# **Appendix J**

# **TRAFFIC STATEMENT**

**\\S**D



▲ 29 De Havilland Crescent
▲ 5th Floor, Imperial Terraces
Pro Park, Building 1
Carl Cronje Drive,
Presequor Technopark
Tyger Waterfront
Pretoria 0020
Bellville 7530
427 (012) 349 1664
◆ +27 (021) 914 6211
★ westerncape@itsglobal.co.za
⊕ www.itsglobal.co.za

WSP Group Africa (Pty) Ltd Building C, Knightsbridge 33 Sloane Street Bryanston 2191

Email: <u>Ashlea.Strong@wsp.com</u> 20 November 2024

Our Reference: 4484.2

Attention: Ms Ashlea Strong

# KOMATI POWER STATION SOLAR PHOTOVOLTAIC FACILITY, BATTERY ENERGY STORAGE SYSTEMS AND ASSOCIATED INFRASTRUCTURE, MPUMALANGA PROVINCE

Eskom Holdings SOC (Ltd) (Eskom) are proposing the expansion of the authorised 100 MW Solar Photovoltaics (PV) Energy Facility (SEF); 150 MW Battery Energy Storage System (BESS); and associated infrastructure at the Komati Power Station located in the Mpumalanga Province, South Africa. The Environmental Impact Assessment (EIA) was undertaken to meet the requirements of both the World Bank Group (WBG) Environmental and Social Framework (ESF) and the EIA requirements under the National Environmental Management Act (Act 107 of 1998) (NEMA).The Komati Power Station Facility received an environmental authorisation (EA) (DFFE:14/12/16/3/3/2/2456) in 02 February 2024.

The Amendment Process prescribed in GNR 326 promulgated in terms of section 24(5) and 44 of the National Environmental Management Act (No. 107 of 1998) (NEMA) will be undertaken.

Innovative Transport Solutions (ITS) (Pty) Ltd compiled the Traffic Impact Assessment report for the proposed Eskom Komati PV and BESS project. The Traffic Impact Assessment report is dated May 2023. Since then, some amendments to the project have been proposed.

The proposed project amendments will comprise the following key components:

- Solar Energy Facility;
- Site Substation(s);
- BESS; and
- Associated infrastructure.

THINKING GLOBAL, ACTING LOCAL



The approved project and proposed amendments to the project are shown schematically in **Annexure A**. It was considered whether these amendments would have a significant impact on the following critical items for the Traffic Impact Assessment:

- Site location;
- Proposed accesses;
- Trip generation;
- Trip distribution;
- Model split; and
- Trip assignment.

It was concluded that these proposed amendments would have no impact on the critical items of the May 2023 Traffic Impact Assessment report. The environmental impact of the transportation activities during the construction, operations and decommissioning phases of the proposed Eskom Komati PV and BESS project, with a significance rating of N2, is expected to be remain low.

The proposed amendments would have no impact on the cumulative impact of the project. The two projects within a 30 km radius from the Komati Power Station will have little to no cumulative impact due to their relative locations. Furthermore, each development is located in close proximity to a regional road that easily gives access to national road network and other regional roads. Their traffic impact will not overlap and thus the cumulative impact will be insignificant.

It is recommended that a Transport Management Plan should be compiled for the construction and decommissioning phase of the project. The aim of the Traffic Management Plan would be to improve road safety during these phases for the community as well as to limit the construction and decommissioning phase traffic within the local peak hours. <u>The development can proceed as the traffic impact is expected to be low.</u>

Yours sincerely,

-

Dr Pieter Pretorius, Pr. Eng. Director Annexure A



Figure A1: Currently Approved Project Infrastructure



Figure A2: BESS Area A expansion



Figure A3: Proposed Amended Infrastructure Layout



# Komati Power Station Repurposing

# **Transport Impact Assessment – Report**

WSP Group Africa

May 2023

29 De Havilland Crescent Pro Park, Building 1 Persequor Technopark Pretoria, 0020 1012 349 1664 gauteng@itsglobal.co.za

## SUMMARY SHEET

| Report Type         | Transport Impact Assessment – Report             |
|---------------------|--------------------------------------------------|
| Title               | Komati Power Station Repurposing                 |
| Location            | Steve Tshwete Local Municipality                 |
| Client              | WSP Group Africa                                 |
| Reference<br>Number | ITS 4484                                         |
| Project Team        | Nico Jonker Pr. Eng                              |
|                     | Lufuno Nengovhela                                |
|                     | Carina Dippenaar                                 |
|                     | Tilly Phale                                      |
| Reviewed by         | Nico Jonker Pr. Eng                              |
| Contact Details     | Tel: 012 394 1664                                |
| Date                | May 2023                                         |
| Report Status       | Draft                                            |
| File Name           | 4484 Komati Power Station TIA LN 2023 04 19.docx |

# **TABLE OF CONTENTS**

| 1  | INT  | RODUCTION                                       |
|----|------|-------------------------------------------------|
| 2  | PRC  | POSED DEVELOPMENT AND LAND USE 1                |
| 3  | TRA  | FFIC VOLUMES                                    |
| 3  | 3.1  | Background Traffic Volumes 2022 2               |
| 3  | 3.2  | Future Background Traffic Volumes 2024 2        |
|    | 3.3  | Future Background Traffic Volumes 2027 2        |
| 3  | 3.4  | Future Background Traffic Volume 2047           |
| 4  | TRI  | P GENERATION                                    |
| 5  | EXIS | STING ROAD NETWORK                              |
| 6  | ACC  | 2ESS                                            |
| 7  | CAP  | ACITY ANALYSIS                                  |
| 8  | CUN  | MULATIVE IMPACT ASSESSMENT                      |
| 9  | PUE  | BLIC TRANSPORT                                  |
| 10 | EΝ\  | /IRONMENTAL IMPACT OF THE TRANSPORT ACTIVITIES9 |
| 11 | CON  | NCLUSIONS AND RECOMMENDATIONS                   |
| -  | 11.1 | Conclusions                                     |
| 1  | 11.2 | Recommendations 14                              |
| 12 | REF  | ERENCES                                         |

## TABLE OF FIGURES

| Figure 1: Site Development Plan                                   | 2   |
|-------------------------------------------------------------------|-----|
| Figure 2: Renewable Projects Surrounding the Komati Power Station | 8   |
| Figure 3: Mitigation Hierarchy                                    | .11 |

#### LIST OF TABLES

| Table 1: Expected Trip Generation                                              | 3  |
|--------------------------------------------------------------------------------|----|
| Table 2: Scenarios Analysed for the Proposed Komati PV Developments            | 5  |
| Table 3: Capacity Analysis Results for the Weekday AM Peak Hour                | 6  |
| Table 4: Capacity Analysis Results for the Weekday PM Peak Hour                | 7  |
| Table 5: Renewable Energy Projects within 30 km radius of Komati Power Station | 8  |
| Table 6: Impact Assessment Criteria and Scoring System                         | 10 |
| Table 7: Environmental Impact Assessment for Construction Phase                | 12 |
| Table 8: Environmental Impact Assessment for Operational Phase                 | 12 |
| Table 9: Environmental Impact Assessment for Construction Phase                | 12 |

## ANNEXURES

# Annexure A – Figures

- Figure A1 Locality Plan
- Figure A2 Intersections Counted
- Figure A3 Trip Distribution
- Figure A4 Existing Geometry

#### Annexure B – PTV VIstro Output

# Annexure C – Trip Generation

# 1 INTRODUCTION

Eskom generates, transmits and distributes electricity and supplies approximately 95% of the country's electricity. Eskom has a 2035 strategy which illustrates their intent to respond to the changing energy environment and the impact this has towards a sustainable power utility. This includes the shutting down of a number of coal-fired power stations, repurposing and repowering, delivering new clean generation projects, expanding the Transmission grid, and rolling out micro grid solutions.

The proposed solar photovoltaic facility is situated in Komati Power Station, which reached its endof-life in September 2022. Eskom has developed a Just Energy Transition Project (EJETP) to mitigating the negative impacts from shutting down of the plant. The EJETP is also to implement projects for the repowering and repurposing related to the Komati Power Station.

The proposed development consists of Photovoltaic (PV) solar energy facilities (SEF) with ancillary Battery Energy Storage Systems (BESS), to generate a total of 150 MW of energy, located on various Eskom-owned land parcels surrounding the existing Komati Power Station in Middelburg, Mpumalanga. Komati Power Station is located approximately 40 km south of Middelburg within the Steve Tshwete Local Municipality, refer to **Annexure A, Figure A1** for the locality map.

In this TIA, the impact of the additional traffic of the proposed developments on the road network will be investigated and mitigation measures will be proposed if required. The transportation activities will include transportation activities during the construction phase, operational phase and the decommissioning phase. This Transport Impact Assessment will form part of the Environmental Impact Study.

# 2 PROPOSED DEVELOPMENT AND LAND USE

The proposed development is located on Eskom property and is currently zoned for various land uses including mining and an airstrip. Permission for the applicable land use rights will have to be obtained from the relevant authorities through a town planning process. The proposed 150 MW PV facilities are to be spread over two sites known as PV Site A and PV Site B.

The proposed project will comprise the following key components:

- Solar Energy Facility the solar modules will be elevated above the ground and monted either on fixed tilt systems or tracking system;
- Grid Connection (i.e. powerlines) new access roads or tracks may be required to provide access to sections of the powerline route. Access roads will be mostly a two-track gravel road under the OHPL in order to access pylons for construction and maintenance purposes;
- Site Substation and BESS three facilities with capacity of 150 MW, with four hours standby time; and
- Associated infrastructure will include but not limited to access roads, perimeter roads, parking area and roads, etc.



Figure 1: Site Development Plan

# **3 TRAFFIC VOLUMES**

## 3.1 Background Traffic Volumes 2022

Traffic counts were conducted, at the intersections shown in **Annexure A**, **Figure A2** covering 12 hours on Wednesday, 1 June 2022. The counts conducted were used for the 2022 base year traffic. The background weekday AM and PM peak hour traffic volumes for 2022 are shown in **Annexure B**.

## 3.2 Future Background Traffic Volumes 2024

A growth rate of 2% per annum was applied to the 2022 background peak hour volumes to estimate the future background volumes for the 2024 horizon year. Analysis of the horizon year 2024 corresponds with the estimated construction period of the development.

## 3.3 Future Background Traffic Volumes 2027

A growth rate of 2% per annum was applied to the 2022 background peak hour volumes to estimate the future background volumes for the 2027 horizon year. Analysis of the horizon year 2027 corresponds with the estimated period in which the development will be in normal operations.

#### 3.4 Future Background Traffic Volume 2047

A growth rate of 2% per annum was applied to the 2022 background peak hour volumes to estimate the future background volumes for the 2043 horizon year. Analysis of the horizon year 2043 corresponds with the estimated period in which the development will be in decommissioning phase.

# 4 TRIP GENERATION

The trip generation of the proposed developments is calculated based on the estimated number of person and truck trips during the construction of the different sites. The operational phase of each site will also develop a certain number of person trips as well as the decommissioning phase.

The expected number of person trips based on the employment opportunities for the developments is 1 285 during the construction phase, 150 person trips during the operational phase and 1 285 persons trips during the decommissioning phase.

The estimated number of person trips are converted into vehicle trips for the phases and sites and adjusted for public transport usage. **Table 1** shows a summary of the expected number of trips generated by the proposed development during the AM and PM peak hours. The calculation of the trip generation is included in **Annexure C**. The expected trip distribution of the proposed developments are shown in **Annexure A**, **Figure A3**.

|    |             | AM                        | Peak Hour Trip | Generation    |          |           |             |
|----|-------------|---------------------------|----------------|---------------|----------|-----------|-------------|
| No | Land Use    | Scenario                  | Split In (%)   | Split Out (%) | Trips In | Trips Out | Total Trips |
| 1  | Komati PV A | Construction Phase        | 70%            | 30%           | 39       | 16        | 55          |
| 2  | Komati PV B | Construction Phase        | 70%            | 30%           | 20       | 9         | 29          |
|    | Komati PV   | <b>Construction Phase</b> |                |               | 59       | 25        | 84          |
| 3  | Komati PV A | Operational Phase         | 70%            | 30%           | 23       | 10        | 33          |
| 4  | Komati PV B | Operational Phase         | 70%            | 30%           | 12       | 5         | 17          |
|    | Komati PV   | <b>Operational Phase</b>  |                |               | 35       | 15        | 50          |
| 5  | Komati PV A | Decomissioning Phase      | 70%            | 30%           | 39       | 16        | 55          |
| 6  | Komati PV B | Decomissioning Phase      | 70%            | 30%           | 20       | 9         | 29          |
|    | Komati PV   | Decomissioning Phase      |                |               | 59       | 25        | 84          |
|    |             | PM                        | Peak Hour Trip | Generation    |          |           |             |
| No | Land Use    | Scenario                  | Split In (%)   | Split Out (%) | Trips In | Trips Out | Total Trips |
| 7  | Komati PV A | Construction Phase        | 30%            | 70%           | 16       | 39        | 55          |
| 8  | Komati PV B | Construction Phase        | 30%            | 70%           | 9        | 20        | 29          |
|    | Komati PV   | <b>Construction Phase</b> |                |               | 25       | 59        | 84          |
| 9  | Komati PV A | <b>Operational Phase</b>  | 30%            | 70%           | 10       | 23        | 33          |
| 10 | Komati PV B | <b>Operational Phase</b>  | 30%            | 70%           | 5        | 12        | 17          |
|    | Komati PV   | <b>Operational Phase</b>  |                |               | 15       | 35        | 50          |
| 11 | Komati PV A | Decomissioning Phase      | 70%            | 30%           | 16       | 39        | 55          |
| 12 | Komati PV B | Decomissioning Phase      | 70%            | 30%           | 9        | 20        | 29          |
|    | Komati PV   | Decomissioning Phase      |                |               | 25       | 59        | 84          |

#### Table 1: Expected Trip Generation

# 5 EXISTING ROAD NETWORK

The roads in the vicinity of the proposed developments are as follows:

- **R543:** Is a Class 3 provincial road and is located to the south of the proposed PV Site A and the town of Komati. This road serves as an East-West link between the R544 and the R35.
- **R35:** Is a Class 3 provincial road and is located to the northeast of the proposed developments and the town of Komati. This road serves as the link between Middelburg and Bethal.
- Main Road: Is a Class 4 municipal road and borders the proposed developments on the western boundaries of PV Site A and PV Site B.
- **Flamingo Street:** Is a Class 5 municipal road and borders the proposed PV Site A on the northern boundary of the site. Flamingo Street also provides access to the town of Komati.

The locations of these roads relative to the proposed development are shown in Annexure A, Figure A4.

# 6 ACCESS

The project area and surrounding areas are already easily accessible due to existing access roads. New access roads or tracks may be required to provide access to sections of the powerline route.

Access to the proposed developments is proposed from Flamingo Street for PV Site A and from the current road that borders the airfield to the north, for PV Site B respectively.

Access roads will be mostly a two-track gravel road under the OHPL in order to access pylons for construction and maintenance purposes. The width of the access roads will be determined during the design phase.

# 7 CAPACITY ANALYSIS

PTV Vistro software was used to conduct the capacity analysis for the intersections included in the study area. The intersections that were included in the analysis are:

- Int 1 Main Road / Koornfontein Mine Access
- Int 2 R542 / Main Road
- Int 3 R35 / R542 to Emalahleni
- Int 4 R35 / R542 to Hendrina
- Int 5 R35 / Komati Power Station
- Int 6 Main Road / Flamingo St

The scenarios that were analysed for the peak hours are summarised in Table 2.

#### Table 2: Scenarios Analysed for the Proposed Komati PV Developments

| No | Scenario No | Scenario                                                                                    |
|----|-------------|---------------------------------------------------------------------------------------------|
| 1  | Scenario 1  | 2022 AM and PM Weekday Peak Hour Background Traffic with Existing Geometry.                 |
| 2  | Scenario 2  | 2024 AM and PM Weekday Peak Hour Background Traffic with Existing Geometry.                 |
| 3  | Scenario 3  | 2027 AM and PM Weekday Peak Hour Background Traffic with Existing Geometry.                 |
| 4  | Scenario 4  | 2047 AM and PM Weekday Peak Hour Background Traffic with Existing Geometry.                 |
| 5  | Scenario 5  | 2024 AM and PM Weekday Peak Hour Development (Construction) Traffic with Existing Geometry. |
| 6  | Scenario 6  | 2027 AM and PM Weekday Peak Hour Development (Operational) Traffic with Existing Geometry.  |
| 7  | Scenario 7  | 2047 AM and PM Weekday Peak Hour Development (Deccomission) Traffic with Existing Geometry. |

The capacity analysis results for the intersections included in the study area are summarised in **Table 3** and **Table 4.** Refer to **Annexure B** for the PTV Vistro output.

# Table 3: Capacity Analysis Results for the Weekday AM Peak Hour

| Scenario                         | Intersection | INT 1 | INT 2 | INT 3 | INT 4 | INT 5 | INT 6 | PV A<br>ACCESS | PV B<br>ACCESS |
|----------------------------------|--------------|-------|-------|-------|-------|-------|-------|----------------|----------------|
| Scenario 1: 2022 AM Peak Hour    | LOS          | Α     | А     | А     | Α     | В     | А     | -              | -              |
| Traffic with Existing Geometry   | Del          | 9,02  | 9,22  | 9,91  | 9,96  | 10,81 | 8,94  | -              | -              |
|                                  | v/c          | 0,03  | 0,02  | 0,05  | 0,08  | 0,04  | 0,02  | -              | -              |
| Scenario 2: 2024 AM Peak Hour    | LOS          | А     | А     | Α     | В     | В     | А     | -              | -              |
| Background Traffic with Existing | Del          | 9,04  | 9,25  | 9,97  | 10,04 | 10,93 | 8,96  | -              | -              |
| Geometry                         | v/c          | 0,03  | 0,03  | 0,05  | 0,08  | 0,04  | 0,02  | -              | -              |
| Scenario 3: 2027 AM Peak Hour    | LOS          | А     | А     | В     | В     | В     | А     | -              | -              |
| Background Traffic with Existing | Del          | 9,08  | 9,31  | 10,09 | 10,14 | 11,09 | 8,99  | -              | -              |
| Geometry                         | v/c          | 0,03  | 0,03  | 0,05  | 0,09  | 0,04  | 0,03  | -              | -              |
| Scenario 4: 2047 AM Peak Hour    | LOS          | А     | А     | В     | В     | В     | А     | -              | -              |
| Background Traffic with Existing | Del          | 9,40  | 9,76  | 11,18 | 11,38 | 13,00 | 9,25  | -              | -              |
| Geometry                         | v/c          | 0,04  | 0,04  | 0,09  | 0,15  | 0,08  | 0,04  | -              | -              |
| Scenario 5: 2024 AM Peak Hour    | LOS          | А     | А     | В     | В     | В     | А     | А              | А              |
| with Construction Traffic        | Del          | 9,39  | 9,89  | 10,01 | 10,64 | 11,25 | 9,7   | 8,37           | 8,35           |
|                                  | v/c          | 0,03  | 0,04  | 0,05  | 0,09  | 0,04  | 0,03  | 0,02           | 0,01           |
| Scenario 6: 2027 AM Peak Hour    | LOS          | А     | А     | В     | В     | В     | А     | А              | А              |
| with Operational Traffic         | Del          | 9,31  | 10,04 | 10,74 | 11,03 | 11,27 | 9,4   | 8,35           | 8,33           |
|                                  | v/c          | 0,03  | 0,04  | 0,06  | 0,1   | 0,04  | 0,03  | 0,01           | 0,01           |
| Scenario 7: 2047 AM Peak Hour    | LOS          | А     | В     | В     | В     | В     | В     | А              | А              |
| with Decommission Traffic        | Del          | 9,80  | 10,50 | 11,24 | 12,21 | 11,25 | 13,46 | 8,37           | 8,35           |
|                                  | v/c          | 0,05  | 0,06  | 0,10  | 0,17  | 0,04  | 0,08  | 0,02           | 0,01           |

| Scenario                         | Intersection | INT 1 | INT 2 | INT 3 | INT 4 | INT 5 | INT 6 | PV A<br>ACCESS | PV B<br>ACCESS |
|----------------------------------|--------------|-------|-------|-------|-------|-------|-------|----------------|----------------|
| Scenario 1: 2022 PM Peak Hour    | LOS          | А     | В     | В     | В     | В     | А     | -              | -              |
| Traffic with Existing Geometry   | Del          | 9,53  | 10    | 11,81 | 10,99 | 10,86 | 9,24  | -              | -              |
|                                  | v/c          | 0     | 0,02  | 0,11  | 0,12  | 0,02  | 0,01  | -              | -              |
| Scenario 2: 2024 PM Peak Hour    | LOS          | А     | В     | В     | В     | В     | А     | -              | -              |
| Background Traffic with Existing | Del          | 9,54  | 10,07 | 11,98 | 11,1  | 10,97 | 9,27  | -              | -              |
| Geometry                         | v/c          | 0     | 0,02  | 0,12  | 0,12  | 0,03  | 0,01  | -              | -              |
| Scenario 3: 2027 PM Peak Hour    | LOS          | А     | В     | В     | В     | А     | А     | -              | -              |
| Background Traffic with Existing | Del          | 9,57  | 10,16 | 12,28 | 11,32 | 11,15 | 9,32  | -              | -              |
| Geometry                         | v/c          | 0     | 0,03  | 0,13  | 0,13  | 0,03  | 0,01  | -              | -              |
| Scenario 4: 2047 PM Peak Hour    | LOS          | А     | А     | С     | В     | В     | А     | -              | -              |
| Background Traffic with Existing | Del          | 9,73  | 10,98 | 15,73 | 13,51 | 13,03 | 9,79  | -              | -              |
| Geometry                         | v/c          | 0,00  | 0,04  | 0,24  | 0,23  | 0,05  | 0,02  | -              | -              |
| Scenario 5: 2024 PM Peak Hour    | LOS          | А     | В     | В     | В     | В     | В     | А              | А              |
| with Construction Traffic        | Del          | 9,75  | 10,22 | 11,02 | 11    | 11,23 | 10,07 | 8,37           | 8,35           |
|                                  | v/c          | 0,01  | 0,04  | 0,11  | 0,12  | 0,03  | 0,015 | 0,02           | 0,01           |
| Scenario 6: 2027 PM Peak Hour    | LOS          | А     | В     | В     | В     | В     | А     | А              | А              |
| with Operational Traffic         | Del          | 9,67  | 10,41 | 12,14 | 11,51 | 11,27 | 9,77  | 8,35           | 8,33           |
|                                  | v/c          | 0,01  | 0,04  | 0,13  | 0,14  | 0,03  | 0,02  | 0,01           | 0,01           |
| Scenario 7: 2047 PM Peak Hour    | LOS          | В     | В     | В     | В     | В     | В     | А              | А              |
| with Decommission Traffic        | Del          | 10,02 | 11,09 | 13,75 | 13,18 | 13,37 | 10,70 | 8,37           | 8,35           |
|                                  | v/c          | 0,00  | 0,06  | 0,21  | 0,23  | 0,05  | 0,03  | 0,02           | 0,01           |

Table 4: Capacity Analysis Results for the Weekday PM Peak Hour

The existing road network is operating at acceptable levels of service with the existing geometry. The future traffic scenarios are also expected to operate at acceptable levels of service with the existing geometry. The existing geometry of the road network is shown schematically in **Annexure A**, **Figure A3.** No road upgrades are expected to be required to accommodate the additional traffic generated by the proposed developments.

# 8 CUMULATIVE IMPACT ASSESSMENT

Cumulative impact can result when the effects of an action are added to or interact with other effects in a particular place and within a particular time. There are several renewable energy developments in the surrounding areas of the development, refer to **Figure 2**. Only two of these are within a 30 km radius of the Komai Power Station. One of these developments has been approved and the other is in process as shown in **Table 5**.

The two projects within a 30 km radius from the Komati Power Station will have little to no cumulative impact due to their relative locations. Furthermore, each development is located in close proximity to a regional road that easily gives access to national road network and other regional roads. Their traffic impact will not overlap and thus the cumulative impact will be insignificant.

#### Table 5: Renewable Energy Projects within 30 km radius of Komati Power Station

| Renewable Energy Project                                                                                                  | DFFE Rference      | Status     |
|---------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| Proposed installation of a Solar photovoltaic power plant at ESKOM Duvha power station                                    | 14/12/16/3/3/2/759 | Approved   |
| Proposed Forzando North Coal Mine photovoltaic solar<br>facility in Emalahleni Local Municipality, Mpumalanga<br>Province | 12/12/16/3/3/1/451 | In Process |



Figure 2: Renewable Projects Surrounding the Komati Power Station

# 9 PUBLIC TRANSPORT

Due to the locality of the proposed developments, no formal public transport facilities are located in close approximation to the proposed development. It is not expected that public transport facilities will be required.

# **10 ENVIRONMENTAL IMPACT OF THE TRANSPORT ACTIVITIES**

The environmental impact of the transport activities for the PV developments will be assessed and quantified according to the prescribed impact tables as provided. The assessment based on available data is shown below.

The impact of the transport activities for the construction phase, operational phase and decomissioning phase of the project will be assessed based on the following parameters and scoring as provided in the impact tables:

- Impact Magnitude (M)
- Impact Extent (A)
- Impact Reversibility (R)
- Impact Duration (D)
- Probability of Occurrence (P)
- Significance Rating [ S = (E + D + R + M) x P]

# Refer to Table 6.

The impact significance without mitigation measures will be assessed with the design controls in place. The mitigation measures chosen are based on the mitigation hierarchy, shown in **Figure 3**, which allows for consideration of five (5) different levels, which include:

- Avoid/prevent,
- Minimise,
- Rehabilitate/restore,
- Offset, and
- No-go in that order.

The assessment of the transportation activities for the proposed developments are shown in **Table 7** to **Table 9**. The traffic impact and environmental impact shows that the proposed development will not have any negative impact on the existing road network as well as the environment. It is however, recommended that a Transport Management Plan be done for the construction and decommissioning phase of the project. This is to improve road safety during these phases for the community as well as to limit the construction and decommissioning phase traffic within the local peak hours.

Table 6: Impact Assessment Criteria and Scoring System

| CRITERIA                                                                                                                                                                                      | SCORE 1                                                   | SCORE 2                                                                    | SCORE 3                                                                                    | SCORE 4                                                             | SCORE 5                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Impact Magnitude (M)<br>The degree of alteration of the<br>affected environmental receptor<br>Impact Extent (E) The geographical<br>extent of the impact on a given                           | Very low:<br>No impact on<br>processes<br>Site: Site only | Low:<br>Slight<br>impact on<br>processes<br>Local: Inside<br>activity area | Medium:<br>Processes<br>continue but in a<br>modified way<br>Regional:<br>Outside activity | High:<br>Processes<br>temporarily<br>cease<br>National:<br>National | Very High:<br>Permanent<br>cessation of<br>processes<br>International:<br>Across borders or |
| environmental receptor<br><b>Impact Reversibility (R)</b> The ability of<br>the environmental receptor to<br>rehabilitate or restore after the<br>activity has caused environmental<br>change | Reversible:<br>Recovery<br>without<br>rehabilitation      |                                                                            | area<br>Recoverable:<br>Recovery with<br>rehabilitation                                    | scope or level                                                      | boundaries<br>Irreversible: Not<br>possible despite<br>action                               |
| Impact Duration (D) The length of permanence of the impact on the environmental receptor                                                                                                      | Immediate:<br>On impact                                   | Short term:<br>0-5 years                                                   | Medium term:<br>5-15 years                                                                 | Long term:<br>Project life                                          | Permanent:<br>Indefinite                                                                    |
| Probability of Occurrence (P) The<br>likelihood of an impact occurring in<br>the absence of pertinent<br>environmental management<br>measures or mitigation                                   | Improbable                                                | Low<br>Probability                                                         | Probable                                                                                   | Highly<br>Probability                                               | Definite                                                                                    |
| <b>Significance (S)</b> is determined by combining the above criteria in the following formula:                                                                                               | [S = (E + D +<br>Significance =                           | R + M) × P]<br>= (Extent + I<br>× Probabil                                 | Duration + Rever<br>ity                                                                    | rsibility + Mag                                                     | gnitude)                                                                                    |
|                                                                                                                                                                                               | IMPACT S                                                  | SIGNIFICANCE                                                               | RATING                                                                                     |                                                                     |                                                                                             |
| Total Score                                                                                                                                                                                   | 4 to 15                                                   | 16 to 30                                                                   | 31 to 60                                                                                   | 61 to 80                                                            | 81 to 100                                                                                   |
| Environmental Significance Rating<br>(Negative (-))                                                                                                                                           | Very low                                                  | Low                                                                        | Moderate                                                                                   | High                                                                | Very High                                                                                   |
| Environmental Significance Rating<br>(Positive (+))                                                                                                                                           | Very low                                                  | Low                                                                        | Moderate                                                                                   | High                                                                | Very High                                                                                   |

| Avoidance / Prev                | Refers to considering options in project location, nature, scale, layout, technology and phasing to <u>avoid</u> environmental and social impacts. Although this is the best option, it will not always be feasible, and then the next steps become critical.                                                                                                                                                                                                                                                 |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitigation / Red                | Refers to considering alternatives in the project location, scale, layout, technology and phasing that would <u>minimise</u> environmental and social impacts. Every effort should be made to minimise impacts where there are environmental and social constraints.                                                                                                                                                                                                                                          |
| Rehabilitation /<br>Restoration | Refers to the <u>restoration or rehabilitation</u> of areas where impacts were unavoidable and measure<br>are taken to return impacted areas to an agreed land use after the activity / project. Restoration, or<br>even rehabilitation, might not be achievable, or the risk of achieving it might be very high.<br>Additionally it might fall short of replicating the diversity and complexity of the natural system.<br>Residual negative impacts will invariably still need to be compensated or offset. |
| Compensation /<br>Offset        | Refers to measures over and above restoration to remedy the residual (remaining and unavoidable) negative environmental and social impacts. When every effort has been made to avoid, minimise, and rehabilitate remaining impacts to a degree of no net loss, <b>compensation / offsets</b> provide a mechanism to remedy significant negative impacts.                                                                                                                                                      |
| No-Go Refer<br>abilit           | s to 'fatal flaw' in the proposed project, or specifically a proposed project in and area that cannot be<br>t, because the development will impact on strategically important ecosystem services, or jeopardise the<br>y to meet biodiversity targets. This is a <b>fatal flaw</b> and should result in the project being rejected.                                                                                                                                                                           |

Figure 3: Mitigation Hierarchy

Komati Power Station Repurposing Draft

May 2023 ITS 4484

Table 7: Environmental Impact Assessment for Construction Phase

# CONSTRUCTION

| Impact    | Acnoct         | Description                                                           | Ctario       | Character | Ease of      |     |    | P      | e-Mitiga | tion |    |        |     |   | Post    | -Mitiga | tion |   |        |
|-----------|----------------|-----------------------------------------------------------------------|--------------|-----------|--------------|-----|----|--------|----------|------|----|--------|-----|---|---------|---------|------|---|--------|
| number    | nonce          | needibion                                                             | olaye        |           | Mitigation   | +M) | +3 | Ч+     | D)x      | P=   | s  | Rating | +W) | ÷ | R+ 1    | - ×(c   | "    | 6 | Rating |
| Impact 1: | Transportation | Impact of<br>construction<br>vehicles on<br>roads and<br>access roads | Construction | Negative  | Moderate     | 1   | 1  | 3      | 2        | 4    | 28 | N2     | -   | + | 3       | N       | 4 2  | 8 | N2     |
|           |                |                                                                       |              | 0         | Significance |     |    | N2 - I | -ow      |      |    |        |     |   | N2 - Lo | W       |      |   |        |

Table 8: Environmental Impact Assessment for Operational Phase

# **OPERATIONAL**

| Post-Mitigation       | Rating | N2                                                |             |
|-----------------------|--------|---------------------------------------------------|-------------|
|                       | s      | 28                                                |             |
|                       | P=     | 4                                                 |             |
|                       | D)x    | 4                                                 | MO-         |
|                       | H+     | ٦                                                 | N2 - I      |
|                       | ய்     | -                                                 |             |
|                       | +W)    | -                                                 |             |
| Pre-Mitigation        | Rating | N2                                                |             |
|                       | s      | 28                                                | N2 - Low    |
|                       | ۳<br>۳ | 4                                                 |             |
|                       | D)x    | 4                                                 |             |
|                       | В+     | 1                                                 |             |
|                       | ф      | +                                                 |             |
|                       | +W)    | +                                                 |             |
| Ease of<br>Mitigation |        | Moderate                                          | ignificance |
| Character             |        | Negative                                          | S           |
| Stage                 |        | Operational                                       |             |
| Description           |        | Transportation<br>activities during<br>operations |             |
| Receptor              |        | Transportation                                    |             |
| Impact<br>number      |        | Impact 1:                                         |             |

Table 9: Environmental Impact Assessment for Construction Phase

# DECOMMISSION

| Post-Mitigation       | Rating   | N2                                                                    |             |  |
|-----------------------|----------|-----------------------------------------------------------------------|-------------|--|
|                       | s        | 28                                                                    |             |  |
|                       | Ρ=       | 4                                                                     | N2 - Low    |  |
|                       | x(q      | 0                                                                     |             |  |
|                       | ÷        | n                                                                     |             |  |
|                       | <u>т</u> | -                                                                     |             |  |
| Pre-Mitigation        | +W)      | -                                                                     |             |  |
|                       | Rating   | N2                                                                    |             |  |
|                       | S        | 28                                                                    |             |  |
|                       | ۳<br>۳   | 4                                                                     | N2 - Low    |  |
|                       | D)x      | 5                                                                     |             |  |
|                       | R+       | ß                                                                     |             |  |
|                       | <u>т</u> | -                                                                     |             |  |
|                       | +W)      | -                                                                     |             |  |
| Ease of<br>Mitigation |          | Moderate                                                              | ignificance |  |
| Character             |          | Negative                                                              | S           |  |
| Stage                 |          | Decommissi<br>on                                                      |             |  |
| Description           |          | Impact of<br>construction<br>vehicles on<br>roads and<br>access roads |             |  |
| Aspect                |          | Transportation                                                        |             |  |
| Impact<br>number      |          | Impact 1:                                                             |             |  |

INNOVATIVE TRANSPORT SOLUTIONS (PTY) LTD

# **11 CONCLUSIONS AND RECOMMENDATIONS**

#### 11.1 Conclusions

The following conclusions were made:

- Photovoltaic (PV) solar energy facilities (SEF) with ancillary Battery Energy Storage Systems (BESS), to generate a total of 150 MW of energy, are planned on Eskom-owned land parcels surrounding the existing Komati Power Station in Middelburg.
- In this TIA, the impact of the transportation activities of the proposed Komati SEF developments on the road network was investigated. The transportation activities include transportation activities during the construction phase, operational phase and the decommissioning phase of the project.
- The proposed developments are located on Eskom properties which are currently zoned for various land uses including mining and an airstrip. Permission for the applicable land use rights will have to be obtained from the relevant authorities through a town planning process. The proposed 150 MW PV facilities are to be spread over two sites known as PV Site A and PV Site B.
- Traffic counts were conducted, at the intersections shown in **Annexure A, Figure A2** covering 12 hours on Wednesday, 1 June 2022.
- A growth rate of 2% per annum was applied to the 2022 background peak hour taffic volumes to estimate the future background volumes for the 2024, 2027 and 2047 horizon years.
- The expected number of person trips based on the employment opportunities for the developments are 1 285 during the construction and decomissioning phase as well as 150 person trips during the operational phase.
- Access to the proposed developments is proposed from Flamingo Street for PV Site A and from the current road that borders the airfield to the north, for PV Site B respectively.
- PTV Vistro software was used to conduct the capacity analysis for the intersections included in the study area.
- The existing road network is operating at acceptable levels of service with the existing geometry. The future traffic scenarios are also expected to operate at acceptable levels of service with the existing geometry.
- Other renewable energy projects within a 30 km radius of the Komati Power Station will have no significant cumulative impact because their traffic impact will not overlap.
- Due to the locality of the proposed developments, no formal public transport facilities are located in close approximation to the proposed development. It is not expected that public transport facilities will be required.
- The environmental impact of the transportation activities during the construction, operaions and decommissioning phases of the proposed development, with a significance rating of N2, is expected to be low.

# 11.2 Recommendations

The following recommendations are made:

- A Transport Management Plan should be compiled for the construction and decommissioning phase of the project. The aim of the Traffic Management Plan would be to improve road safety during these phases for the community as well as to limit the construction and decommissioning phase traffic within the local peak hours.
- The proposed development should be considered favourably from a traffic engineering point of view by Steve Tshwete Local Municipality.

# **12 REFERENCES**

- [1] Committee of Transport Officials (COTO) Technical Methods for Highways (TMH 17) Volume 1 "South African Trip Data Manual.
- [2] Committee of Transport Officials (COTO) Technical Methods for Highways (TMH 16) Volume 1, South African Traffic Impact and Site Traffic Assessment Standards Manual, August 2012.
- [3] Committee of Transport Officials (COTO) Technical Methods for Highways (TMH 16) Volume 2, South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual, August 2012.

Annexure A

Figures









Annexure B

**PTV Vistro Output** 

Version 2022 (SP 0-2)

Lane Configuration and Traffic Control







Version 2022 (SP 0-2)

Traffic Volume - Base Volume







Version 2022 (SP 0-2) Traffic Conditions





Innovative Transport Solutions

Version 2022 (SP 0-2)

Lane Configuration and Traffic Control






Version 2022 (SP 0-2)

Traffic Volume - Base Volume











Version 2022 (SP 0-2)







Version 2022 (SP 0-2)







Version 2022 (SP 0-2) Traffic Conditions





4484

Version 2022 (SP 0-2)

Lane Configuration and Traffic Control







124

Version 2022 (SP 0-2)











Version 2022 (SP 0-2)







Version 2022 (SP 0-2)







Version 2022 (SP 0-2) Traffic Conditions





**Innovative Transport Solutions** 

Version 2022 (SP 0-2)







Version 2022 (SP 0-2)







Version 2022 (SP 0-2) Traffic Conditions





Innovative Transport Solutions

Version 2022 (SP 0-2)







Version 2022 (SP 0-2)











Version 2022 (SP 0-2)







Version 2022 (SP 0-2)











Version 2022 (SP 0-2)





Version 2022 (SP 0-2)











Version 2022 (SP 0-2)





Version 2022 (SP 0-2)











Version 2022 (SP 0-2)





Version 2022 (SP 0-2)











Version 2022 (SP 0-2)





Version 2022 (SP 0-2)











Version 2022 (SP 0-2)





Version 2022 (SP 0-2)











Version 2022 (SP 0-2)




Generated with PTV VISTRO

Version 2022 (SP 0-2)

Traffic Volume - Future Total Volume







Generated with PTV VISTRO

Version 2022 (SP 0-2) Traffic Conditions





Annexure C

**Trip Generation** 

| Land<br>Use | Extent (nr of | Total           | Estimated | split (%) | Nr of Person<br>spli | trips with<br>t | Capacity ut | ilised (%) | Est | imated Public Transport<br>mode split (%) | Estim      | ated ve<br>AM Pea | hicle trips in<br>k Hour | Inbound<br>vehicle trips | Outbound<br>vehicle trips | Total            |
|-------------|---------------|-----------------|-----------|-----------|----------------------|-----------------|-------------|------------|-----|-------------------------------------------|------------|-------------------|--------------------------|--------------------------|---------------------------|------------------|
|             | employees)    | person<br>trips | Public    | Private   | Public               | Private         | Public      | Private    | Bus | Тахі                                      | Pu<br>Tran | blic<br>sport     | Private<br>Mode          | (70%)                    | (30%)                     | vehicle<br>trips |
|             |               |                 | Transport | iniouc    | riansport            | ivioue          | mansport    | ivioue     |     |                                           | Bus        | Тахі              | Car                      | 70%                      | 30%                       |                  |
| PV A        | 855           | 855             | 90        | 10        | 770                  | 86              | 0,9         | 0,9        | 70  | 30                                        | 5          | 9                 | 40                       | 37,8                     | 16,2                      | 54               |
| PV B        | 430           | 430             | 90        | 10        | 387                  | 43              | 0,9         | 0,9        | 70  | 30                                        | 3          | 5                 | 20                       | 20                       | 8                         | 28               |
| Total :     | 1285          | 1285            |           |           |                      |                 |             |            |     | Capacity per vehicle:                     | 65         | 16                | 1,2                      | 57,4                     | 24,6                      | 82               |

#### AM Trip Generation (calculated per person trips) - Construction and Decommissioning Phase

#### AM Trip Generation (calculated truck trips) - Construction and Decommissioning Phase

| Land Use | Extent (nr of<br>trucks) | Total<br>truck<br>trips | Estimated<br>portion of total<br>trucks in AM<br>Peak (%) | Inbound<br>vehicle<br>trips | Outbound<br>vehicle<br>trips | Total<br>vehicle<br>trips |  |
|----------|--------------------------|-------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|---------------------------|--|
|          |                          |                         |                                                           | 70%                         | 30%                          |                           |  |
| PV A     | 10                       | 10                      | 10%                                                       | 1                           | 0                            | 1                         |  |
| PV B     | 10                       | 10                      | 10%                                                       | 1                           | 0                            | 1                         |  |

# AM Trip Generation (total calculated trips) - Construction and Decommissioning Phase

| Land Use | Inbound vehicle<br>trips | Outbound<br>vehicle<br>trips | Total<br>vehicle<br>trips |
|----------|--------------------------|------------------------------|---------------------------|
| PV A     | 39                       | 17                           | 55                        |
| PV B     | 20                       | 9                            | 29                        |
| Total:   | 59                       | 25                           | 84                        |

| Land    | Extent (pr of | Total           | Estimated split (%) |         | Nr of Person trips with split |         | Capacity utilised (%) |         | Estimated Public Transport<br>mode split (%) |                       | Estimated vehicle trips in<br>PM Peak Hour |               |                 | Inbound<br>vehicle trips | Outbound<br>vehicle trips | Total            |
|---------|---------------|-----------------|---------------------|---------|-------------------------------|---------|-----------------------|---------|----------------------------------------------|-----------------------|--------------------------------------------|---------------|-----------------|--------------------------|---------------------------|------------------|
| Use     | employees)    | person<br>trips | Public              | Private | Public                        | Private | Public                | Private | Bus                                          | Bus Taxi              |                                            | blic<br>sport | Private<br>Mode | (70%)                    | (30%)                     | vehicle<br>trips |
|         |               |                 | Transport           | wode    | Transport                     | wode    | Transport             | woue    |                                              |                       | Bus                                        | Тахі          | Car             | 30%                      | 70%                       |                  |
| PV A    | 855           | 855             | 90                  | 10      | 770                           | 86      | 0,9                   | 0,9     | 70                                           | 30                    | 5                                          | 9             | 40              | 16,2                     | 37,8                      | 54               |
| PV B    | 430           | 430             | 90                  | 10      | 387                           | 43      | 0,9                   | 0,9     | 70                                           | 30                    | 3                                          | 5             | 20              | 8                        | 20                        | 28               |
| Total : | 1285          | 1285            |                     |         |                               |         |                       |         |                                              | Capacity per vehicle: | 65                                         | 16            | 1,2             | 24,6                     | 57,4                      | 82               |

#### PM Trip Generation (calculated per person trips) - Construction and Decommissioning Phase

PM Trip Generation (calculated truck trips) - Construction and Decommissioning Phase

| Land Use | Extent (nr of trucks) | Total<br>truck<br>trips | Estimated<br>portion of<br>total<br>trucks in | Inbound<br>vehicle<br>trips | Outbound<br>vehicle<br>trips | Total<br>vehicle<br>trips |  |  |  |  |  |  |  |
|----------|-----------------------|-------------------------|-----------------------------------------------|-----------------------------|------------------------------|---------------------------|--|--|--|--|--|--|--|
|          |                       | -                       | (%)                                           | 30%                         | 70%                          |                           |  |  |  |  |  |  |  |
| PV A     | 10                    | 10                      | 10%                                           | 0                           | 1                            | 1                         |  |  |  |  |  |  |  |
| PV B     | 10                    | 10                      | 10%                                           | 0                           | 1                            | 1                         |  |  |  |  |  |  |  |

#### PM Trip Generation (total calculated trips) - Construction and Decommissioning Phase

| Land Use | Inbound vehicle<br>trips | Outbound<br>vehicle<br>trips | Total<br>vehicle<br>trips |  |  |
|----------|--------------------------|------------------------------|---------------------------|--|--|
| PV A     | 17                       | 39                           | 55                        |  |  |
| PV B     | 9                        | 20                           | 29                        |  |  |
| Total:   | 25                       | 59                           | 84                        |  |  |

### AM Trip Generation (calculated per person trips) - Operational Phase

| Land    | Extent (nr of | Total           | Estimated split (%) |         | Nr of Person trips with split |         | Capacity utilised (%) |         | Estimated Public Transport<br>mode split (%) |                       | Estimated vehicle trips in<br>AM Peak Hour |               | nicle trips in<br>k Hour | Inbound<br>vehicle trips | Outbound<br>vehicle trips | Total            |
|---------|---------------|-----------------|---------------------|---------|-------------------------------|---------|-----------------------|---------|----------------------------------------------|-----------------------|--------------------------------------------|---------------|--------------------------|--------------------------|---------------------------|------------------|
| Use     | employees)    | person<br>trips | Public              | Private | Public                        | Private | Public                | Private | Bus                                          | Тахі                  | Pu<br>Tran                                 | blic<br>sport | Private<br>Mode          | (70%)                    | (30%)                     | vehicle<br>trips |
|         |               |                 | mansport            | INIOUE  | Transport                     | woue    | Transport             | widue   |                                              |                       | Bus                                        | Тахі          | Car                      | 70%                      | 30%                       |                  |
| PV A    | 100           | 100             | 70                  | 30      | 70                            | 30      | 0,9                   | 0,9     | 0                                            | 100                   | 0                                          | 5             | 28                       | 23,1                     | 9,9                       | 33               |
| PV B    | 50            | 50              | 70                  | 30      | 35                            | 15      | 0,9                   | 0,9     | 0                                            | 100                   | 0                                          | 3             | 14                       | 12                       | 5                         | 17               |
| Total : | 150           | 150             |                     |         |                               |         |                       |         |                                              | Capacity per vehicle: | 65                                         | 16            | 1,2                      | 35,0                     | 15                        | 50               |

## PM Trip Generation (calculated per person trips) - Operational Phase

| Land    | Extent (pr of | Total           | Estimated split (%) |         | Nr of Person trips with split |         | Capacity utilised (%) |         | Estimated Public Transport<br>mode split (%) |                       | Estimated vehicle trips in<br>PM Peak Hour |               | hicle trips in<br>k Hour | Inbound<br>vehicle trips | Outbound<br>vehicle trips | Total            |
|---------|---------------|-----------------|---------------------|---------|-------------------------------|---------|-----------------------|---------|----------------------------------------------|-----------------------|--------------------------------------------|---------------|--------------------------|--------------------------|---------------------------|------------------|
| Use     | employees)    | person<br>trips | Public              | Private | Public                        | Private | Public                | Private | Bus                                          | Тахі                  | Pu<br>Tran                                 | blic<br>sport | Private<br>Mode          | (70%)                    | (30%)                     | vehicle<br>trips |
|         |               |                 | Transport           | wode    | Transport                     | wode    | mansport              | Ivioue  |                                              |                       | Bus                                        | Тахі          | Car                      | 30%                      | 70%                       |                  |
| PV A    | 100           | 100             | 70                  | 30      | 70                            | 30      | 0,9                   | 0,9     | 0                                            | 100                   | 0                                          | 5             | 28                       | 9,9                      | 23,1                      | 33               |
| PV B    | 50            | 50              | 70                  | 30      | 35                            | 15      | 1,9                   | 0,9     | 0                                            | 100                   | 0                                          | 2             | 14                       | 5                        | 11                        | 16               |
| Total : | 150           | 150             |                     |         |                               |         |                       |         |                                              | Capacity per vehicle: | 65                                         | 16            | 1,2                      | 15,0                     | 35                        | 49               |