint of Komati SEF is considered suitable for development. No avifaunal impacts associated with the Komati SEF that cannot be mitigated to an adequate level were detected. Based on our findings and the area of development provided for this assessment, the Komati SEF should be allowed to proceed into the EIA phase from an avifaunal viewpoint.

7. References

Coastal & Environmental Services (2011). Environmental Impact Assessment for the Proposed Haverfontein Wind Energy Project. Volume 2: Specialist Reports. CES, Grahamstown

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V & Brown, C.J. (eds). (1997). The atlas of southern African birds. Vol. 1&2. Birdlife South Africa, Johannesburg.

Iliso Consulting (Pty) Ltd (2015). Environmental Impact Assessment for the installation of a Solar Photovoltaic Power Plant at Eskom Arnot Power Station.

Iliso Consulting (Pty) Ltd (2016). Environmental Impact Assessment for the installation of a Solar Photovoltaic Power Plant at Eskom Duvha Power Station.

Jenkins, A.R., Ralston-Paton, S., Smit-Robinson, H.A.. 2017. Best Practise guidelines for birds and solar facilities.

Ladislav, M., Rutherford, M.C., (2006). The vegetation of South Africa, Lesotho and Swaziland, South African National Biodiversity Institute.

Olson et al (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience. 51: 11.

South African National Biodiversity Institute. (2018) Beta Vegetation Map of South Africa, Lesotho, and Swaziland (File Geodatabase) [File geodatabase] 2018. Available from the Biodiversity GIS website (http://bgis.sanbi.org/SpatialDataset/Detail/670)

WSP Group Africa (Pty) Ltd (2022). Camden I Wind Energy Facility Environmental Impact Assessment report.

WSP Group Africa (Pty) Ltd (2022). Camden I Solar Energy Facility Final Environmental Impact Assessment Report.

WSP Group Africa (Pty) Ltd (2022). Camden II Wind Energy Facility Final Environmental Impact Assessment Report.

Appendix 1. Qualification of specialist

Appendix 2: Potential species present

Table 5: List of potential species that could be present at the Project Area of Influence with Priority Species in Bold

Common name	Scientific name
Ducks, Geese, Swans (Anatidae)	
White-faced Whistling Duck	Dendrocygna viduata
Fulvous Whistling Duck	Dendrocygna bicolor
White-backed Duck	Thalassornis leuconotus
Spur-winged Goose	Plectropterus gambensis
Knob-billed Duck	Sarkidiornis melanotos
Egyptian Goose	Alopochen aegyptiaca
South African Shelduck	Tadorna cana
Cape Shoveler	Spatula smithii
African Black Duck	Anas sparsa
Cape Teal	Anas capensis
Red-billed Teal	Anas erythrorhyncha
Southern Pochard	Netta erythrophthalma
Maccoa Duck	Oxyura maccoa
Guineafowl (Numididae)	
Helmeted Guineafowl	Numida meleagris
Pheasants & Allies (Phasianidae)	
Red-winged Francolin	Scleroptila levaillantii
Grey-winged Francolin	Scleroptila afra
Orange River Francolin	Scleroptila gutturalis
Common Quail	Coturnix coturnix
Swainson's Spurfowl	Pternistis swainsonii
Swifts (Apodidae)	
African Palm Swift	Cypsiurus parvus
African Black Swift	Apus barbatus
Little Swift	Apus affinis
Horus Swift	Apus horus
White-rumped Swift	Apus caffer

Bustards (Otididae)	
Denham's Bustard	Neotis denhami
Blue Korhaan	Eupodotis caerulescens
Northern Black Korhaan	Afrotis afraoides
Cuckoos (Cuculidae)	
Diederik Cuckoo	Chrysococcyx caprius
Pigeons, Doves (Columbidae)	
Rock Dove	Columba livia
Speckled Pigeon	Columba guinea
Red-eyed Dove	Streptopelia semitorquata
Ring-necked Dove	Streptopelia capicola
Laughing Dove	Spilopelia senegalensis
Namaqua Dove	Oena capensis
Rails. Crakes & Coots (Rallidae)	
African Rail	Rallus caerulescens
Common Moorhen	Gallinula chloropus
Red-knobbed Coot	Fulica cristata
African Swamphen	Porphyrio madagascariensis
Black Crake	Zapornia flavirostra
Crapes (Gruidae)	
Grev Crowned Crane	Balearica regulorum
	balcarica regulorarii
Grebes (Podicipedidae)	
Little Grebe	Tachybaptus ruficollis
Great Crested Grebe	Podiceps cristatus
Black-necked Grebe	Podiceps nigricollis
Buttonquail (Turnicidae)	
Common Buttonquail	Turnix sylvaticus
Stone-curlews, Thick-knees (Burhinidae)	
Spotted Thick-knee	Burhinus capensis
Stilte Augests (Desuminestrides)	
Suits, AVOCETS (RECURVIFOSTFIDAE)	lling antonus himantarus
Black-winged Still	Himantopus himantopus

Pied Avocet	Recurvirostra avosetta
Plovers (Charadriidae)	
Blacksmith Lapwing	Vanellus armatus
Crowned Lapwing	Vanellus coronatus
African Wattled Lapwing	Vanellus senegallus
Common Ringed Plover	Charadrius hiaticula
Kittlitz's Plover	Charadrius pecuarius
Three-banded Plover	Charadrius tricollaris
Jacanas (Jacanidae)	
African Jacana	Actophilornis africanus
Sandpipers, Snipes (Scolopacidae)	
Ruff	Calidris pugnax
Curlew Sandpiper	Calidris ferruginea
Little Stint	Calidris minuta
African Snipe	Gallinago nigripennis
Common Sandpiper	Actitis hypoleucos
Marsh Sandpiper	Tringa stagnatilis
Wood Sandpiper	Tringa glareola
Common Greenshank	Tringa nebularia
Coursers, Pratincoles (Glareolidae)	
Black-winged Pratincole	Glareola nordmanni
Gulls, Terns, Skimmers (Laridae)	
Grey-headed Gull	Chroicocephalus cirrocephalus
Whiskered Tern	Chlidonias hybrida
Storks (Ciconiidae)	
White Stork	Ciconia ciconia
Saddle-billed Stork	Ephippiorhynchus senegalensis
Anhingas, Darters (Anhingidae)	
African Darter	Anhinga rufa
Cormorants, Shags (Phalacrocoracidae)	
Reed Cormorant	Microcarbo africanus

White-breasted Cormorant	Phalacrocorax lucidus
Ibises, Spoonbills (Threskiornithidae)	
African Sacred Ibis	Threskiornis aethiopicus
Southern Bald Ibis	Geronticus calvus
Hadada Ibis	Bostrychia hagedash
Glossy Ibis	Plegadis falcinellus
African Spoonbill	Platalea alba
Herons, Bitterns (Ardeidae)	
Little Bittern	Ixobrychus minutus
Black-crowned Night Heron	Nycticorax nycticorax
Squacco Heron	Ardeola ralloides
Western Cattle Egret	Bubulcus ibis
Grey Heron	Ardea cinerea
Black-headed Heron	Ardea melanocephala
Goliath Heron	Ardea goliath
Purple Heron	Ardea purpurea
Great Egret	Ardea alba
Intermediate Egret	Ardea intermedia
Black Heron	Egretta ardesiaca
Little Egret	Egretta garzetta
Hamerkop (Scopidae)	
Hamerkop	Scopus umbretta
Secretarybird (Sagittariidae)	
Secretarybird	Sagittarius serpentarius
Kites, Hawks, Eagles (Accipitridae)	
Black-winged Kite	Elanus caeruleus
African Harrier-Hawk	Polyboroides typus
Black-chested Snake Eagle	Circaetus pectoralis
Martial Eagle	Polemaetus bellicosus
Long-crested Eagle	Lophaetus occipitalis
Black Sparrowhawk	Accipiter melanoleucus
Montagu's Harrier	Circus pygargus
Yellow-billed Kite	Milvus aegyptius
African Fish Eagle	Haliaeetus vocifer
Common Buzzard	Buteo buteo

Jackal Buzzard	Buteo rufofuscus
Barn Owls (Tytonidae)	
Western Barn Owl	Tyto alba
African Grass Owl	Tyto capensis
Owls (Strigidae)	
Marsh Owl	Asio capensis
Spotted Eagle-Owl	Bubo africanus
Maurahirda (Caliidae)	
Mousebirds (Collidae)	Calius strictus
	conus striatus
Hoopoes (Upupidae)	
African Hoopoe	Upupa africana
Wood Hoopoes (Phoeniculidae)	
Green Wood Hoopoe	Phoeniculus purpureus
Kingfishers (Alcedinidae)	
Malachite Kingfisher	Corythornis cristatus
Giant Kingfisher	Megaceryle maxima
Pied Kingfisher	Ceryle rudis
Bee-eaters (Meropidae)	
European Bee-eater	Merops apiaster
African Barbets (Lybiidae)	
Black-collared Barbet	Lybius torguatus
Crested Barbet	Trachyphonus vaillantii
Mandrandkarr (Disides)	
Woodpeckers (Picidae)	humu mufine llie
	Jynx rujicoms
	Geocolaptes olivaceus
Caracaras, Falcons (Falconidae)	
Rock Kestrel	Falco rupicolus
Greater Kestrel	Falco rupicoloides
Amur Falcon	Falco amurensis

Lanner Falcon	Falco biarmicus
Shrikes (Laniidae)	
Red-backed Shrike	Lanius collurio
Southern Fiscal	Lanius collaris
Crows, Jays (Corvidae)	
Pied Crow	Corvus albus
Larks (Alaudidae)	
Spike-heeled Lark	Chersomanes albofasciata
Sabota Lark	Calendulauda sabota
Eastern Clapper Lark	Mirafra fasciolata
Rufous-naped Lark	Mirafra africana
Melodious Lark	Mirafra cheniana
Pink-billed Lark	Spizocorys conirostris
Red-capped Lark	Calandrella cinerea
Bulbuls (Pycnonotidae)	
Dark-capped Bulbul	Pycnonotus tricolor
Swallows, Martins (Hirundinidae)	
Banded Martin	Neophedina cincta
Sand Martin	Riparia riparia
Brown-throated Martin	Riparia paludicola
Rock Martin	Ptyonoprogne fuligula
White-throated Swallow	Hirundo albigularis
Barn Swallow	Hirundo rustica
Common House Martin	Delichon urbicum
Lesser Striped Swallow	Cecropis abyssinica
Greater Striped Swallow	Cecropis cucullata
South African Cliff Swallow	Petrochelidon spilodera
Crombecs, African Warblers (Macrosph	nenidae)
Cape Grassbird	Sphenoeacus afer
Leaf Warblers (Phylloscopidae)	
Willow Warbler	Phylloscopus trachilus

Reed Warblers & Allies (Acrocephalidae)			
Lesser Swamp Warbler	Acrocephalus gracilirostris		
Great Reed Warbler Acrocephalus arundinaceus			
Sedge Warbler	Acrocephalus schoenobaenus		
Common Reed Warbler	Acrocephalus scirpaceus		
Marsh Warbler	Acrocephalus palustris		
Grassbirds & Allies (Locustellidae)			
Little Rush Warbler	Bradypterus baboecala		
Cisticolas & Allies (Cisticolidae)			
Wailing Cisticola	Cisticola lais		
Levaillant's Cisticola	Cisticola tinniens		
Neddicky	Cisticola fulvicapilla		
Zitting Cisticola	Cisticola juncidis		
Desert Cisticola Cisticola aridulus			
Cloud Cisticola Cisticola textrix			
Pale-crowned Cisticola Cisticola cinnamomeus			
Wing-snapping Cisticola Cisticola ayresii			
Tawny-flanked Prinia Prinia subflava			
Black-chested Prinia Prinia flavicans			
Bar-throated Apalis	Apalis thoracica		
White-eyes (Zosteropidae)			
Cape White-eye	Zosterops virens		
Starlings, Rhabdornises (Sturnidae)			
Common Myna	Acridotheres tristis		
, Wattled Starling	Creatophora cinerea		
Cape Starling			
Pied Starling Lamprotornis bicolor			
Red-winged Starling	Onychognathus morio		
Thrushes (Turdidae)			
Groundscraper Thrush	Turdus litsitsirupa		
Karoo Thrush	, Turdus smithi		
Chats, Old World Flycatchers (Muscicapidae)			
Spotted Flycatcher	Muscicapa striata		
Cape Robin-Chat	Cossypha caffra		

African Stonechat	Saxicola torquatus		
Ant-eating Chat	Myrmecocichla formicivora		
Mountain Wheatear Myrmecocichla monticola			
Capped Wheatear Oenanthe pileata			
Familiar Chat	Oenanthe familiaris		
Sunbirds (Nectariniidae)			
Amethyst Sunbird	Chalcomitra amethystina		
Malachite Sunbird	Nectarinia famosa		
Greater Double-collared Sunbird	Cinnyris afer		
Old World Sparrows, Snowfinches (Passeridae)			
Cape Sparrow	Passer melanurus		
Southern Grey-headed Sparrow	Passer diffusus		
House Sparrow	Passer domesticus		
Weavers, Widowbirds (Ploceidae)			
Cape Weaver	Ploceus capensis		
Southern Masked Weaver	Ploceus velatus		
Village Weaver	Ploceus cucullatus		
Red-billed Quelea Quelea Quelea			
Yellow-crowned Bishop Euplectes afer			
Southern Red Bishop	Euplectes orix		
Yellow Bishop	Euplectes capensis		
Fan-tailed Widowbird	Euplectes axillaris		
White-winged Widowbird	Euplectes albonotatus		
Red-collared Widowbird	Euplectes ardens		
Long-tailed Widowbird	Euplectes progne		
Waxbills, Munias & Allies (Estrildidae)			
Common Waxbill	Estrilda astrild		
Quailfinch	Ortygospiza atricollis		
Red-headed Finch	Amadina erythrocephala		
Orange-breasted Waxbill	Amandava subflava		
	-		
Indigobirds, Whydahs (Viduidae)			
Pin-tailed Whydah	Vidua macroura		
Wagtails, Pipits (Motacillidae)			
Cape Wagtail	Motacilla capensis		

Cape Longclaw		
African Pipit		
Nicholson's Pipit		
Plain-backed Pipit		

Macronyx capensis Anthus cinnamomeus Anthus nicholsoni Anthus leucophrys

Finches, Euphonias (Fringillidae)

Black-throated Canary Yellow-fronted Canary Yellow Canary Cape Canary

Species: 205 IOC World Bird List 13.1 (January 2023) Crithagra atrogularis Crithagra mozambica Crithagra flaviventris Serinus canicollis

Appendix 4. CV of Specialist

Personal details

Full Name	John Low de Vries
DOB	7 November 1984
Nationality	South African
Marital Status	Married
Email	low@volantenvironmental.com

 Phone
 +27 82 323 5475

 ID number
 841107 5188087

Education

Completed	Degree and Institution
2002	Matric, Hoërskool Jeugland, Kempton Park, South Africa
2006	B. Sc Zoology, University of Pretoria, Pretoria, South Africa
2007	B. Sc (Hons) Zoology, University of Pretoria, Pretoria, South Africa
2014	PhD Zoology, University of Pretoria, Pretoria, South Africa

Key areas of expertise

- Bat Specialist Conducting surveys on bat diversity and abundance and researh on bat ecology.
- Environmental Writing and collating Basic Assessment (BA) for proposed Assessment Wind Energy Facilities
 Practitioner

Memberships & Certificates

- SACNASP Registered Professional Natural Scientist in the field of Zoological Science Registration Number: 124178
- Bat Assessment Specialist with South African Bat Assessment Association (SABAA)

Other Training

- Multivariate statistical modelling (Cape Town, South Africa)
- Bat handling and identification course (AfricanBats)
- Snake handling (Chameleon Village (South Africa)
- ArcGis online course
- First Aid level 2 (Johannesburg, South Africa)

Publications

Wood, M., **de Vries**, JL., Monadjem, A., Markotter, W. A critical review of factors influencing interspecific variation in home range size of bats. Mammal Review. *In submission*

Markotter W, **de Vries, J.L,** Paweska, J. 2022. Wing tattoos: A cost-effective and permanent method for marking bats. *In review*

Geldenhuys, M., **de Vries, JL.,** Dietrich, M., Mortlock, M., Epstein, J. H., Weyer, J., Paweska, J T., Markotter, W. Longitudinal surveillance of diverse coronaviruses within a *Rousettus aegyptiacus* maternal colony towards understanding viral maintenance and excretion dynamics. *In submission*

Markotter, W., Coertse, J., **de Vries, JL.**, Geldenhuys, M., Mortlock, M. 2020. Batborne viruses in Africa: A critical review. Journal of Zoology. 311:2. 77-98

de Vries JL, Marneweck D, Dalerum F, Page-Nicholson S, Mills MGL, Yarnell RW, Sliwa A, Do Linh San E. 2016. A conservation assessment of *Proteles cristata*. In Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The Red List of Mammals of South Africa, Swaziland, and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.

Dalerum F, Le Roux A, **de Vries JL**, Kamler JF, Page-Nicholson S, Stuart C, Stuart M, Wilson B, Do Linh San E. 2016. A conservation assessment of *Otocyon megalotis*. In Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The

Red List of Mammals of South Africa, Swaziland, and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.

Dalerum, F., **de Vries, J.L.,** Pirk, C.W.W., Cameron, E.Z. 2016. Spatial and temporal dimensions to the taxonomic diversity of arthropods in an arid grassland savannah. *Journal of Arid Environments*. 144. 21-30

Kotze, R., Bennett, N., Cameron, E.Z., **de Vries, J.L.**, Marneweck, D.G., Pirk, C.W.W., Dalerum, F. 2012. Temporal patterns of den use suggest polygamous mating patterns in an obligate monogamous mammal. *Animal Behaviour*. 84. 1573-1578

de Vries, J.L., Pirk, C.W.W., Bateman, P.W., Cameron, E.Z., Dalerum, F. 2011. Extension of the diet of an extreme foraging specialist, the aardwolf (*Proteles cristata*). *African Zoology*. 6:1 194-196.

de Vries, J. L., Oosthuizen, M. K., Sichilima, A. M., Bennett, N. C. 2008. Circadian rhythms of locomotor activity in Ansell's mole-rat: are mole-rat's clocks ticking? *Journal of Zoology*. 276:4. 343-349

Conference Contributions

Markotter W, **de Vries, J.L,** Wood, M. 2022. Small scale movement of *Rousettus aegyptiacus*. International Bat Research Conference. Austin, Texas

Infectious Diseases of Bats Symposium. Fort Collins, Colorado 2017. Body mass index of the Egyptian fruit bat, *Rousettus aegyptiacus*: An indicator of infection status. **de Vries, J.L**., Dietrich, M., Paweska, J., Markotter, W.

SASAS 2016. **de Vries, J.L.,** Jonker, M.L., Kriel, D., Kotze, A.K. The Tankwa goat: Phenotypically that different?

De Beers Diamond Route Conference, 2010. **de Vries, J.L.,** Pirk, C.W.W., Bennett, N.C. Is the aardwolf a seasonally influenced optimal forager?

Kimberley biodiversity research symposium, 2009. **de Vries, J.L.,** Bennett, N.C., Pirk, C.W.W., Dalerum, F., Cameron, E.Z. Den, and home range use of the aardwolf, *Proteles cristatus*

Employment & work-related experiences

2020 - present	Director and founder of Volant Environmental
2016 - present	Postdoctoral fellow, University of Pretoria
2015 - 2016	Postdoctoral fellow, NZG
2014 - 2015	Marion Island field assistant, University of Pretoria
2013	Documentary presenter, Oxford Scientific Films
2010 - 2011	Wildlife Education Trainer, Enviro- Insight
2010 - 2011	Game Raning Lecturer, Damelin Centurion
2009 - 2018	Lecturer and tutor, University of Pretoria

Rece	Recent Project Experience				
For further details please contact me directly under low@volantenvironmental.com					
Time span	Nature of project	Capacity	Industry / Sector	Client / Developer	Country (Province)
2022	Thand Tau Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Free State)
2022	Camden Bird Impact Assessment	Bird Specialist	Renewable Energy / Onshore Wind	EDF Renewables	South Africa (Mpumalanga)
2022	Castle Wind Energy walkthrough	Bat Specialist	Renewable Energy / Onshore Wind	Savannah Environmental	South Africa (Northern Cape)
2022	Doringbaai Wind Energy Facility	Bat Specialist	Renewable Energy / Onshore Wind	WKN-Windcurrent	South Africa (Western Cape)
2022	Aggeneys Bat Impact Assessment Review	Bat Specialist	Renewable Energy / Onshore Wind	Genesis Eco- Energy Developments (Pty) Ltd	South Africa (Northern Cape)
2021	Dordrecht Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	ACED (Pty) Ltd	South Africa (Eastern Cape)
2021	Indwe Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	ACED (Pty) Ltd	South Africa (Eastern Cape)
2021	Waschbank Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	ACED (Pty) Ltd	South Africa (Eastern Cape)
2021	Gorachouqua Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Northern Cape)
2021	Khoemana Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Northern Cape)
2021- 2022	Dalmanutha Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Enertrag SA (Pty) Ltd	South Africa (Mpumalanga)
2020- 2021	Bergrivier Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Genesis Eco- Energy Developments (Pty) Ltd	South Africa (Western Cape)
2020- 2021	Botterblom Bat Impact Assessment	Bat Specialist	Renewable Energy / Onshore Wind	Genesis Eco- Energy	South Africa (Northern Cape)

				Developments (Pty) Ltd	
2012	Dangerous snake removal	Herpetologist	Mining (Coal)	Anadarko	Mocimboa da Paia, Mozambique