

SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK ATMOSPHERIC IMPACT REPORT

CONFIDENTIAL

SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK

ATMOSPHERIC IMPACT REPORT

REPORT (VERSION 01) CONFIDENTIAL

PROJECT NO. 41107325

DATE: NOVEMBER 2024

WSP

Building 1, Maxwell Office Park Magwa Crescent West, Waterfall City Midrand, 1685 South Africa Phone: +27 11 361 1300

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3	
Remarks	Draft	Final			
Date	26 November 2024	27 November 2024			
Prepared by	J. Lodder	J. Lodder			
Signature					
Checked by	K. Collett	K. Collett			
Signature					
Authorised by	K. Collett	K. Collett			
Signature					
Project number	41107325	41107325			
Report number	1 of 1	1 of 1			
File reference		\\corp.pbwan.net\za\Central_Data\Projects\41100xxx\41107325 - SOUTH32 MMT S12A AQIA\00 PMO\05-Project Management\16-Deliverables\02_AIR			

۱۱SD

ABBREVIATIONS

AEL	Atmospheric Emissions Licence
AIR	Atmospheric Impact Report
API	American Petroleum Industry
AQIA	Air Quality Impact Assessment
C_6H_6	Benzene
СО	Carbon monoxide
DEM	Digital Elevation Model
DRG	Digital Raster Graphic
g/s	Grams per second
mg/Nm³	Milligrams per cubic meter (under normal conditions of 273 Kelvin and 101.3 kPa)
MES	Minimum Emission Standards
MMT	South32 Mamatwan Hotazel Manganese Mines
NAAQS	National ambient air quality standards
NASA	National Aeronautics and Space Administration
NAEIS	National Atmospheric Emission Inventory System
NEM:AQA	National Environmental Management: Air Quality Act 39 of 2004
NO ₂	Nitrogen dioxide
NO _x	Oxides of Nitrogen
PM	Particulate matter
PM ₁₀	Particulate matter less than 10 µm in diameter
PM _{2.5}	Particulate matter less than 2.5 µm in diameter
SAAQIS	South African Air Quality Information System
SANAS	South African National Accreditation System
SAWS	South African Weather Service
SO ₂	Sulphur dioxide
SRTM	Shuttle Radar Topography Mission
USEPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
WSP	WSP Group Africa (Pty) Ltd

EXECUTIVE SUMMARY

South32 Mamatwan Hotazel Manganese Mines (South32 MMT) is an opencast manganese mine situated in the geographical area of the Northern Cape that contains approximately 80% of the world's supply of high-grade manganese. South32 MMT produces sinter of different sizes, which are shipped to markets via rail or road transport.

Due to the Sinter Plant operations, South32 MMT triggers listed activity Category 4: Metallurgical Industry, Sub-category 4.5 Sinter Plant, as per Government Notice Regulation 893 of 2013, promulgated in line with Section 21 of the National Environmental Management: Air Quality Act (Act 39 of 2004) (NEM:AQA). South32 MMT was issued with an Atmospheric Emissions License (AEL) on 09 March 2020, Licence Number NC/AEL/JTG/MAM01/2012.

The Sinter Plant consists of four stacks that are required to comply with the new plant Minimum Emission Standards (MES) of 50 mg/Nm³ for particulate matter (PM) from 01 April 2020. Based on the stack emission testing conducted between 2022 and 2024 (results used for the emissions inventory for this study), PDD1 and PDD2 have complied, on average, with the new plant MES for PM (50 mg/Nm³). The average concentrations from PDD3 also show compliance with the MES of 135 mg/Nm³ (postponement granted until 31 March 2025). The Sinter Waste Stack (SWS) has not been able to achieve compliance with the more stringent MES for PM, as the current Electrostatic Precipitators (ESP) were designed for a maximum PM emission limit of 100 mg/Nm³. South32 MMT have identified a new ESP that will, once installed, be able to achieve a maximum emission rate that is compliant with the MES for PM. As such, South32 MMT are requesting postponement from the current MES until approximately January 2027, when the new ESP has been installed and is operational. It is noted that the date is dependant on permitting and licencing of the new ESP as well as design, installation, and testing requirements, thus the date is approximate only at this stage.

WSP Group Africa (Pty) Ltd (WSP) has been appointed by South32 to undertake the postponement application in terms of Section 12A of the Amendments to the Listed Activities and Associated Minimum Emission Standards Identified in Terms of Section 21 of the NEM:AQA (GNR. 1207 of 2018) for PM from the SWS only. As part of the postponement application, an Atmospheric Impact Report (AIR) (this report) is required to assess the potential air quality impacts of the Sinter Plant on the surrounding environment.

The study assessed the potential impacts on the ambient air quality associated with the Sinter Plant stack emissions using a Level 2 (AERMOD) dispersion modelling assessment. Impacts on the ambient air quality for particulate matter (PM_{10} and $PM_{2.5}$), regulated by the National Ambient Air Quality Standards (NAAQS), were simulated. Three modelling scenarios were conducted for South32 MMT, where impacts arising from their operational activities were assessed.

- Scenario One simulated the current operating conditions whereby the SWS currently exceeds the MES for PM.
 - The actual emission rates (mg/Nm³) obtained from the stack testing reports were used to calculate the emission rates (g/s) for input into this model/assessment.
 - The actual emission rates (mg/Nm³) were, on average, below the MES for stacks PDD1, PDD2, and PDD3, while the emission rate for the SWS (133.44 mg/Nm³) exceeded the MES (50 mg/Nm³).

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK

- Scenario Two simulated the future operating conditions where the SWS complies with the MES for PM.
 - The emission rates used for this scenario were the MES rates for all stacks, namely, PDD1, PDD2 and SWS (50 mg/Nm³), and PDD3 (135 mg/Nm³).
 - By using the MES for all stacks, it is noted that the emission rates, for Scenario Two are higher than Scenario One for stacks PDD1, PDD2, PDD3. This is due to the average stack testing results for these stacks remaining below the MES.
 - The higher MES emission rates were used as a conservate approach, noting that in some years, the stack testing results exceeded the MES. As such, this scenario takes into consideration that the stacks may have higher emissions in the future, compared to the previous years, yet remaining compliant with the MES.
 - As such this approach, is considered the worst-case approach to remain environmentally conservative in this assessment.
- Scenario Three simulated the postponement operating conditions where the SWS operates with a maximum MES of 200 mg/Nm³ until such time as the new ESP is operational.
 - The emission rates used for this scenario were the MES rates for stacks PDD1 (50 mg/Nm³), PDD2 (50 mg/Nm³), PDD3 (135 mg/Nm³) and SWS (200 mg/Nm³).
 - By using the MES for stacks PDD1, PDD2 and PDD3, it is noted that the emission rates, for Scenario Three are higher than Scenario One. This is due to the average stack testing results for these stacks remaining below the MES.
 - The higher MES emission rates were used as a conservate approach, noting that in some years, the stack testing results exceeded the MES. As such, this scenario takes into consideration that the stacks may have higher emissions in the future, compared to the previous years, yet remaining compliant with the MES.
 - As such this approach, is considered the worst-case approach to remain environmentally conservative in this assessment.
 - The proposed MES of 200 mg/Nm³ for the SWS is also considered a worst-case approach to remain environmentally conservative in this assessment.

An emissions inventory was developed using stack emission test results from 2022 (Levego, 2022), 2023 (Levego, 2023) and 2024 (Levego, 2024), conducted by Levego Environmental Services, for input into the dispersion model. Simulated pollutant dispersion outputs were compared to the NAAQS (where applicable) to assess the degree of impact. Key findings are as follows:

- Scenario One: Current Operating Conditions:
 - PM₁₀ emissions do not result in exceedances of the ambient PM₁₀ 24-hour (75 μg/m³) or annual (40 μg/m³) NAAQS as simulated for the current operations.
 - The current scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are below the MES and are thus currently compliant with the MES.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.51 µg/m³ and 0.13 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.

vsp

- PM_{2.5} emissions do not result in exceedances of the ambient PM_{2.5} 24-hour (40 μg/m³) or annual (20 μg/m³) NAAQS as simulated for the current operations.
 - The current scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are below the MES and are thus currently compliant with the MES.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.27 µg/m³ and 0.07 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- Scenario Two: MES Compliance Operating Conditions:
 - PM₁₀ emissions do not result in exceedances of the ambient PM₁₀ 24-hour (75 μg/m³) or annual (40 μg/m³) NAAQS as simulated for the future MES operations.
 - The future MES scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.58 µg/m³ and 0.09 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
 - PM_{2.5} emissions do not result in exceedances of the ambient PM_{2.5} 24-hour (40 μg/m³) or annual (20 μg/m³) NAAQS as simulated for the future MES operations.
 - The future MES scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.31 µg/m³ and 0.05 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- Scenario Three: MES Postponement Operating Conditions:
 - PM₁₀ emissions do not result in exceedances of the ambient PM₁₀ 24-hour (75 μg/m³) or annual (40 μg/m³) NAAQS as simulated for the MES postponement operations.
 - The MES postponement scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.80 µg/m³ and 0.20 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.

vsp

- PM_{2.5} emissions do not result in exceedances of the ambient PM_{2.5} 24-hour (40 μg/m³) or annual (20 μg/m³) NAAQS as simulated for the MES postponement operations.
 - The MES postponement scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.43 µg/m³ and 0.10 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- It is evident from the dispersion modelling results, that despite adopting a worst-case approach to the MES scenarios, the PM₁₀ and PM_{2.5} concentrations remain well below the relevant NAAQS as well as peak concentrations remaining within the boundary of South32 MMT.

Based on the findings of this this environmentally conservative AIR, ground-level impacts associated with atmospheric emissions from the Sinter Plant stacks are assessed to be low and therefore WSP recommends that South32 MMT be granted their postponement of the MES for PM for the SWS. It is further recommended, based on this assessment, that the MES for PM is a maximum of 200 mg/Nm³.

CONTENTS

1	INTRODUCTION	5
2	ENTERPRISE DETAILS	6
2.1	ENTERPRISE DETAILS	6
2.2	LOCATION AND EXTENT OF PLANT	6
2.3	ATMOSPHERIC EMISSIONS LICENCE	8
3	NATURE OF THE PROCESS	13
3.1	LISTED ACTIVITIES	13
3.2	PROCESS DESCRIPTION	13
3.3	UNIT PROCESSES	14
4	TECHNICAL INFORMATION	15
4.1	RAW MATERIALS USED	15
4.2	APPLIANCES AND ABATEMENT TECHNOLOGY	16
5	ATMOSPHERIC EMISSIONS	18
5.1	EMERGENCY INCIDENTS	21
6	IMPACT OF ENTERPRISE ON THE RECEIVING	
ENVIR	ONMENT	21
6.1	ANALYSIS OF EMISSIONS ON HUMAN HEALTH	21
6.2	ANALYSIS OF EMISSIONS' IMPACT ON THE ENVIRONMENT	50
6.3	ASSUMPTIONS AND LIMITATIONS	51
7	COMPLAINTS	52
8 INTER	CURRENT OR PLANNED AIR QUALITY MANAGEMENT VENTIONS	52

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK

NSD

9	9 COMPLIANCE AND ENFORCEMENT			
10	10 ADDITIONAL INFORMATION			
FORMAL DECLARATIONS		53		
ANNE	XURE A: DECLARATION OF ACCURACY OF INFORMATION	53		
ANNE	XURE B: DECLARATION OF INDEPENDENCE OF PRACTITIONER	54		
REFE	ERENCE LIST	55		

TABLES

Table 2-1:	Facility information	6
Table 2-2:	Contact details	6
Table 2-3:	Location and extent of plant	7
Table 2-4:	Sensitive receptors within a 10 km radius of South32 MMT	7
Table 3-1:	Listed activity applicable to South32 MMT	13
Table 3-2:	Unit process and operational times for South32 MMT	14
Table 4-1:	Raw materials, products and energy sources	15
Table 4-2:	Appliances and abatement technology	17
Table 5-1:	Sinter Plant stack parameters and emission rates	19
Table 5-2: compliance (Scenario Th	Sinter Plant emission rates for current operations (Scenario One), Ml operations (Scenario Two), and MES postponement operations nree)	ES 20
Table 6-1:	Minimum Emission Standards for Sub-category 4.5 – Sinter Plants	22
Table 6-2:	National Ambient Air Quality Standards	23
Table 6-3:	National Dust Control Regulations	23
Table 6-4:	NAAQS regulated air pollutants and associated human health impact	ts 24
Table 6-5: monitoring p	Percentage data recovery for the January 2021 – December 2023 eriod from the SAWS Kathu Station	25
Table 6-6:	Coordinates and data recovery of the South32 MMT PM Monitors	31

Table 6-7:	Dust fallout results for January 2021 to September 2024	34
Table 6-8:	Key model inputs to be used in the assessment	38
Table 6-9: operating co	Simulated pollutant concentrations at sensitive receptors under curre onditions (Scenario One)	nt 41
	Simulated pollutant concentrations at sensitive receptors under MES operating conditions (Scenario Two)	S 42
Table 6-11: postponeme	Simulated pollutant concentrations at sensitive receptors under MES ent operating conditions (Scenario Three)	S 43
Table 6-12: NAAQS	Summary of recommended procedures for assessing compliance w	ith 50

FIGURES

Location of South32 MMT	9
Location of South32 MMT Sinter Plant Stacks	10
Topographical map of the region surrounding South32 MMT	11
Sensitive receptors within a 10 km radius of South32 MMT	12
South32 MMT simplified block diagram	14
Climatic summary from the SAWS Kathu Station (temperature, rainfal and MMT (rainfall) for the January 2021 to December 2023 period	all 25
Wind rose plots for SAWS Kathu for the period January 2021 to 23	26
Seasonal wind rose plots for the period January 2021 to December	28
Diurnal wind rose plots for the period January 2021 to December 202	23 29
Dust fallout rates monitored at MMT for the January 2021 to 024 period	33
P99 24-hour average PM_{10} concentrations (Current Operations)	44
Period average PM ₁₀ concentrations (Current Operations)	44
P99 24-hour average PM _{2.5} concentrations (Current Operations)	45
Period average PM _{2.5} concentrations (Current Operations)	45
	Location of South32 MMT Sinter Plant Stacks Topographical map of the region surrounding South32 MMT Sensitive receptors within a 10 km radius of South32 MMT South32 MMT simplified block diagram Climatic summary from the SAWS Kathu Station (temperature, rainfa and MMT (rainfall) for the January 2021 to December 2023 period Wind rose plots for SAWS Kathu for the period January 2021 to 23 Seasonal wind rose plots for the period January 2021 to December Diurnal wind rose plots for the period January 2021 to December 2023 Dust fallout rates monitored at MMT for the January 2021 to 24 period P99 24-hour average PM ₁₀ concentrations (Current Operations) Period average PM ₁₀ concentrations (Current Operations) P99 24-hour average PM _{2.5} concentrations (Current Operations)

Figure 6-10:	P99 24-hour average PM_{10} concentrations (MES Compliance)	46
Figure 6-11:	Period average PM10 concentrations (MES Compliance)	46
Figure 6-12:	P99 24-hour average PM2.5 concentrations (MES Compliance)	47
Figure 6-13:	Period average PM _{2.5} concentrations (MES Compliance)	47
Figure 6-14:	P99 24-hour average PM_{10} concentrations (Postponement	
Operations)		48
Figure 6-15:	Period average PM ₁₀ concentrations (Postponement Operations)	48
Figure 6-16:	P99 24-hour average PM _{2.5} concentrations (Postponement	
Operations)		49
Figure 6-17:	Period average PM _{2.5} concentrations (Postponement Operations)	49

1 INTRODUCTION

South32 Mamatwan Hotazel Manganese Mines (South32 MMT) is an opencast manganese mine situated in the geographical area of the Northern Cape that contains approximately 80% of the world's supply of high-grade manganese. South32 MMT produces sinter of different sizes, which are shipped to markets via rail or road transport.

Due to the Sinter Plant operations, South32 MMT triggers listed activity Category 4: *Metallurgical Industry, Sub-category 4.5 Sinter Plant,* as per Government Notice Regulation 893 of 2013, promulgated in line with Section 21 of the National Environmental Management: Air Quality Act (Act 39 of 2004) (NEM:AQA). South32 MMT was issued with an Atmospheric Emissions License (AEL) on 09 March 2020, Licence Number NC/AEL/JTG/MAM01/2012.

The current AEL includes four stacks as part of the Sinter Plant, namely, De-Dust 1 (PDD1), De-Dust 2 (PDD2), De-Dust 3 (PDD3) and the Sinter Waste Stack (SWS). On 1 April 2020, stacks from Sinter Plants were required to comply with the new plant Minimum Emission Standards (MES) of 50 mg/Nm³ for particulate matter (PM). South32 MMT had applied for postponement of the MES for PM for all four stacks, however, only PDD3 was approved for postponement, thus, PDD3 is required to comply with the MES of 135 mg/Nm³ until 31 March 2025.

Based on the stack emission testing conducted between 2022 and 2024 (results used for the emissions inventory for this study), PDD1 and PDD2 have complied, on average, with the new plant MES for PM (50 mg/Nm³). The average concentrations from PDD3 also show compliance with the MES of 135 mg/Nm³. The SWS has not been able to achieve compliance with the more stringent MES for PM, as the current Electrostatic Precipitators (ESP) were designed for a maximum PM emission limit of 100 mg/Nm³. South32 are committed to ensuring compliance with the AEL, thus, have investigated a number of ESP options to achieve compliance, which includes long and short-term upgrades, a preassembly upgrade and a pre-assembly new installation. The new installation has been identified as the most economical option, as well as achieving a maximum emission limit that is compliant with the MES for PM. However, the feasibility of installing the new ESP is based on the Sinter Plant continuing to operate under the current conditions (i.e. the SWS will continue to exceed the MES), whilst the ESP is being installed.

Therefore, South32 MMT are requesting postponement of the MES for PM from the SWS only, until the new ESP has been installed and is operational, which is expected approximately in January 2027. It is noted that the date is dependent on permitting and licencing of the new ESP as well as design, installation, and testing requirements, thus the date is approximate only at this stage. WSP Group Africa (Pty) Ltd (WSP) has been appointed by South32 to undertake the postponement application in terms of Section 12A of the Amendments to the Listed Activities and Associated Minimum Emission Standards Identified in Terms of Section 21 of the NEM:AQA (GNR. 1207 of 2018) for PM from the SWS only.

As part of the postponement application, an Atmospheric Impact Report (AIR) (this report) is required to assess the potential air quality impacts of the Sinter Plant on the surrounding environment.

2 ENTERPRISE DETAILS

2.1 ENTERPRISE DETAILS

Table 2-1 provides the enterprise information for South32 MMT with the details of the responsible contact personnel presented in **Table 2-2**.

Table 2-1: Facility information

Enterprise Name	South32 Mamatwan Hotazel Manganese Mines	
Type of Enterprise, e.g. Company/Close Corporation/Trust, etc.	Company	
Company/Close Corporation/Trust Registration Number	2003/020080/07	
Registered Address	1 Peperboom Ave, Hotazel, Joe Morolong Local Municipality, 26, Northern Cape, 8490	
Postal Address	1 Peperboom Ave, Hotazel, Joe Morolong Local Municipality, 26, Northern Cape, 8490	
Telephone Number (General)	053 742 2646	
Fax Number (General)	N/A	
Industry Type/Nature of Trade	Mining	
Land Use Zoning as per Town Planning Scheme	Industrial	
AEL Reference Number	NC/AEL/JTG/MAM01/2012	
Modelling Consultant	WSP Group Africa (Pty) Ltd	
Modeller	Jared Lodder – Principal Consultant	

Table 2-2:Contact details

Responsible Person	Wonder Sigwebela	
Emission Control Officer	Wonder Sigwebela	
Telephone Number	N/A	
Cell Phone Number	072 429 6545	
Fax Number	N/A	
E-mail Address	Wonder.sigwebela@south32.net	
After Hours Contact Details	072 429 6545	

2.2 LOCATION AND EXTENT OF PLANT

South32 MMT is located within the Joe Morolong Local Municipality in the Northern Cape, approximately 25 km south of Hotazel and 35 km north of Kathu. The mining right occupies approximately 11.2 km² at an elevation of approximately 1,100 m above mean sea level (**Table 2-3**). A locality map, site layout of the Sinter Plant stacks and a topographical map of the region are presented in **Figure 2-1**, **Figure 2-2** and **Figure 2-3**, respectively.

۱۱SD

Table 2-3: Location and extent of plant

Physical Address of the Plant	1 Peperboom Ave, Hotazel, Joe Morolong Local Municipality, 26, Northern Cape, 8490	
Description of Site (Where No Street Address)	N/A	
Coordinates of Approximate Centre of Operations	Latitude: 27°23'25.73"S, Longitude: 22°59'40.27"E (Sinter Plant)	
Extent (hectares)	1,122	
Elevation Above Mean Sea Level (m)	1,100	
Province	Northern Cape	
District Municipality	John Taolo Gaetsewe District Municipality	
Local Municipality	Joe Morolong Local Municipality	
Designated Priority Area (If Applicable)	N/A	

2.2.1 DESCRIPTION OF SURROUNDING LAND USE

The land use surrounding South32 MMT is predominantly agricultural. South32 MMT also borders with the Tshipi Borwa Mine to the west.

2.2.2 SENSITIVE RECEPTORS

Sensitive receptors, as defined by the United States Environmental Protection Agency (USEPA) include, but are not limited to, hospitals, schools, day-care facilities, elderly housing and convalescent facilities. These are areas where the occupants are more susceptible to the adverse effects of exposure to toxic chemicals, pesticides and other pollutants. Extra care must be considered when dealing with pollutants in proximity to areas recognised as sensitive receptors.

Due to the rural location of South32 MMT, agricultural homesteads are the only sensitive receptors located within 10 km of the facility. The nearest residential area, Hotazel, is located approximately 25 km north of the facility.

For this study, sensitive receptors were sourced from Google Earth Pro[™]. Identified sensitive receptors are displayed in **Table 2-4** and **Figure 2-4**.

ID	Description	Latitude (°S)	Longitude (°E)	Distance from Site Boundary (km)	Direction from Site Boundary
SR1	Homestead	-27.4620	22.9440	6.31	Southwest
SR2	Homestead	-27.4636	22.9509	6.82	South-southwest
SR3	Homestead	-27.4780	22.9910	7.76	South
SR4	Homestead	-27.4175	23.0124	2.48	South-southeast
SR5	Homestead	-27.4100	23.0360	4.59	East
SR6	Homestead	-27.4050	23.0770	8.62	East
SR7	Homestead	-27.3815	23.0639	6.50	East
SR8	Homestead	-27.3805	23.0628	6.44	East

Table 2-4: Sensitive receptors within a 10 km radius of South32 MMT

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK CONFIDENTIAL | WSP Project No.: 41107325 NOVEMBER 2024

vsp

ID	Description	Latitude (°S)	Longitude (°E)	Distance from Site Boundary (km)	Direction from Site Boundary
SR9	Homestead	-27.3587	23.0876	9.31	East
SR10	Homestead	-27.3599	23.0853	9.09	East
SR11	Homestead	-27.3484	23.0406	4.88	East
SR12	Homestead	-27.3538	23.0822	8.87	East
SR13	Homestead	-27.3106	23.0049	4.00	North-northeast
SR14	Homestead	-27.3990	22.9410	3.05	Southwest
SR15	Homestead	-27.3726	22.9236	4.41	Southwest
SR16	Homestead	-27.3681	22.9251	4.21	West-southwest
SR17	Homestead	-27.3620	22.9350	3.26	West
SR18	Homestead	-27.4614	22.9433	6.87	South-southwest
SR19	Homestead	-27.4768	22.9979	7.71	South

2.3 ATMOSPHERIC EMISSIONS LICENCE

South32 MMT currently hold an AEL, Licence Number NC/AEL/JTG/MAM01/2012, which expires on 31 March 2025.

Figure 2-1: Location of South32 MMT

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

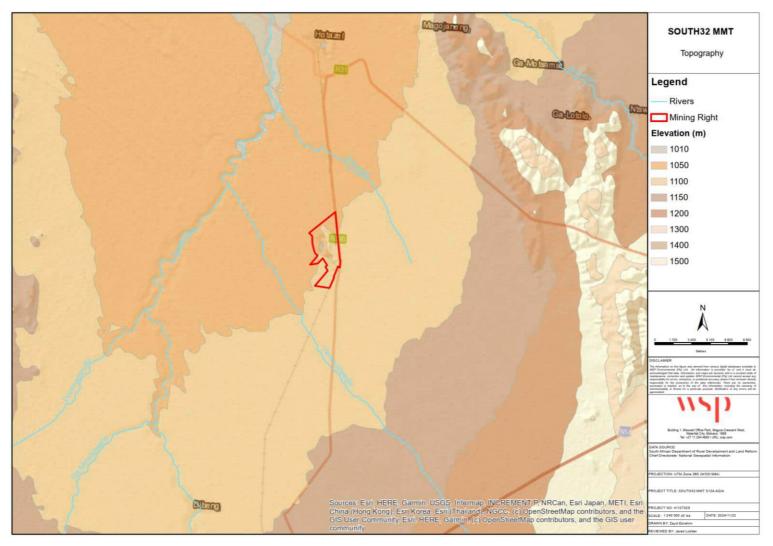


Figure 2-2: Location of South32 MMT Sinter Plant Stacks

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

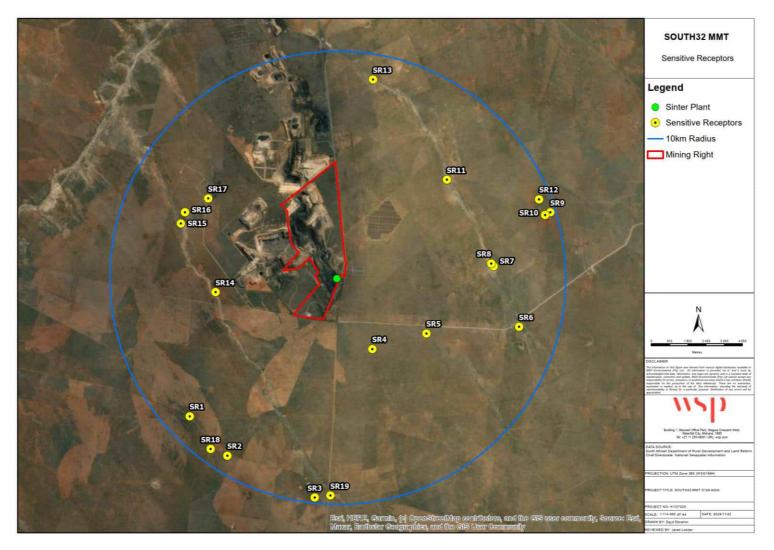


Figure 2-3: Topographical map of the region surrounding South32 MMT

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

Figure 2-4: Sensitive receptors within a 10 km radius of South32 MMT

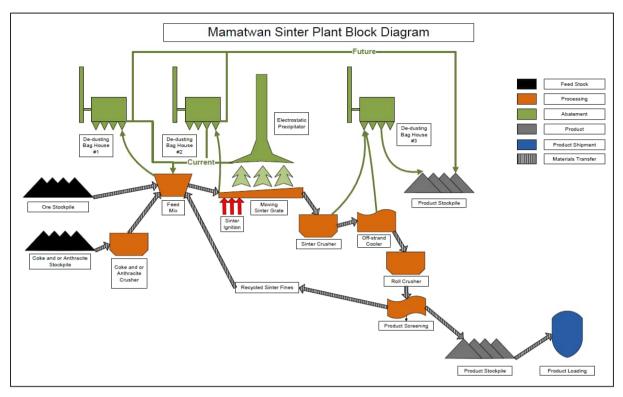
SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

3 NATURE OF THE PROCESS

3.1 LISTED ACTIVITIES

Listed activities and associated minimum emission standards (MES) were published in Government Notice 248, Government Gazette 33064 of 2010, in line with Section 21 of NEM:AQA. An amended list of activities was published in Government Notice 893 of Government Gazette 37054 in 2013, Government Notice 551 of Government Gazette 38863 in 2015 and further in Government Notice 1207 of Government Gazette 42013 in 2018. **Table 3-1** presents the listed activity triggered by South32 MMT.

Table 3-1: Listed activity applicable to South32 MMT


Category	Of Listed Activity	Subcategory Of Listed Activity	Description of the Listed Activity
4: Met	allurgical industry	4.5 Sinter Plants	Sinter plants for agglomeration of fine ores using a heating process, including sinter cooling where applicable.

3.2 PROCESS DESCRIPTION

Manganese ore, recycled sinter fines, anthracite/coke and reductants are mixed and then stored in feed silos. The mixture is then placed on a moving grate machine where it is ignited to produce an agglomerated sinter. The sinter product is discharged from the moving grate into a crusher to break the sinter ore into manageable sized clumps and is then air cooled on the off-strand cooler.

The cooled down and crushed sintered ore is then graded according to size with the material larger than 6 mm placed on the final product stockpile from where it is shipped to markets via rail or road transport. The screened material smaller than 6 mm is recycled back into the feed mixer where it is included in the feed ore. Fugitive dust is extracted from the process through a series of extraction ducts with the particulate matter being captured in one of three de-dusting bag-houses.

Dust from bag-houses 1 and 2 are recycled back into the feed mixer to be included into the feed ore. Dust from bag-house 3 is captured in bulk bags for sale as reduced sinter fines. Off gas and particulate matter from the moving grate machine is extracted and scrubbed through an Electrostatic Precipitator. **Figure 3-1** illustrates a simplified process flow of the Sinter Plant.

Figure 3-1: South32 MMT simplified block diagram

3.3 UNIT PROCESSES

A summary of the unit processes, function and operational hours at South32 MMT is provided in **Table 3-2**.

Table 3-2:	Unit process and operational times for South32 MMT
------------	--

Unit process	Function	Operational hours	Batch/ Continuous
Ore stockpile	Stockpile ore to ensure feed of raw materials	24 hours per day, 365 days per year	Continuous
Anthracite stockpile	Stockpile anthracite used as a fuel	24 hours per day, 365 days per year	Continuous
Anthracite crusher	Size of the anthracite to ensure effective burn- through	24 hours per day, 365 days per year	Continuous
Conveyor belts	To convoy and transfer raw material and product	24 hours per day, 365 days per year	Continuous
Feed mix	Combining feed ore with return fines	24 hours per day, 365 days per year	Continuous
Sinter ignition	Ignite sinter feed mix with oil burners	24 hours per day, 365 days per year	Continuous
Moving sinter grade	Agglomeration and upgrade of fine ores by application of heat	24 hours per day, 365 days per year	Continuous

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK

۹۷

Unit process	Function	Operational hours	Batch/ Continuous
Electrostatic precipitator	Extracting particulates	24 hours per day, 365 days per year	Continuous
Sinter crusher (product sizing)	Braking up sinter product into required sizes	24 hours per day, 365 days per year	Continuous
Off-strand cooler	Cooling sinter product	24 hours per day, 365 days per year	Continuous
De- dusting baghouse	Extracting fine dust from transfer points	24 hours per day, 365 days per year	Continuous
Product screening	Removing particles less than 6 mm	24 hours per day, 365 days per year	Continuous
Product stockpile	Storage of sinter product	24 hours per day, 365 days per year	Continuous
Load out of sinter product	Loading of sinter product onto trains and/or trucks	As required	Batch

4 TECHNICAL INFORMATION

4.1 RAW MATERIALS USED

Table 4-1 below provides details on the raw material, products and energy sources used at the facility.

Category	Item	Consumption / Production Rate	Unit
	Manganese	1,250,000	tons/annum
Raw Materials	Coke	95,000	tons/annum
	Anthracite	95,000	tons/annum
Droducto/Py/ Droduct	Manganese (Product)	1,000,000	tons/annum
Products/By-Product	Waste (By-Product)	227,920	tons/annum
	Anthracite	103	Kg/ton of anthracite
	Other	103	To be confirmed
Energy	Coke	95	To be confirmed
	Heavy Fuel Oil	300	L/hr
	Electricity	21,758	To be confirmed

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK CONFIDENTIAL | WSP Project No.: 41107325 NOVEMBER 2024

4.2 APPLIANCES AND ABATEMENT TECHNOLOGY

South32 MMT currently have appliances and abatement technology installed at the Sinter Plant as presented in **Table 4-2**.

vsp

Associated source code	Equipment number	Technology name and Model	Type / Description	Date Manufactured	Commission Date	Date of Significant Modification / Upgrade	Technology type	Design Capacity (m³/hr)	Min Control Efficiency (%)	Min Utilization (%)
SWS	M-MN-HMM-MMT- P-SIN-WGAS- 04520/M-MN-	Davy/Batema	Waste Gas System	1988	1999	N/A	Electrostatic Precipitator	1,160,000	98	100
PDD1	M-MN-HMM-MMT- P-SIN-DSTR- 04461	Davy	De-dusting Equipment	1988	1988	2013	Baghouse filter	170,000	98	100
PDD2	M-MN-HMM-MMT- P-SIN-DSTR- 04891	Air cleaning equipment	De-dusting Equipment	2002	2002	2014	Baghouse filter	146,000	98	100
PDD3	M-MN-HMM-MMT- P-SIN-DSTR- 11625	Genair	De-dusting Equipment	2011	2012	N/A	Baghouse filter	182,700	98	100

Table 4-2: Appliances and abatement technology

5 ATMOSPHERIC EMISSIONS

An emissions inventory is a list of pollution sources, their physical and chemical parameters, as well as the quantification of emissions. Emissions were calculated using actual stack test emission results from 2022 (Levego, 2022), 2023 (Levego, 2023) and 2024 (Levego, 2024), conducted by Levego Environmental Services (see **Appendix A**). The stack emission testing results have indicated that PDD1 and PDD2 have complied, on average, with the new plant MES for PM (50 mg/Nm³), while PDD3 has complied with the MES of 135 mg/Nm³ (postponement granted until 31 March 2025). However, the SWS PM concentrations have exceeded the MES for PM (50 mg/Nm³).

To understand the impact of the current operations as well as the future compliance of the SWS with the MES on the receiving environment, three modelling scenarios were conducted for South32 MMT. The three scenarios are as follows:

- Scenario One simulated the current operating conditions whereby the SWS currently exceeds the MES for PM.
 - The actual emission rates (mg/Nm³) obtained from the stack testing reports were used to calculate the emission rates (g/s) for input into this model/assessment.
 - The actual emission rates (mg/Nm³) were, on average, below the MES for stacks PDD1, PDD2, and PDD3, while the emission rate for the SWS (133.44 mg/Nm³) exceeded the MES (50 mg/Nm³).
- Scenario Two simulated the future operating conditions where the SWS complies with the MES for PM.
 - The emission rates used for this scenario were the MES rates for all stacks, namely, PDD1, PDD2 and SWS (50 mg/Nm³), and PDD3 (135 mg/Nm³).
 - By using the MES for all stacks, it is noted that the emission rates, for Scenario Two are higher than Scenario One for stacks PDD1, PDD2, PDD3. This is due to the average stack testing results for these stacks remaining below the MES.
 - The higher MES emission rates were used as a conservate approach, noting that in some years, the stack testing results exceeded the MES. As such, this scenario takes into consideration that the stacks may have higher emissions in the future, compared to the previous years, yet remaining compliant with the MES.
 - As such this approach, is considered the worst-case approach to remain environmentally conservative in this assessment.
- Scenario Three simulated the postponement operating conditions where the SWS operates with a maximum MES of 200 mg/Nm³ until such time as the new ESP is operational.
 - The emission rates used for this scenario were the MES rates for stacks PDD1 (50 mg/Nm³), PDD2 (50 mg/Nm³), PDD3 (135 mg/Nm³) and SWS (200 mg/Nm³).
 - By using the MES for stacks PDD1, PDD2 and PDD3, it is noted that the emission rates, for Scenario Three are higher than Scenario One. This is due to the average stack testing results for these stacks remaining below the MES.
 - The higher MES emission rates were used as a conservate approach, noting that in some years, the stack testing results exceeded the MES. As such, this scenario takes into

consideration that the stacks may have higher emissions in the future, compared to the previous years, yet remaining compliant with the MES.

- As such this approach, is considered the worst-case approach to remain environmentally conservative in this assessment.
- The proposed MES of 200 mg/Nm³ for the SWS is also considered a worst-case approach to remain environmentally conservative in this assessment.

Table 5-1 provides the parameters for the Sinter Plant stacks, while **Table 5-2** provides the calculated emission rates for the three scenarios (current, MES compliance, and postponement operations). The emissions rates for PM_{10} and $PM_{2.5}$ were calculated as 60% and 32%, respectively of PM (USEPA, 1986; and Zhao et al, 2017).

Source ID	PDD1	PDD2	PDD3	SWS
Latitude	27.390211°S	27.390711°S	27.389658°S	27.391136°S
Longitude	22.994791°E	22.994108°E	22.994044°E	22.994978°E
Stack height (m)	30	30	31	41
Stack diameter (m)	1.75	1.86	1.90	3.26
Gas exit velocity (m/s)	7.05	10.25	19.23	28.50
Gas exit temperature (°C)	55.49	67.07	49.64	151.61
Operating period (hr/year)	8,760	8,760	8,760	8,760

 Table 5-1:
 Sinter Plant stack parameters and emission rates

vsp

Table 5-2:Sinter Plant emission rates for current operations (Scenario One), MES compliance operations (Scenario Two), andMES postponement operations (Scenario Three)

Emission Pollutant		PDD1			PDD2			PDD3			SWS		
Rates	Pollutant	Actual	MES	Post									
	PM	45.55	50.00	50.00	37.85	50.00	50.00	72.02	135.00	135.00	133.44	50.00	200
Measured Emission Rate (mg/Nm ³)	PM ₁₀	27.33	30.00	30.00	22.71	30.00	30.00	43.21	81.00	81.00	80.07	30.00	120
(ing/inii)	PM _{2.5}	14.58	16.00	16.00	12.11	16.00	16.00	23.05	43.20	43.20	42.70	16.00	64
Calculated Emission Rate	PM ₁₀	3.36E-01	3.68E-01	3.68E-01	4.40E-01	5.81E-01	5.81E-01	1.73E+00	3.24E+00	3.24E+00	1.04E+01	3.91E+00	1.56E+01
(g/s)	PM _{2.5}	1.79E-01	1.96E-01	1.96E-01	2.34E-01	3.10E-01	3.10E-01	9.22E-01	1.73E+00	1.73E+00	5.57E+00	2.09E+00	8.34E+00
Notes:	 PM₁₀ emission rate calculated as 60% of total PM (USEPA, 1986; and Zhao et al, 2017) PM_{2.5} emission rate calculated as 32% of total PM (USEPA, 1986; and Zhao et al, 2017) MES emissions rates are worst case for PDD1, PDD2 and PDD3 (i.e. are higher than current actual measured results), yet remain compliant with the MES, to remain environmentally conservative. Postponement "Post" emission rates are worst case for PDD1, PDD2 and PDD3 (i.e. are higher than current actual measured results), yet remain compliant with the MES, to remain environmentally conservative. 												

۱۱SD

5.1 EMERGENCY INCIDENTS

South32 has implemented several interventions at the Sinter Plant, to reduce emissions from all four stacks, which include, but are not limited to, resistivity and isokinetic/performance testing, optimisation of existing ESP's, and refurbishment of ESP's. While these interventions have assisted South32 MMT in reducing emissions from the De-Dust stacks, the SWS stack emissions remain elevated. As such, the SWS has not been able to achieve compliance with the more stringent MES for PM (50 mg/Nm³), as the current Electrostatic Precipitators (ESP) were designed for a maximum PM emission limit of 100 mg/Nm³.

6 IMPACT OF ENTERPRISE ON THE RECEIVING ENVIRONMENT

6.1 ANALYSIS OF EMISSIONS ON HUMAN HEALTH

6.1.1 REGULATORY FRAMEWORK FOR AIR QUALITY

Until 2004, South Africa's approach to air pollution control was driven by the Atmospheric Pollution Prevention Act 45 of 1965 (APPA) which was repealed with the promulgation of NEM:AQA. NEM:AQA represents a shift in South Africa's approach to air quality management, from sourcebased control to integrated effects-based management. The objectives of NEM:AQA are to:

- Protect the environment by providing reasonable measures for:
 - The protection and enhancement of air quality.
 - The prevention of air pollution and ecological degradation.
 - Securing ecologically sustainable development while promoting justifiable economic and social development.
 - Give effect to everyone's right "to an environment that is not harmful to their health and wellbeing".

Significant functions detailed in NEM:AQA include:

- The National Framework for Air Quality Management (DEA, 2018).
- Institutional planning matters, including:
 - The establishment of a National Air Quality Advisory Committee.
 - The appointment of Air Quality Officers (AQOs) at each level of government.
 - The development, implementation and reporting of Air Quality Management Plans (AQMP) at national, provincial and municipal levels.
- Air quality management measures including:
 - The declaration of Priority Areas where ambient air quality standards are being, or may be, exceeded.
 - The listing of activities that result in atmospheric emissions and which have the potential to impact negatively on the environment and the licensing thereof through an Atmospheric Emissions License (AEL).
 - The declaration of Controlled Emitters.
 - The declaration of Controlled Fuels.

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK

- Procedures to enforce Pollution Prevention Plans or Atmospheric Impact Reporting for the control and inventory of atmospheric pollutants of concern.
- Requirements for addressing dust and offensive odours.

6.1.1.1 LISTED ACTIVITIES AND MINIMUM EMISSIONS STANDARDS

South32 MMT operates a Sinter Plant, triggering listed activity Category 4: Metallurgical Industry, Sub-category 4.5 Sinter Plants of Government Notice Regulation 893 of 2013 with associated MES presented in **Table 6-1**.

Table 6-1: Minimum Emission Standards for Sub-category 4.5 – Sinter Plants

Description	Sinter plants for applicable.	Sinter plants for agglomeration of fine ores using a heating process, including sinter cooling where applicable.							
Applications	All installations.	All installations.							
Substance or mixture of substances mg/Nm ³ under normal conditions of 273 Ke									
Common name		Chemical symbol	Plant status	and 101.3 kPa					
Particulate matter		N/A	New	50					
		IN/A	Existing	100					
Sulphur dioxide		00	New	500					
		SO ₂	Existing	1,000					
		NO _X	New	700					
Oxides of nitrogen		expressed as NO ₂	Existing	1,200					

6.1.1.2 SOUTH AFRICAN AMBIENT AIR QUALITY STANDARDS

Ambient air quality standards are defined as "targets for air quality management which establish the permissible concentration of a particular substance in, or property of, discharges to air, based on what a particular receiving environment can tolerate without significant deterioration" (DEA, 2000). The aim of these standards is to provide a benchmark for air quality management and governance. South Africa's National Ambient Air Quality Standards (NAAQS) are based primarily on guidance offered by two standards set by the South African National Standards (SANS):

- SANS 69:2004 Framework for implementing National ambient air quality standards.
- SANS 1929:2005 Ambient air quality Limits for common pollutants.

SANS 69:2004 makes provision for the establishment of air quality objectives for the protection of human health and the environment as a whole. Such air quality objectives include limit values, alert thresholds and target values.

SANS 1929:2005 uses the provisions in SANS 69:2004 to establish air quality objectives for the protection of human health and the environment and stipulates that limit values are initially set to protect human health. The setting of such limit values represents the first step in a process to manage air quality and initiate a process to ultimately achieve acceptable air quality nationally.

The priority pollutants as defined by the NEM:AQA are SO₂, NO₂, PM₁₀, PM_{2.5}, benzene, CO, Ozone (O₃) and Lead (Pb). Pollutants assessed in this study are PM₁₀ and PM_{2.5} as PM is the only pollutant that South32 MMT is requesting postponement from. The NAAQS presented in **Table 6-2** were promulgated in 2009 and 2012. The NAAQS generally have specific averaging periods, compliance timeframes, permissible frequencies of exceedance and measurement reference methods.

The National Dust Control Regulations (No. R.827) were promulgated on 01 November 2013 in terms of Section 53(o), read with Section 32 of the NEMAQA. The acceptable dust fallout rates, as

vsp

included in the National Dust Control Regulations, expressed in units of mg/m²/day over a typical 30day averaging period are presented in **Table 6-3**: National Dust Control Regulations

The National Dust Control Regulations are presented as dust fallout monitoring results are included in this AIR (see **Section 6.1.4**); however, dust fallout is not included in the dispersion modelling of this AIR.

Pollutant	Averaging Period	Concentration (µg/m³)	Frequency of Exceedance	Compliance Date
	24-hour	120	4	Immediate – 31 Dec 2014
PM ₁₀	24-11001	75	4	01 Jan 2015
PINI ₁₀	1.000	50	0	Immediate – 31 Dec 2014
	1 year	40	0	01 Jan 2015
		65	4	Immediate – 31 Dec 2015
	24-hour	40	4	01 Jan 2016 – 31 Dec 2029
DM		25	4	01 Jan 2030
PM _{2.5}		25	0	Immediate – 31 Dec 2015
	1 year	20	0	01 Jan 2016 – 31 Dec 2029
		15	0	01 Jan 2030

Table 6-2: National Ambient Air Quality Standards

Table 6-3: National Dust Control Regulations

Restriction Areas Dust Fallout Rate (D) (mg/m²/day) 30-Day Average ⁽¹⁾		Permitted Frequency of Exceedances	Reference Method	
Residential Area	D < 600	Two within a year, not sequential months	ASTM D1739	
Non-Residential Area	600 < D < 1,200 ⁽²⁾	Two within a year, not sequential months	ASTM D1739	

This table provides the information as contained in the National Dust Control Regulations. Two aspects to note:

¹⁾ The dust fallout rate is referred to only in mg/m²/day and not normalised to the 30-day average. The rate can only be presented to either and not both. The 30-day average will require an adjustment to the accepted rates.

 $^{2)}$ The accepted dust fallout rate at non-residential areas is below 1,200 mg/m²/day.

6.1.2 HEALTH IMPACTS ASSOCIATED WITH NATIONALLY REGULATED AIR POLLUTANTS

The composition of air pollutant mixtures, pollutant concentrations, duration of exposure and other susceptibility factors (e.g. age, nutritional status and predisposing conditions) can lead to diverse impacts on human health (**Table 6-4**). High risk individuals include the elderly, people with pre-existing heart or lung disease, pregnant women, asthmatics and children.

۱۱SD

Pollutant	Description	Health effects
Particulate matter (PM ₁₀ & PM _{2.5})	Particles can be classified by their aerodynamic properties into coarse particles, PM_{10} (particulate matter with an aerodynamic diameter of less than 10 µm) and fine particles, $PM_{2.5}$ (particulate matter with an aerodynamic diameter of less than 2.5 µm) (Harrison and Grieken, 1998). Particulate air pollution affects the respiratory system (WHO, 2000). Particle size is important for health because it controls how far into the respiratory system particles are able to permeate. Fine particles have been found to be more damaging to human health than coarse particles as larger particles are less respirable in that they do not pass from the lungs into the bloodstream (Manahan, 1991).	Increase in lower respiratory symptoms Reduced lung function Inflammation of the lungs Angina Myocardial infraction Bronchitis Mortality

Table 6-4: NAAQS regulated air pollutants and associated human health impacts

6.1.3 METEOROLOGICAL OVERVIEW

Since meteorological conditions affect how pollutants emitted into the air are directed, diluted and dispersed within the atmosphere, the incorporation of reliable data into an air quality assessment is of the utmost importance. Dispersion comprises vertical and horizontal components of motion. The stability of the atmosphere and the depth of the atmospheric mixing layer control the vertical component. The horizontal dispersion of pollution in the boundary layer is primarily a function of the wind field. The wind speed determines both the distance of downwind transport and the rate of dilution as the plume 'stretches'. Mechanical turbulence is influenced by wind speed in combination with surface roughness.

Parameters that need to be considered in the characterisation of dispersion potential include wind speed, wind direction, atmospheric stability, ambient air temperature and mixing depth. To accurately represent meteorological conditions occurring at South32 MMT, WRF pre-processed meteorological data was purchased from Lakes Environmental Consultants Inc. for the January 2021 – December 2023 period. The data coverage is centred over the South32 MMT Sinter Plant (25.38966°S, 22.99355°E) with a grid cell dimension of 4 km x 4 km resolution at an elevation of 1,107 m.

Additionally, temperature, humidity, pressure, rainfall and wind data for the January 2021 to December 2023 period was sourced from the South African Weather Service (SAWS) Kathu station (27.6700°S, 23.0060°E). The SAWS Kathu station is located approximately 30 km south of South32 MMT and due to the distance, the data should be viewed with caution. Nonetheless, the scarcity of meteorological stations in the region of South32 MMT, requires that that the SAWS Kathu station data is considered to provide a climatic overview of the region. Furthermore, South32 MMT own and operate an onsite rain gauge, which was included in the climatic summary for comparative purposes.

The percentage data recovery for each meteorological variable is provided in **Table 6-5**. It must be noted that the South African National Accreditation System (SANAS, 2012) TR 07-03 standards stipulate a minimum data recovery of 90% for the dataset to be deemed representative of conditions during a specific reporting period. The percentage recovery for all parameters recorded exceeded 90% and the data is thus considered reliable for use in this assessment.

۸SP

Table 6-5:Percentage data recovery for the January 2021 – December 2023 monitoring
period from the SAWS Kathu Station

Data Source		Latitude (°S)	Longitude (°E)	Data Recovery		
	Data Oource	Latitude (5)	Longhude (L)	Temperature	Rainfall	Wind
	SAWS Kathu	27.6700	23.0060	98%	98%	97%

6.1.3.1 Temperature and Rainfall

Ambient air temperature influences plume buoyancy as the higher the plume temperature is above the ambient air temperature, the higher the plume will rise. Further, the rate of change of atmospheric temperature with height influences vertical stability (i.e. mixing or inversion layers). Rainfall is an effective removal mechanism of atmospheric pollutants.

Figure 6-1 illustrates the average monthly relative humidity, temperature, temperature range (maximum and minimum) from the SAWS Kathu station for the period of 2021 to 2023. Rainfall from both the SAWS Kathu and South32 MMT rain gauge was included in the figure. South32 MMT receives on average 478 mm (South32 MMT) to 544 mm (SAWS Kathu) of rainfall per year, with high rainfall occurring during the summer (December to February) and autumn (March to May) with drier conditions during the winter months (June to August). The highest daily average temperature recorded was 32.5°C (December 2022) while the lowest daily average temperature was 3.1°C (July 2021).

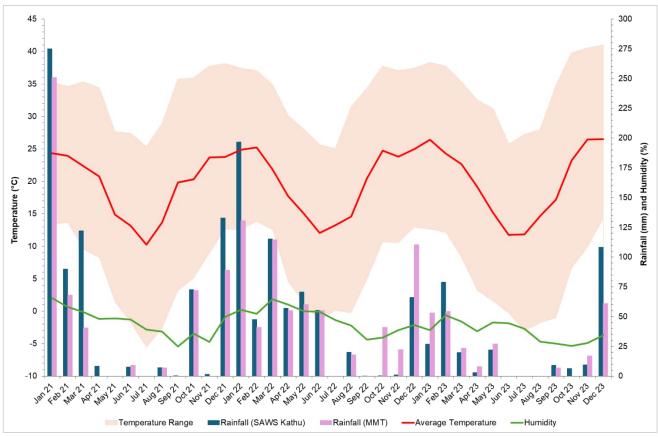
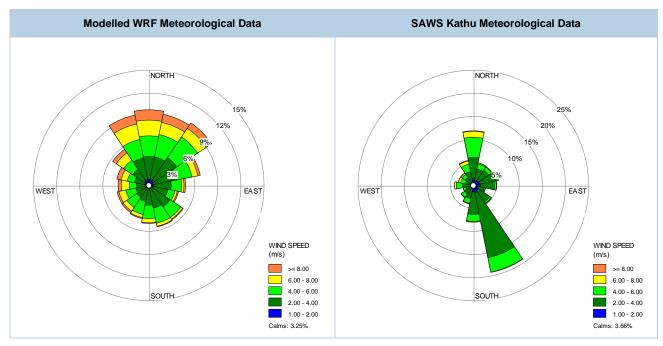



Figure 6-1: Climatic summary from the SAWS Kathu Station (temperature, rainfall and humidity) and MMT (rainfall) for the January 2021 to December 2023 period

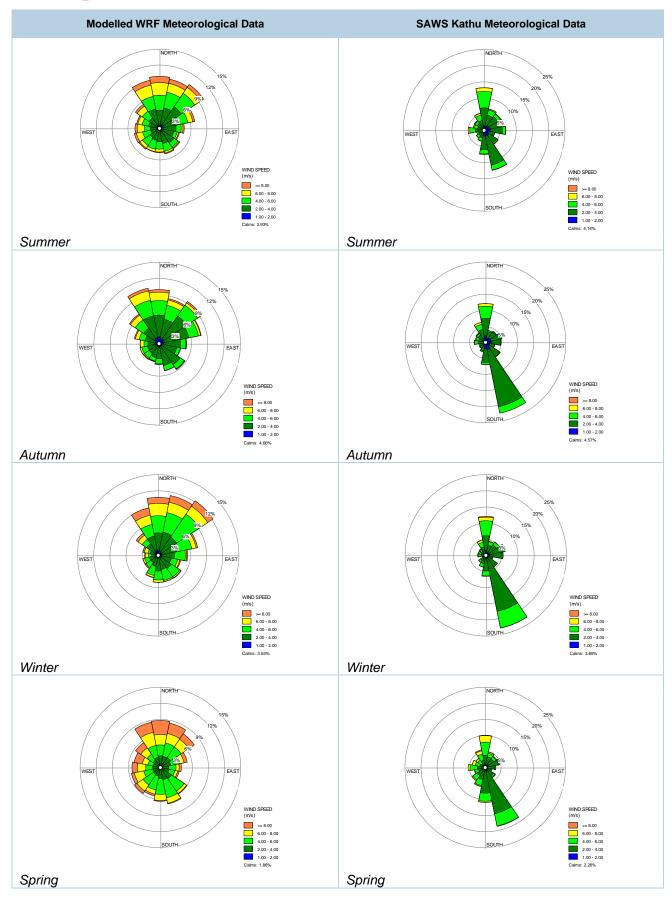
6.1.3.2 Wind Field

Wind roses are useful for illustrating the prevailing meteorological conditions of an area, indicating wind speeds and directional frequency distributions. In the following wind roses, the colour of the bar indicates the wind speed while the length of the bar represents the frequency of winds *blowing from* a certain direction (as a percentage).

Period wind rose plots (2021-2023) from the South African Weather Service (SAWS) Kathu station and WRF modelled data are presented in **Figure 6-2**. The data plots for both datasets exhibit different predominant wind directions. In the case of the WRF data, prevailing winds are from the north, northeast, north-northeast and north-northwest, with calm wind conditions (winds < 1 m/s) occurring 3.25% of the time. In the SAWS Kathu dataset, the dominant wind directions are from the south-southeast and north, with a similar occurrence of calm conditions (3.66%) to the WRF dataset. Wind speeds in the WRF dataset are a stronger than those recorded by the SAWS Kathu station. Average recorded wind speeds are, however, similar for both datasets with an average speed of 4.38 m/s for the WRF model data and 3.77 m/s for the SAWS Kathu data.

Figure 6-2: Wind rose plots for SAWS Kathu for the period January 2021 to December 2023

Seasonal variations in wind are depicted in **Figure 6-3**. Seasonal winds from the WRF dataset remain fairly consistent throughout the year, with the predominant winds occurring from the north, northeast, north-northeast and north-northwest during all seasons. The WRF dataset does not indicate significant variations in predominant winds, however, calm conditions vary from 1.86% during spring to 4.66% during autumn. The SAWS Kathu dataset indicates a shift from dominant northerly winds during summer to south-south-easterly winds during autumn, winter and spring. Calm conditions from the SAWS Kathu range from 2.26% in spring to 4.57% in autumn.


Diurnal variations in winds are depicted in **Figure 6-4**. During the early morning hours (00:00 - 06:00) winds from the northeast, east-northeast and southeast prevail in the WRF dataset, while winds from the south-southeast prevail in the SAWS Kathu dataset. After sunrise a similar trend occurs in both the WRF and SAWS Kathu datasets, with dominant northerly winds. During the afternoon (12:00 - 18:00), winds from the WRF dataset shift to the north-northwest, while northerly

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK CONFIDENTIAL | WSP Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES Page 26 of 56

vsp

winds prevail from the SAWS Kathu dataset. This is also the period of highest wind speeds and the lowest frequency of calm conditions, evident in both datasets. During the early evening into the night (18:00 – 24:00) winds from the southwest and south-southwest become dominant in the WRF dataset, while the south-south-easterly winds return in the SAWS Kathu dataset.

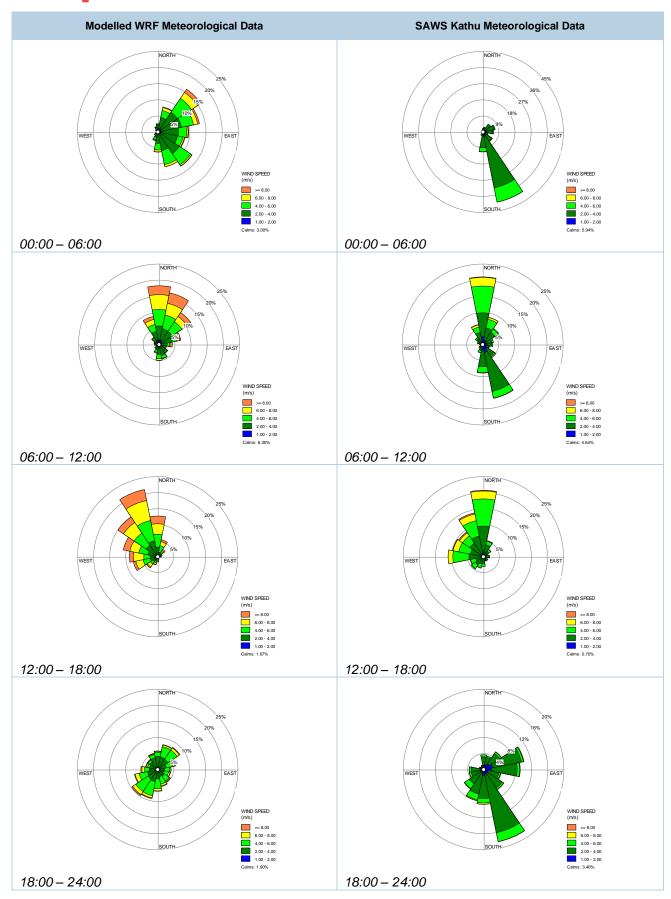

۸SD

Figure 6-3: Seasonal wind rose plots for the period January 2021 to December 2023

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK

٧SD

Figure 6-4: Diurnal wind rose plots for the period January 2021 to December 2023

۱۱SD

6.1.4 AMBIENT AIR QUALITY REVIEW

6.1.4.1 EXISTING SOURCES OF EMISSIONS

A qualitative discussion of identified emission sources in the vicinity of the study site is provided below. Key emission sources in the region are mining activities, agricultural activities, domestic fuel burning, vehicle emissions and unpaved roads. These emission sources contribute towards the air quality status quo within the region, with particulates being of particular concern in this regard.

MINING EMISSIONS

Numerous mining operations occur in the region. Mining is identified as the largest source of particulates (PM₁₀, PM_{2.5}, TSP) within the region, with smaller contributions from industry and biomass burning (Northern Cape AQMP, 2018). Dust and fine particulate emissions associated with mining operations include wind erosion from waste rock dumps, tailings facilities, open mining pits, blasting emissions, ore processing and refining, sintering operations, unpaved mine access roads and other exposed areas. Factors that influence the rate of wind erosion include surface compaction, moisture content, vegetation, shape of storage pile, particle size distribution, wind speed and rain. Emissions from mining activities are anticipated to be one of the dominant emissions influencing and impacting on the regional air quality (Northern Cape AQMP, 2018).

AGRICULTURAL EMISSIONS

The primary source of emissions from agricultural activities in the region are likely to result from biomass burning of pastures, as part of controlled burning practices. Biomass burning is an incomplete combustion process that produces PM₁₀, CH₄, CO and NO₂. Emissions from agricultural activities are difficult to control due to the seasonality of emissions and the large surface area producing emissions (USEPA, 1995). Most of the agricultural activities in the region appear to be low density commercial farming of goats, sheep, cattle and game farming which is common in the region. Agricultural emissions are not anticipated to significantly influence the air quality in the area due to the low density of the activities. Particulate emissions may increase during the winter period due to seasonal wildfires (USEPA, 1995).

DOMESTIC FUEL BURNING EMISSIONS

Domestic fuel burning of coal emits a large amount of gaseous and particulate pollutants including SO₂, heavy metals, total and respirable particulates, inorganic ash, CO, polycyclic aromatic hydrocarbons (PAH), and benzo(a) pyrene. Pollutants arising due to the combustion of wood include respirable particulates, NO₂, CO, PAH, particulate benzo(a) pyrene and formaldehyde. The main pollutants emitted from the combustion of paraffin are NO₂, particulates, CO and PAH. The density of housing in the region is relatively low with most residential areas being confined to small local towns. In addition to these small residential areas, individual farms/homesteads are scattered throughout the region and comprise formal and informal residential structures. It is thus highly likely that certain households within the communities are likely to use coal, wood and paraffin for space heating and/or cooking purposes. Emissions from these communities and/or the individual residences/homesteads are not anticipated to have a significant impact on the regional air quality due to their low density and dispersed nature (DEA, 2010b).

VEHICLE EMISSIONS

Vehicle tailpipe emissions within the area are considered insignificant due to the low population density of the region. Vehicle emissions are largely associated with the mining and agricultural

activities. Atmospheric pollutants emitted from vehicles include hydrocarbons, CO, CO₂, NO_x, SO₂ and particulates. These pollutants are emitted from the tailpipe, from the engine and fuel supply system, and from brake linings, clutch plates and tyres. Hydrocarbon emissions, such as benzene, result from the incomplete combustion of fuel molecules in the engine. CO is a product of incomplete combustion and occurs when carbon in the fuel is only partially oxidized to CO₂. NO_x is formed by the reaction of nitrogen and oxygen under high pressure and temperature conditions in the engine. SO₂ is emitted due to the high sulphur content of the fuel. Particulates such as lead originate from the combustion process as well as from brake and clutch linings wear (Samaras and Sorensen, 1999).

UNPAVED ROADS

Particulate emissions from unpaved roads occur when loose, spilt material on the road surface becomes suspended as vehicles travel across. The force of the wheels of vehicles travelling on unpaved roadways entrains dust and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed. The quantity of dust emissions from unpaved roads varies linearly with the volume of traffic USEPA (1995). Vehicle entrained dust emissions from unpaved roads represent a potentially significant source of fugitive dust in the region. Vehicle entrainment of particulates from unpaved access and haul roads are anticipated to be one of the dominant emissions from South32 MMT.

6.1.4.2 LOCAL AIR QUALITY

As part of the National Framework in managing air quality, Government has initiated the National Air Quality Indicator (NAQI) for South Africa. The NAQI has been developed to weigh, balance and present data in such a way as to provide a verifiable and reportable measure of air quality at the national scale. However, there are no monitoring stations in the region of South32 MMT. As such, the local air quality in this section is based on dust fallout monitoring data since 2021 from South32 MMT. South32 MMT have also recently installed two continuous PM units at the Weighbridge and Dump in August 2024. The purpose of these units is to measure PM₁₀ and PM_{2.5} concentrations as part of South32 occupational hygiene programme. Station coordinates and data recovery for PM₁₀ and PM_{2.5} is provided in **Table 6-6**. Data recovery for PM₁₀ and PM_{2.5} at the Weighbridge and Dump for the period August to October 2024 was 59% and 57%, respectively. Due to the data recovery being below 90% as required by the SANAS (2012) TR 07-03, the data is not presented in this report due to the high-uncertainty of the data, the operational status of the units as well as that the units are designed for occupation hygiene monitoring and not for the purpose of monitoring ambient air quality.

Monitoring location	Latitude (°E)	Longitude (°S)	Distance from Sinter Plant (km)	Pollutant	Data Recovery (%)
Weighbridge	27.389744	22.991845	0.27	PM ₁₀	59%
weighbridge	21.309144	22.991043	0.27	PM _{2.5}	59%
Dump	27 270700	22.983203	1.60	PM ₁₀	57%
Dump	27.379700	22.963203	1.63	PM _{2.5}	57%

Table 6-6: Coordinates and data recovery of the South32 MMT PM Monitors

DUST FALLOUT

Dust fallout data was obtained for the January 2021 to September 2024 period from South32 MMT. The dust fallout network consists of eight single dust fallout samplers, classified as non-residential. South32 MMT also have directional dust fallout samplers, however, these are excluded as they are not regulated under the National Dust Control Regulations (2013).

One exceedance of the non-residential standard (1,200 mg/m²/day) was recorded at MMT08 in May 2023, remaining compliant as the National Dust Control Regulations permit two non-sequential exceedances within a twelve-month period. No other monitoring locations have recorded exceedances; thus all monitoring locations remain compliant with the National Dust Control Regulations.

The dust fallout rates are illustrated in Figure 6-5 and tabulated in Table 6-7.

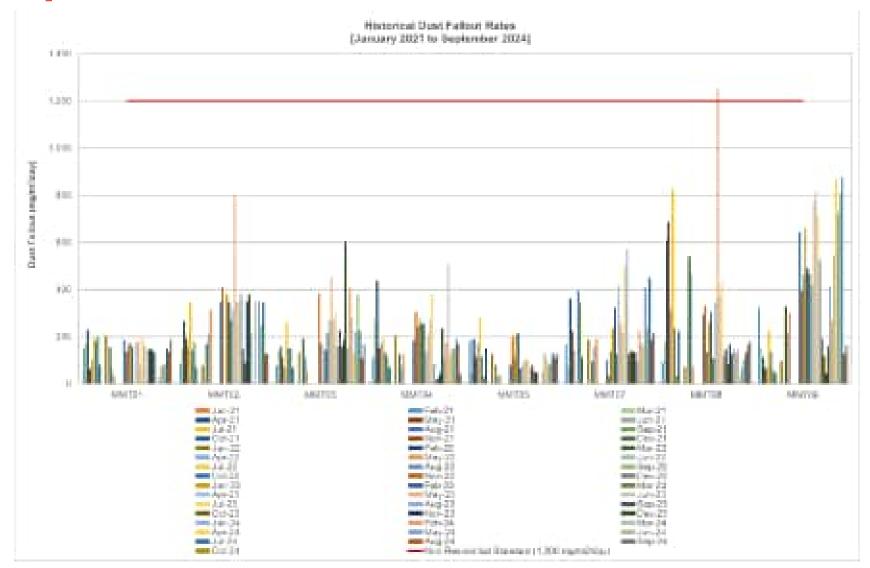


Figure 6-5: Dust fallout rates monitored at MMT for the January 2021 to September 2024 period

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

Sample Location	Jan-21	Feb-21	Mar-21	Apr-21	May-21	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21
MMT01	-	150	170	229	64	102	193	180	202	81	-	-
MMT02	-	84	148	265	194	156	342	144	177	69	-	-
ММТ03	-	78	142	160	114	73	262	152	151	70	-	-
ММТ04	-	112	270	436	153	172	194	133	117	69	-	-
ММТ05	-	182	45	188	113	172	283	117	30	151	-	-
ММТ07	-	169	71	363	225	143	-	395	343	113	-	-
ММТ08	-	97	182	610	688	318	824	234	33	225	-	-
ММТ09	-	324	154	111	65	72	227	135	57	46	-	-
Sample Location	Jan-22	Feb-22	Mar-22	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22
MMT01	206	-	156	64	34	-	-	-	-	185	137	168
MMT02	77	-	168	210	317	-	-	-	-	349	408	-
ММТ03	132	-	192	112	57	-	-	-	-	-	385	172
MMT04	206	-	126	74	125	-	-	-	-	185	306	244
ММТ05	126	-	80	31	42	-	-	-	-	81	198	110
ММТ07	187	-	97	157	189	-	-	-	-	104	35	139
ММТ08	73	-	539	465	72	-	-	-	-	296	331	134
ММТ09	98	-	329	220	304	-	-	-	-	644	393	465
Notes:	"-" indicates	s are classifi s that data wa ed indicate ex	as not availa	ble.	sidential star	ndard.						

Table 6-7: Dust fallout results for January 2021 to September 2024

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK Project No.: 41107325 SOUTH32 MAMATWAN HOTAZEL MANAGANESE MINES

Sample Location	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23
MMT01	176	157	-	178	176	76	196	162	-	147	148	140
MMT02	378	347	269	315	803	345	351	381	150	92	351	378
ММТ03	-	145	217	272	453	273	305	159	228	160	187	603
MMT04	277	254	256	134	210	275	378	86	16	26	47	236
ММТ05	210	215	65	80	101	100	102	64	79	50	50	-
ММТ07	234	323	127	421	259	216	497	570	126	145	135	133
ММТ08	263	307	109	350	1,251	369	428	118	146	86	169	124
ММТ09	661	490	467	417	772	813	716	523	193	118	45	159
Sample Location	Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jun-24	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24
MMT01	130	-	30	78	77	87	151	134	188	N/A	N/A	N/A
MMT02	213	-	352	-	352	252	349	127	127	N/A	N/A	N/A
ММТ03	148	406	278	131	220	379	226	108	167	N/A	N/A	N/A
MMT04	107	174	508	122	148	152	189	168	43	N/A	N/A	N/A
ММТ05	-	50	132	109	80	90	131	108	126	N/A	N/A	N/A
ММТ07	98	228	170	157	409	235	451	187	216	N/A	N/A	N/A
ММТ08	148	133	145	34	67	100	131	163	179	N/A	N/A	N/A
ММТ09	415	272	546	865	725	812	877	127	164	N/A	N/A	N/A
Notes:	"-" indicates N/A indicat	rs are classifi s that data wa es monitoring ed indicate et	as not availa g is ongoing/	ble. to be comple	ted. sidential star	ndard.	<u>, </u>	·	<u>.</u>	<u>, </u>	<u>,</u>	

6.1.5 DISPERSION MODELLING METHODOLOGY

Atmospheric dispersion modelling mathematically simulates the transport and fate of pollutants emitted from a source into the atmosphere. Sophisticated software with algorithms that incorporate source quantification, surface contours and topography, as well as meteorology can reliably predict the downwind concentrations of these pollutants.

As per the *Modelling Regulations*, the level of assessment is dependent on technical factors such as geophysical and meteorological context and the complexity of the emissions inventory. The temporal and spatial resolution and accuracy required from a model must also be taken into account. As such, this assessment is considered to be a Level 2 assessment.

Level 2 assessments should be used for air quality impact assessment in standard/generic licence or amendment processes where:

- The distribution of pollutant concentrations and depositions are required in time and space.
- Pollutant dispersion can be reasonable treated by a straight-line, steady-state, Gaussian plume model with first order chemical transformation. Although more complicated processes may be occurring, a more complicated model that explicitly treats these processes may not be necessary depending on the purposes of the modelling and the zone of interest.
- Emissions are from sources where the greatest impacts are in the order of a few kilometres (less than 50 km), downwind.

For this assessment, the AERMOD dispersion modelling software was utilised. AERMOD is a new generation air dispersion model designed for short-range dispersion of airborne pollutants in steady state plumes that uses hourly sequential meteorological files with pre-processors to generate flow and stability regimes for each hour, that produces output maps of plume spread with key isopleths for visual interpretation and enables, through its statistical output, direct comparisons with the latest National and International ambient air quality standards for compliance testing. AERMOD is the recommended level 2 model prescribed in the Modelling Regulations.

The AERMOD atmospheric dispersion modelling system is an integrated system that includes three modules:

- A steady-state dispersion model designed for short-range (up to 50 km) dispersion of air pollutant emissions from stationary industrial sources.
- A meteorological data pre-processor (AERMET) that accepts surface meteorological data, upper air soundings, and optionally, data from on-site instrument towers. It then calculates atmospheric parameters needed by the dispersion model, such as atmospheric turbulence characteristics, mixing heights, friction velocity, Obukhov length (often referred to as Monin-Obukhov length) and surface heat flux.
- A terrain pre-processor (AERMAP) with the main purpose of providing a physical relationship between terrain features and the behaviour of air pollution plumes. It generates location and height data for each receptor location. It also provides information that allows the dispersion model to simulate the effects of air flowing over hills or splitting to flow around hills.

6.1.5.1 MODELLING SCENARIOS

For the purpose of this study, three dispersion modelling simulations were undertaken as follows:

 Scenario One simulated the current operating conditions whereby the SWS currently exceeds the MES for PM.

- The actual emission rates (mg/Nm³) obtained from the stack testing reports were used to calculate the emission rates (g/s) for input into this model/assessment.
- The actual emission rates (mg/Nm³) were, on average, below the MES for stacks PDD1, PDD2, and PDD3, while the emission rate for the SWS (133.44 mg/Nm³) exceeded the MES (50 mg/Nm³).
- Scenario Two simulated the future operating conditions where the SWS complies with the MES for PM.
 - The emission rates used for this scenario were the MES rates for all stacks, namely, PDD1, PDD2 and SWS (50 mg/Nm³), and PDD3 (135 mg/Nm³).
 - By using the MES for all stacks, it is noted that the emission rates, for Scenario Two are higher than Scenario One for stacks PDD1, PDD2, PDD3. This is due to the average stack testing results for these stacks remaining below the MES.
 - The higher MES emission rates were used as a conservate approach, noting that in some years, the stack testing results exceeded the MES. As such, this scenario takes into consideration that the stacks may have higher emissions in the future, compared to the previous years, yet remaining compliant with the MES.
 - As such this approach, is considered the worst-case approach to remain environmentally conservative in this assessment.
- Scenario Three simulated the postponement operating conditions where the SWS operates with a maximum MES of 200 mg/Nm³ until such time as the new ESP is operational.
 - The emission rates used for this scenario were the MES rates for stacks PDD1 (50 mg/Nm³), PDD2 (50 mg/Nm³), PDD3 (135 mg/Nm³) and SWS (200 mg/Nm³).
 - By using the MES for stacks PDD1, PDD2 and PDD3, it is noted that the emission rates, for Scenario Three are higher than Scenario One. This is due to the average stack testing results for these stacks remaining below the MES.
 - The higher MES emission rates were used as a conservate approach, noting that in some years, the stack testing results exceeded the MES. As such, this scenario takes into consideration that the stacks may have higher emissions in the future, compared to the previous years, yet remaining compliant with the MES.
 - As such this approach, is considered the worst-case approach to remain environmentally conservative in this assessment.
 - The proposed MES of 200 mg/Nm³ for the SWS is also considered a worst-case approach to remain environmentally conservative in this assessment.

6.1.5.2 METEOROLOGICAL INPUT

The meteorological data that was used in the dispersion model was obtained from Lakes Environmental Consultants Inc., in the form of WRF pre-processed meteorological data, for the period January 2021 – December 2023. This is the most complete and representative dataset for the site.

6.1.5.3 TERRAIN INPUT

Terrain influences dispersion of pollutants, especially during periods of stable conditions. The National Aeronautics and Space Administration (NASA) Shuttle Radar Topographic Mission (SRTM) digital elevation model 1-arc data (resolution 30 m x 30 m) was extracted for input into the model to

account for terrain influences on dispersion. For the land use categorization, the Global Land Cover Characterization Global Coverage – Version 3 (1 km x 1 km resolution) was used.

6.1.5.4 GRID RESOLUTION

According to the *Modelling Regulations*, the selected size and extent of the model domain is influenced by factors such as source buoyancy, terrain features (i.e. mountains) and the location of contributing sources. Larger domains are recommended for elevated, buoyant sources (e.g. stacks) while smaller domains are considered sufficient for lower release heights, particularly if emissions are at or near ambient temperature. The modelling domain for this study was defined as 30 km x 30 km, centred over the South32 MMT Sinter Plant. The *Modelling Regulations* specify the use of a multi-tier grid and recommend specific tier resolutions. In line with these requirements, the receptor grid resolution was 50 m x 50 m along the mining rights boundary; 100 m x 100 m up to 5,000 m from the centre of the site; 250 m x 250 m up to 10,000 m from the centre of the site; and 1,000 m x 1,000 m thereafter.

6.1.5.5 MODEL INPUT PARAMETERS

Table 6-8 lists the key parameters used in the level 2 dispersion model for the Sinter Plant.

F	Parameter	Model Input		
Model				
Assessment Level		Level 2		
Dispersion Model		AERMOD View 11.0.1		
Supporting Models		AERMET and AERMAP		
Emissions				
Pollutants modelled		PM ₁₀ and PM _{2.5}		
Scenarios		Operational and MES		
Chemical transformation		Not Applicable		
Exponential decay		Not Applicable		
Settings				
Terrain setting		Elevated		
Terrain data		SRTM1		
Terrain data resolution (m)		Global ~ 30		
Land characteristics		Rural		
Bowen ratio		4.3		
Surface albedo		0.29		
Surface roughness		0.30		
Grid Receptors				
Modelling domain (km)		30 x 30		
	Tier I	100 m		
Grid resolution	Tier II	250 m		
	Tier III	1,000 m		

Table 6-8:	Key model inputs to be used in the assessment

6.1.5.6 MODEL OUTPUTS

The model outputs that follow (**Section 6.1.6**) show simulated pollutant concentrations experienced at ground level for the Sinter Plant operations. Where applicable, ambient concentrations are compared with the NAAQS to assess impact. For the purposes of this investigation, the following statistical outputs were generated:

- The long-term scenario refers to the period average concentration, which is calculated by averaging all hourly concentrations for the three-year assessment period. The calculation is conducted for each grid point within the modelling domain.
- 99th percentile (P99) concentrations are calculated for comparison with short-term NAAQS as specified in the Modelling Regulations.

As defined in the *Modelling Regulations*, ambient air quality standards and guidelines are applied to areas outside the facility fenceline (i.e. beyond the facility boundary). Within the facility boundary, environmental conditions are prescribed by occupational health and safety criteria. As such, tabular model outputs in this assessment are presented for each sensitive receptor, the maximum concentration on the facility boundary and the maximum concentration off-site (i.e. beyond the facility boundary).

6.1.6 DISPERSION MODEL RESULTS

Simulated pollutant concentrations for 24-hour and assessment period (i.e. representing the annual average) averaging periods at each discrete receptor are presented for the current operating conditions in Table 6-9, under MES compliance operating conditions in Table 6-10, and under postponement operating conditions in **Table 6-11**. Isopleth maps showing pollutant dispersion across the study area are presented in **Figure 6-6** to **Figure 6-17** for the current, MES compliance, and postponement operating conditions. Where applicable, simulated concentrations have been evaluated against their respective NAAQS. Key findings are as follows:

- Scenario One: Current Operating Conditions:
 - PM₁₀ emissions do not result in exceedances of the ambient PM₁₀ 24-hour (75 μg/m³) or annual (40 µg/m³) NAAQS as simulated for the current operations.
 - The current scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are below the MES and are thus currently compliant with the MES.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.51 μ g/m³ and 0.13 μ g/m³ remain well below the 24-hour and annual NAAQS, respectively.
 - PM_{2.5} emissions do not result in exceedances of the ambient PM_{2.5} 24-hour (40 μg/m³) or annual (20 µg/m³) NAAQS as simulated for the current operations.
 - The current scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are below the MES and are thus currently compliant with the MES.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.27 µg/m³ and 0.07 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- Scenario Two: MES Compliance Operating Conditions:
 - PM₁₀ emissions do not result in exceedances of the ambient PM₁₀ 24-hour (75 μg/m³) or annual (40 µg/m³) NAAQS as simulated for the future MES operations.
 - The future MES scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES.

As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.

- The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
- Maximum concentrations at all sensitive receptors, 0.58 µg/m³ and 0.09 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- PM_{2.5} emissions do not result in exceedances of the ambient PM_{2.5} 24-hour (40 μg/m³) or annual (20 μg/m³) NAAQS as simulated for the future MES operations.
 - The future MES scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.31 µg/m³ and 0.05 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- Scenario Three: MES Postponement Operating Conditions:
 - PM₁₀ emissions do not result in exceedances of the ambient PM₁₀ 24-hour (75 μg/m³) or annual (40 μg/m³) NAAQS as simulated for the MES postponement operations.
 - The MES postponement scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.80 µg/m³ and 0.20 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
 - PM_{2.5} emissions do not result in exceedances of the ambient PM_{2.5} 24-hour (40 μg/m³) or annual (20 μg/m³) NAAQS as simulated for the MES postponement operations.
 - The MES postponement scenario takes into account that the stack emissions from PDD1, PDD2 and PDD3 are higher than the current emissions; however, remaining compliant with MES. As mentioned previously, this is to ensure that a worst-case scenario is assessed to remain environmentally conservative.
 - The peak concentrations occur onsite; however, remaining well-below the 24-hour and annual NAAQS.
 - Maximum concentrations at all sensitive receptors, 0.43 µg/m³ and 0.10 µg/m³ remain well below the 24-hour and annual NAAQS, respectively.
- It is evident from the dispersion modelling results, that despite adopting a worst-case approach to the MES scenarios, the PM₁₀ and PM_{2.5} concentrations remain well below the relevant NAAQS as well as peak concentrations remaining within the boundary of South32 MMT.

Table 6-9:Simulated pollutant concentrations at sensitive receptors under currentoperating conditions (Scenario One)

	Predicted Concentrations (µg/m³)						
Pollutant	PN	N ₁₀	PM	2.5			
Averaging Period	24-hour	Period	24-hour	Period			
Reference	NAAQS	NAAQS	NAAQS	NAAQS			
Standard	75	40	40	20			
Boundary Peak	5.48E+00	1.97E+00	2.92E+00	1.05E+00			
		Sensitive Receptors					
SR1	4.79E-01	7.25E-02	2.55E-01	3.86E-02			
SR2	5.14E-01	8.27E-02	2.74E-01	4.41E-02			
SR3	2.26E-01	5.88E-02	1.21E-01	3.14E-02			
SR4	4.86E-01	1.27E-01	2.59E-01	6.79E-02			
SR5	2.99E-01	5.52E-02	1.59E-01	2.95E-02			
SR6	1.59E-01	2.58E-02	8.49E-02	1.38E-02			
SR7	2.55E-01	3.36E-02	1.36E-01	1.79E-02			
SR8	2.42E-01	3.43E-02	1.29E-01	1.83E-02			
SR9	2.13E-01	2.63E-02	1.13E-01	1.40E-02			
SR10	2.15E-01	2.65E-02	1.15E-01	1.41E-02			
SR11	3.36E-01	4.53E-02	1.79E-01	2.41E-02			
SR12	2.49E-01	2.84E-02	1.33E-01	1.51E-02			
SR13	2.78E-01	3.39E-02	1.48E-01	1.81E-02			
SR14	4.14E-01	4.72E-02	2.21E-01	2.52E-02			
SR15	3.03E-01	2.97E-02	1.61E-01	1.58E-02			
SR16	2.82E-01	2.89E-02	1.51E-01	1.54E-02			
SR17	3.01E-01	3.01E-02	1.60E-01	1.60E-02			
SR18	4.89E-01	8.31E-02	2.61E-01	4.43E-02			
SR19	2.18E-01	5.72E-02	1.16E-01	3.05E-02			
Notes:		reference threshold. tracted from stack testing re s emission rate is above the		D3 emission rates are			

Table 6-10:Simulated pollutant concentrations at sensitive receptors under MEScompliance operating conditions (Scenario Two)

Pollutant	Predicted Concentrations (µg/m ³)							
Follutant	PM	Л ₁₀	PM	2.5				
Averaging Period	24-hour	Period	24-hour	Period				
Reference	NAAQS	NAAQS	NAAQS	NAAQS				
Standard	75	40	40	20				
Boundary Peak	5.70E+00	2.34E+00	3.04E+00	1.25E+00				
		Sensitive Receptors						
SR1	5.58E-01	7.49E-02	2.98E-01	3.99E-02				
SR2	5.78E-01	8.04E-02	3.08E-01	4.29E-02				
SR3	2.16E-01	4.78E-02	1.15E-01	2.55E-02				
SR4	4.42E-01	9.17E-02	2.36E-01	4.89E-02				
SR5	2.67E-01	4.14E-02	1.42E-01	2.21E-02				
SR6	1.63E-01	2.06E-02	8.71E-02	1.10E-02				
SR7	2.12E-01	2.70E-02	1.13E-01	1.44E-02				
SR8	2.11E-01	2.75E-02	1.13E-01	1.47E-02				
SR9	1.95E-01	2.25E-02	1.04E-01	1.20E-02				
SR10	2.00E-01	2.25E-02	1.07E-01	1.20E-02				
SR11	3.74E-01	4.51E-02	1.99E-01	2.41E-02				
SR12	2.34E-01	2.48E-02	1.25E-01	1.32E-02				
SR13	3.43E-01	3.35E-02	1.83E-01	1.79E-02				
SR14	4.68E-01	4.57E-02	2.49E-01	2.43E-02				
SR15	3.62E-01	2.84E-02	1.93E-01	1.52E-02				
SR16	3.09E-01	2.72E-02	1.65E-01	1.45E-02				
SR17	3.26E-01	2.84E-02	1.74E-01	1.52E-02				
SR18	5.65E-01	8.22E-02	3.02E-01	4.39E-02				
SR19	2.29E-01	4.56E-02	1.22E-01	2.43E-02				
Notes:		ns assume the emission rate urrent emissions rates); SWS						

Table 6-11:Simulated pollutant concentrations at sensitive receptors under MESpostponement operating conditions (Scenario Three)

Pollutant	Predicted Concentrations (µg/m ³)						
Pollutant	PM	N ₁₀	PM	2.5			
Averaging Period	24-hour	Period	24-hour	Period			
Reference	NAAQS	NAAQS	NAAQS	NAAQS			
Standard	75	40	40	20			
Boundary Peak	8.32E+00	3.09E+00	4.44E+00	1.65E+00			
		Sensitive Receptors					
SR1	7.63E-01	1.13E-01	4.07E-01	6.01E-02			
SR2	8.00E-01	1.28E-01	4.26E-01	6.85E-02			
SR3	3.52E-01	9.08E-02	1.88E-01	4.84E-02			
SR4	7.47E-01	1.96E-01	3.99E-01	1.04E-01			
SR5	4.57E-01	8.49E-02	2.44E-01	4.53E-02			
SR6	2.60E-01	3.97E-02	1.39E-01	2.12E-02			
SR7	4.01E-01	5.18E-02	2.14E-01	2.77E-02			
SR8	3.72E-01	5.29E-02	1.98E-01	2.82E-02			
SR9	3.37E-01	4.06E-02	1.80E-01	2.17E-02			
SR10	3.41E-01	4.10E-02	1.82E-01	2.19E-02			
SR11	5.27E-01	7.04E-02	2.81E-01	3.75E-02			
SR12	3.83E-01	4.39E-02	2.04E-01	2.34E-02			
SR13	4.39E-01	5.27E-02	2.34E-01	2.81E-02			
SR14	6.32E-01	7.35E-02	3.37E-01	3.92E-02			
SR15	4.65E-01	4.61E-02	2.48E-01	2.46E-02			
SR16	4.50E-01	4.49E-02	2.40E-01	2.40E-02			
SR17	4.74E-01	4.67E-02	2.53E-01	2.49E-02			
SR18	7.72E-01	1.29E-01	4.12E-01	6.88E-02			
SR19	3.44E-01	8.81E-02	1.83E-01	4.70E-02			
Notes:		reference threshold. itions assume the emission r nan current emissions rates);					

\\SD

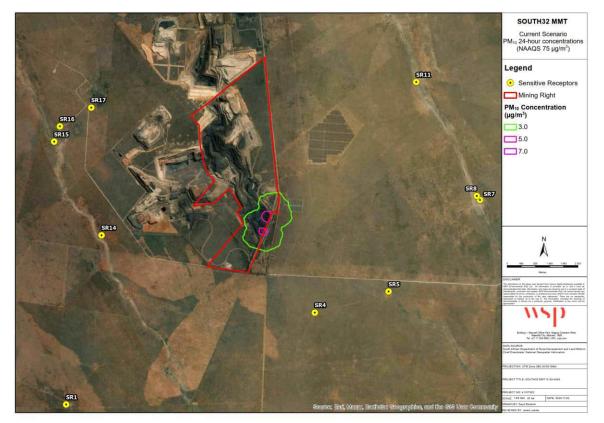


Figure 6-6: P99 24-hour average PM₁₀ concentrations (Current Operations)

Figure 6-7: Period average PM₁₀ concentrations (Current Operations)

SECTION 12A POSTPONEMENT APPLICATION FOR THE SINTER PLANT WASTE STACK CONFIDENTIAL | WSP Project No : 41107325

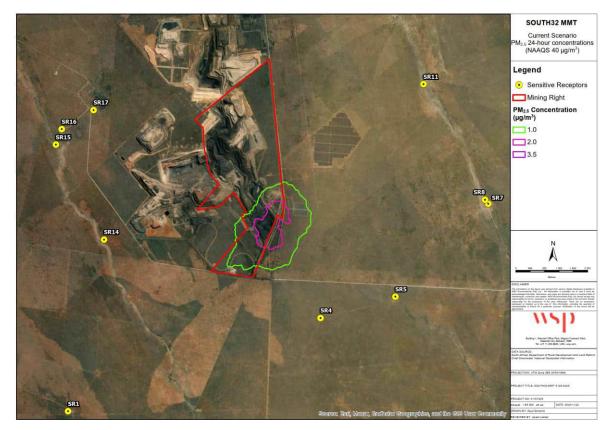


Figure 6-8: P99 24-hour average PM_{2.5} concentrations (Current Operations)



Figure 6-9: Period average PM_{2.5} concentrations (Current Operations)

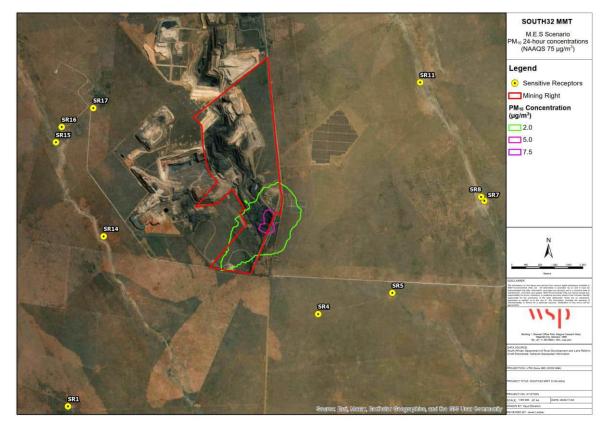


Figure 6-10: P99 24-hour average PM₁₀ concentrations (MES Compliance)

Figure 6-11: Period average PM₁₀ concentrations (MES Compliance)



Figure 6-12: P99 24-hour average PM_{2.5} concentrations (MES Compliance)

Figure 6-13: Period average PM_{2.5} concentrations (MES Compliance)

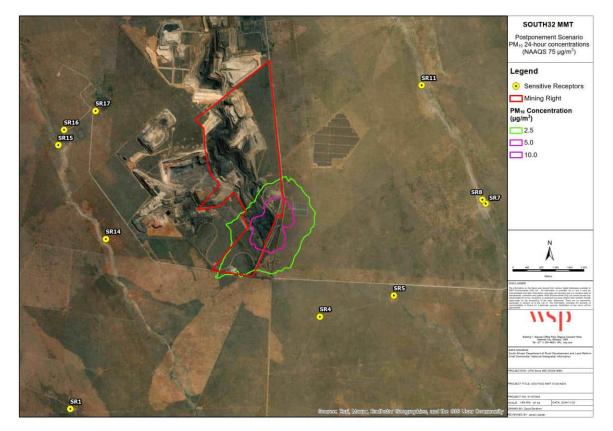


Figure 6-14: P99 24-hour average PM₁₀ concentrations (Postponement Operations)

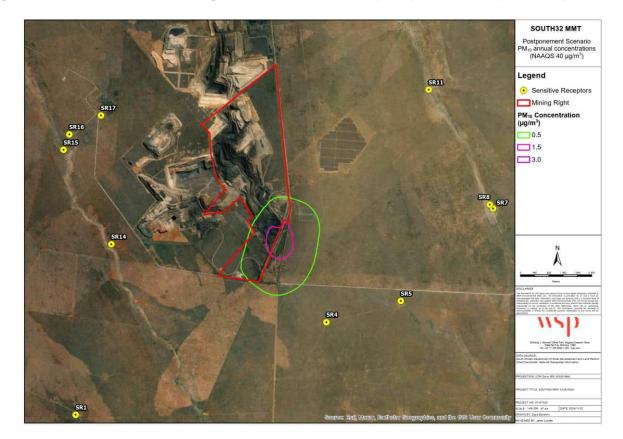


Figure 6-15: Period average PM₁₀ concentrations (Postponement Operations)

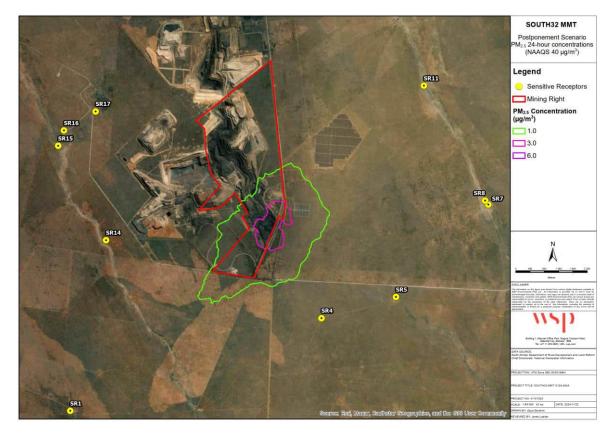


Figure 6-16: P99 24-hour average PM_{2.5} concentrations (Postponement Operations)

Figure 6-17: Period average PM_{2.5} concentrations (Postponement Operations)

6.1.7 CUMULATIVE ASSESSMENT

The National Framework for Air Quality Management in South Africa calls for air quality assessment in terms of cumulative impacts rather than the contributions from an individual facility. Compliance with the NAAQS is to be determined by taking into account all local and regional contributions to background concentrations. For each averaging time, the sum of the model predicted concentration (C_P) and the background concentration (C_B) must be compared with the NAAQS. The background concentrations C_B must be the sum of contributions from non-modelled local sources and regional background air quality. If the sum of background and predicted concentrations ($C_B + C_P$) is more than the NAAQS, the design of the facility must be reviewed (including pollution control equipment) to ensure compliance with NAAQS. Compliance assessments must provide room for future permits to new emissions sources, while maintaining overall compliance with NAAQS. For the different facility locations and averaging times, the comparisons with NAAQS must be based on recommendations in **Table 6-12**.

Table 6-12:	Summary of	recommended	procedures	for assessing	compliance with NAAQS

Facility Location	Annual NAAQS	Short-term NAAQS (24 hours or less)
Isolated facility not influenced by other sources, C_B insignificant*.	Highest C _P must be less than the NAAQS, no exceedances allowed.	99th percentile concentrations must be less than the NAAQS. Wherever one year is modelled, the highest concentrations shall be considered.
Facilities influenced by background sources e.g. in urban areas and priority areas.	Sum of the highest C _P and background concentrations must be less that the NAAQS, no exceedances allowed.	Sum of the 99th percentile concentrations and background CB must be less than the NAAQS. Wherever one year is modelled, the highest concentrations shall be considered.

Since the Sinter Plant is operational, existing background concentrations were not used to assess the cumulative impact of the Sinter Plant as inclusion of any baseline data would essentially double account for emissions from the facility (in the background measurements and the inputted emission rates). Additionally, due to the lack of ambient PM monitoring data (monitoring only commenced in August 2024), the contribution of the Sinter Plant to the overall monitored concentrations could not be assessed here.

6.2 ANALYSIS OF EMISSIONS' IMPACT ON THE ENVIRONMENT

The following sections analyse the potential impacts associated with air pollution on the surrounding environment.

6.2.1 EFFECTS ON VEGETATION

Air pollution in South Africa was first identified as a potential threat to vegetation in 1988 (Tyson *et al.*, 1988). The commercial forests of the eastern escarpment were highlighted as a threatened resource due to their proximity to the heavily industrialised Highveld. Marshal *et al.* (1998) also identified concerns around the potential impacts on crop yields on the Highveld. Air pollutants that could impact on vegetation include PM, SO₂, O₃, NO_x and hydrogen fluoride (HF).

The effects of pollution on plants include mottled foliage, 'burning' at leaf tips or margins, twig dieback, stunted growth, premature leaf drop, delayed maturity, abortion or early drop of blossoms, and reduced yield or quality. In general, the visible injury to plants is of three types: (1) collapse of leaf tissue with the development of necrotic patterns, (2) yellowing or other colour changes, and (3) alterations in growth or premature loss of foliage (Sikora and Chappelka, 2004). Factors that govern the extent of damage and the region where air pollution is a problem are (1) type and concentration

of pollutants, (2) distance from the source, (3) length of exposure, and (4) meteorological conditions. Other important factors are city size and location, land topography, soil moisture and nutrient supply, maturity of plant tissues, time of year, and species and variety of plants. A soil moisture deficit or extremes of temperature, humidity, and light often alter a plant's response to an air pollutant (Sikora and Chappelka, 2004).

6.2.2 EFFECTS ON ANIMALS

Air pollution is a recognized health hazard to domestic animals and wildlife. Industrial air pollutants effect both wild birds and mammals, causing notable decreases in local populations (Newman, 1979). The major effects include direct mortality, debilitating injury and disease, stress, anaemia, and bioaccumulation (Newman, 1979). Certain air pollutants are also known to cause variation in the distribution of certain wildlife species (Schreiber, and Newman, 1988). Animals are typically exposed to air pollution through a) inhalation of gases or small particles, b) ingestion of particles suspended in food or water, or c) absorption of gases through the skin (Burdo, 2018). Soft-bodied invertebrates (such as earthworms), or animals with thin, moist skin (such as amphibians) are the most susceptible to absorption of pollutants. Individual responses to pollutants are dependent on the type of pollutant involved, the duration and time of exposure, and the concentration taken up by the animal (Wong and Candolin, 2015). The individual's age, sex, health, and reproductive condition also determines its response. There is much variability observed between animal classes, species, and even genotypes, in terms of the level of tolerance to a specific pollutant (Wong and Candolin, 2015).

6.3 ASSUMPTIONS AND LIMITATIONS

Various assumptions were made in the compilation of this AIR. When possible, an environmentally conservative approach was taken to ensure emission rate calculations and model predictions represent a worst-case scenario. The assumptions and limitations underlying the study methodology are as follows:

- Unless otherwise stated, operational information for the Sinter Plant was provided by South32 MMT. Any errors, limitations or assumptions inherent in these datasets extend to this study.
- Stack information (diameter, flow rates, velocity and temperature) for each of the four stacks were obtained from the prior three Levego Environmental Services Test Reports (LES0763M 22/R2147-A1; LES0913M 23/R2307; and LES1072M 23/R2467) dated 25 March 2022, 06 February 2023, and 27 March 2024, respectively.
- The stack information extracted from the Levego reports were averaged to determine the current operational conditions for each of the four stacks.
- PM₁₀ emissions rates were assumed to be 60% of the total PM rate, based on a literature review applicable to Sinter Plants (USEPA, 1986; and Zhao *et al*, 2017).
- PM_{2.5} emissions rates were assumed to be 32% of the total PM rate, based on a literature review applicable to Sinter Plants (USEPA, 1986; and Zhao *et al*, 2017).
- The MES compliance scenarios emission rates were determined based on each stack meeting the MES for PM, irrespective of the current operational emissions rates. As such, stacks that have emission rates below the MES were simulated with a higher rate (MES equivalent), to determine the worst-case scenario, thus remaining environmentally conservative.

7 COMPLAINTS

There have been no air quality related complaints received in the last two years, as confirmed by South32 MMT.

8 CURRENT OR PLANNED AIR QUALITY MANAGEMENT INTERVENTIONS

South32 MMT have commissioned a study to investigate strategic monitoring locations for continuous particulate matter monitors. This study will focus on ambient air quality and include recommendations of the type of monitors that can be used.

No further interventions over-and-above the ESP installation for the Sinter Waste Stack, which is the purpose and objective of this AIR, are planned.

9 COMPLIANCE AND ENFORCEMENT

There have been no air quality compliance and enforcement actions undertaken against the facility in the last five years as confirmed by South32 MMT.

10 ADDITIONAL INFORMATION

There is no additional information to supply in relation to this AIR.

FORMAL DECLARATIONS

ANNEXURE A: DECLARATION OF ACCURACY OF INFORMATION

DECLARATION OF ACCURACY OF INFORMATION - APPLICANT

Name of Enterprise: South32 Mamatwan Hotazel Manganese Mines

Declaration of accuracy of information provided:

Atmospheric Impact Report in terms of section 30 of the Act.

I, <u>Wonder Sigwebela</u> (duly authorised), declare that the information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1)(g) of this Act.

Signed at Mamatwan ______ on this __27th __ day of __November 2024____

SIGNATURE

Environmental Superintendent

CAPACITY OF SIGNATORY

ANNEXURE B: DECLARATION OF INDEPENDENCE OF PRACTITIONER

DECLARATION OF INDEPENDENCE - PRACTITIONER

Name of Practitioner: Jared Lodder

Declaration of independence and accuracy of information provided:

Atmospheric Impact Report in terms of Section 30 of the Act.

I, <u>Jared Lodder</u>, declare that I am independent of the applicant. I have the necessary expertise to conduct the assessments required for the report and will perform the work relating the application in an objective manner, even if this results in views and findings that are not favourable to the applicant. I will disclose to the applicant and the air quality officer all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the air quality officer, The information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1) (g) of this Act.

Signed at <u>Midrand</u> on this <u>27th</u> day of <u>November 2024</u>.

SIGNATURE

Principal Consultant at WSP CAPACITY OF SIGNATORY

REFERENCE LIST

- Australian Government (2021): Lead. Available online at: https://www.dcceew.gov.au/environment/protection/chemicals-management/lead.
- Burdo, H., (2018): The Effects of Air Pollution on Animals. Available online at: https://bizfluent.com/about-5137668-effects-air-pollution-animals.html
- Department of Environmental Affairs (DEA) (2000): Integrated Pollution and Waste Management Policy for South Africa. Government Notice No. 2270 in Government Gazette No. 20978.
- DEA (2009): National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004), National Ambient Air Quality Standards, Government Notice No. 1210 in Government Gazette No. 32816.
- DEA (2010): List of Activities which result in Atmospheric Emissions which have or may have a significant detrimental effect on the environment, including health, social conditions, economic conditions, ecological conditions or cultural heritage. Government Notice No.248 in Government Gazette No. 33064.
- DEA (2010b): Air Quality Management Plan for the Highveld Priority Area, Report compiled by Umoya Nilu and Environmental Science Associates, Report no.: uMN003-10. Available online at: http://www.highveldair.co.za/docs/DEAT_HPA_08Apr2010-042308.pdf
- DEA (2013): List of Activities which result in atmospheric emissions. Government Notice No. 893 of Government Gazette 36974.
- DEA (2014). Regulations Regarding Air Dispersion Modelling Government Notice No. 533 of Government Gazette No. 37804.
- DEA (2018): The 2017 National Framework for Air Quality Management in the Republic of South Africa (No.R.1144 of 2018) Government Gazette, 26 October 2018 (No. 41996).
- Harrison, R.M. and R.E. van Grieken (1998): Atmospheric Aerosols. John Wiley: Great Britain.
- Kampa, M. and Castanas, E. (2007): Human health effects of air pollution, Environmental Pollution 151 (2008) 362-367, Elsevier.
- Levego Environmental Services (Levego) (2022): Stack Emission Measurement Survey (Compliance) for South32 Hotazel Manganese Mines (Pty) Ltd Mamatwan. Report LES0763M 22/R2147-A1. 25 March 2022.
- Levego (2023): Stack Emission Measurement Survey (Compliance) for South32 Hotazel Manganese Mines (Pty) Ltd Mamatwan. Report LES0913M 23/R2307. 06 February 2023.
- Levego (2024): Stack Emission Measurement Survey (Compliance) for South32 Hotazel Manganese Mines (Pty) Ltd Mamatwan. Report LES1072M 23/R2467. 27 March 2024.
- Manahan, E. (1991): Environmental Chemistry.
- Maroni, M., Seifert, B., Lindvall, T., (1995): Indoor air quality a comprehensive reference book, Elsevier, Amsterdam.
- Newman, J. R. (1979). Effects of industrial air pollution on wildlife. Biological conservation, 15(3), 181-190.
- Northern Cape Department of Environment and Nature, DENC.,2018: Air Quality Management Plan for the Northern Cape, uMoya-NILU Consulting (Pty) Ltd., report number uMN016-18, Final, 6 March 2018
- Republic of South Africa (2005): National Environmental Management: Air Quality Act (No. R. 39 of 2004) Government Gazette, 24 February 2005 (No. 27318).

- Samaras, Z. and Sorenson, S. (1999): Chapter 5 Mobile Sources in Urban Air Pollution European Aspects. Pp. 63-91. J. Fenger, O. Hertel and F. Palmgren (eds). Kluwer Academic Publishers.
- Tyson, P. D., Kruger, F. J., and Louw, C. W. (1988). Atmospheric pollution and its implications in the Eastern Transvaal Highveld. National Scientific Programmes Unit: CSIR.
- Sikora EJ, Chappelka AH. 2004. Air Pollution Damage to Plants. Alabama Cooperative Extension System. Available online at: www.aces.edu.
- United States Environmental Protection Agency (USEPA) (1986): AP-42 Compilation of Air Pollutant Emissions Factors from Stationary Sources. Iron and Steel Production. Chapter 12.5.
- USEPA (1995): Compilation of air pollutant emission factors, AP-42, Fifth Edition Volume 1: Chapter 13: Miscellaneous Sources - Introduction to Fugitive Dust Sources, U.S Environmental Protection Agency, Research Triangle Park, N.C.
- USEPA (2012): Health effects of Hazardous Air Pollutants Benzene. Available online at: www.epa.gov/airtoxics.
- USEPA (ND): Environmental issues of concern for urban communities: Resources, accessed 06 May 2023. <u>https://www.epa.gov/newenglandhc/environmental-issues-concerns-urbancommunities</u>
- World Health Organisation (WHO) (2000): Ambient Air Quality Guidelines for Europe. Available online at: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf. Subsequently updated in:
- WHO (2005): WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Available online at: http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jses sionid=1120BCE96A81BF3406B2D468337E283D?sequence=1
- WHO (2021): WHO Global Air Quality Guidelines. Available online at: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1.
- Wong, B.B.M. and Candolin, U. (2015): Behavioral Responses to Changing Environments, Behavioral Ecology, 26 (3), 665–673. Available online at: https://doi.org/10.1093/beheco/aru
- Zhao, L., Sun, W., Li, X., Ye, Z., Huang, J., Zhang, Z., and Cai, J. (2017): Assessment of particulate emissions from a sinter plant in steelmaking works in China. Environ Monit Assess 189: 368.

Appendix A

STACK EMISSION TEST REPORTS

CONFIDENTIAL

NSD

REPORT 22/R2147 – A1

STACK EMISSION MEASUREMENT SURVEY (COMPLIANCE)

FOR

SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN

SAMPLING PERIOD: FEBRUARY - MARCH 2022

E&OE

LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD Reg No 2017/188749/07. a LEVEGO affiliated company Directors: G B Woollatt, D L Posthumus, C M Malinda. Tel: (011) 608-4148. Fax: (011) 608-2621. www.levego.co.za Building R6, Pinelands Site, Ardeer Rd, Modderfontein, 1645. P O Box 422, Modderfontein 1645

SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN Stack Emission Measurement Survey (Compliance)

Building R6, Pinelands Site, Ardeer Rd, Modderfontein, 1645. P O Box 422, Modderfontein 1645

Your Reference: Order no. 4542277877

Our Reference: LES0763M Quotation 22/QF3133/hy

Enquiries: H. M. Yingwani Cell: 083 402 4436 E-mail: hlayiseka@levego.co.za

Date: 25 March 2022

SOUTH32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN MINE PO BOX 506 HOTAZEL SOUTH AFRICA 6000

Attention: Mr Sisa Teka

Dear Sir,

REPORT No: 22/R2147 -A1 - STACK EMISSION MEASUREMENT SURVEY, SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN

Please find attached our final amended report for the stack emission measurement survey performed on the various stacks described in this report at 32 Hotazel Manganese Mines (Pty) Ltd, Mamatwan. Please note this report is an amendment to and replaces report 22/R2147.

We thank you for this opportunity to be of service, and trust that the attached meets your approval.

If you have any queries, please do not hesitate to contact us at the number provided above.

Yours sincerely

H. M. Yingwani **Project manager** On behalf of Levego Environmental Services (Pty) Ltd

Copyright of this document is reserved. Publication without written approval from Levego Environmental Services is prohibited.

LES-SR-001-007 LES0763M Report 22/R2147 - A1

T0846

TABLE OF CONTENTS

<u>1.</u>	INTRODUCTION
1.1	SCOPE OF WORK
<u>2.</u>	SUMMARY OF TEST PROGRAM: METHOD STATEMENTS AND DEVIATIONS
2.1	VELOCITY, VOLUME, PRESSURE AND TEMPERATURE
2.2	PARTICULATE MATTER
2.3	WATER VAPOUR
2.4	NITROGEN OXIDES
2.5	OXYGEN AND CARBON DIOXIDE
2.6	CARBON MONOXIDE
2.7	SULPHUR DIOXIDE
2.8	KEY PERSONNEL7
<u>3.</u>	MEASUREMENT AND SAMPLING LOCATIONS7
3.1	GENERAL REQUIREMENTS FOR SAMPLING LOCATIONS
3.2	DE-DUST 1 STACK
3.3	DE-DUST 1 STACK
3.4	DE-DUST 2 STACK
3.5	WASTE GAS STACK
<u>4.</u>	QUALITY ASSURANCE AND QUALITY CONTROL11
4.1	SAMPLE IDENTIFICATION
4.2	CHAIN OF CUSTODY
4.3	FACILITY ACCREDITATION
4.4	SAMPLING EQUIPMENT
4.4	SAMPLING EQUIPMENT
<u>5.</u>	RESULTS AND DISCUSSION
5.1	GENERAL
5.2	RESULTS
5.2.	1 MEASUREMENT UNCERTAINTY
5.3	DISCUSSION14
5.3.	1 DE-DUST 1, 2 AND 3 STACKS
5.4	COMPLIANCE14

SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN Stack Emission Measurement Survey (Compliance)

<u>6.</u> <u>APPENDICES</u>.....<u>14</u>

	List of abbreviations, acronyms, and symbols (where applicable)
μg	microgram
ASTM	American Society for Testing and Materials
BDL	below detection limit
DCS	distributed control system
DGM	dry gas meter
ESP	electrostatic precipitator
ISO	International Organisation for Standardisation
kg/Nm ³	kilogram per normalised cubic metre (at NTP)
kPa	kilopascal
LECO	Laboratory Equipment Corporation
LOD	limit of detection
m	metre
m ²	square metre
m ³ /s	cubic metre per second
mA	milliampere
mb	millibar
mg/m ³	milligram per cubic metre
ng/Nm ³	milligram per normalised cubic metre (at NTP)
mm	millimetre
N/A	not applicable
N/M	not measured
ng	nanogram
NIOSH	National Institute for Occupational Safety and Health
NIST	National Institute of Standards and Technology
Nm ³	normalised cubic metre (at NTP)
NTP	normalised temperature and pressure (273 K and 1013.25 mb)
D ₂ ref %	oxygen reference percentage
PLC	programmable logic controller
PM	particulate matter
SCADA	supervisory control and data acquisition
SEM	scanning electron microscope
US EPA	United States Environmental Protection Agency

sanas

T0846

SABS

150 9001

1. INTRODUCTION

Levego Environmental Services was contracted to carry out a stack emission measurement survey to determine the source emissions from the stacks installed at the South 32 Hotazel Manganese Mines (Pty) Ltd plant.

The following was understood prior to the commencement of the work; the South 32 Hotazel Manganese Mines (Pty) Ltd staff would ensure that all plant operations were to their satisfaction, including the correct operation of all relevant pollution abatement equipment.

1.1 Scope of work

The table below outlines the scope of work that Levego Environmental Services completed during the stack emission measurement survey.

Release point	De-dust 1 Stack	De-dust 2 Stack	De-dust 3 Stack	Waste Gas Stack
Particulate matter	1	~	1	✓ <i>✓</i>
Water vapour	1	~	1	✓
Oxygen	1	1	1	✓
Carbon dioxide	1	~	~	1
Volumetric flow rate	1	~	~	✓
Nitrogen oxides	1	 ✓ 	~	✓
Carbon monoxide	1	~	1	~
Sulphur dioxide	1	~	1	 ✓

Table 1: Scope of measurements

2. SUMMARY OF TEST PROGRAM: METHOD STATEMENTS AND DEVIATIONS

2.1 Velocity, volume, pressure and temperature

Preliminary measurements, for calculation of the required nozzle size for isokinetic sampling, were determined using sampling and testing procedures as described in ISO 9096:2017(E) "Stationary Source Emissions - Manual Determination of Mass Concentration of Particulate Matter".

Velocity measurements are performed utilising a pitot tube and an inclined manometer. Volume flows are calculated from the average velocity and duct area. Pressure and temperature are measured directly utilising a barometer / manometer combination, and thermocouple, respectively.

LES-SR-001-007 LES0763M Report 22/R2147 - A1

T0846

2.2 Particulate matter

Particulate matter measurements were determined using sampling and testing procedures as described in ISO 9096:2017(E). "Stationary Source Emissions – Manual Determination of Mass Concentration of Particulate Matter".

High-purity pre-weighed quartz thimbles (30 mm diameter \times 100 mm long) were used to collect the particulate matter in the flue gas. The quartz filters are capable of withstanding temperatures of up to 800°C without filter media mass loss, and retain 99.9% of particles >0.3 µm.

2.3 Water vapour

Water vapour (H₂O) measurements were determined using sampling and testing procedures as described in US EPA Method 4 "Determination of Moisture Content in Stack Gases".

A gas sample is extracted isokinetically from the stack. H_2O is removed from the sample stream and determined gravimetrically.

2.4 Nitrogen oxides

Nitrogen oxides (NO_x) measurements were determined using sampling and testing procedures as described in US EPA Method 7E "Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of NO_x , which is the sum of NO and NO_2 .

2.5 Oxygen and carbon dioxide

Oxygen (O_2) and carbon dioxide (CO_2) measurements were determined using sampling and testing procedures as described in US EPA Method 3A "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of O_2 and CO_2 .

2.6 Carbon monoxide

Carbon monoxide (CO) measurements were determined using sampling and testing procedures as described in US EPA Method 10 "Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of CO.

LES-SR-001-007 LES0763M Report 22/R2147 – A1

2.7 Sulphur dioxide

Sulphur dioxide (SO₂) measurements were determined using sampling and testing procedures as described in US EPA Method 6 "Determination of Sulphur Dioxide Emissions from Stationary Sources".

A gas sample is extracted from the sampling point in the stack. The SO₂ and sulphur trioxide (SO₃), including those fractions in any sulphur acid mist, are separated. The SO₂ fraction is measured, *via* concentration of sulphate anion (SO₄^{2–}), by the barium-thorin titration method.

2.8 Key personnel

The project manager on this project was Hlayiseka Yingwani.

Team 1 consisted of Sizwe Lubuzo (team leader) and Lucky Mkalipi (sampling assistant).

3. MEASUREMENT AND SAMPLING LOCATIONS

3.1 General requirements for sampling locations

ISO 9096:2017(E) requires that the following criteria must be met:

- a) the angle of gas flow is less than 15° with regard to the duct axis;
- b) no local negative flow is present;
- c) the minimum velocity is higher than the detection limit of the method used for the flow rate measurement (for pitot tubes, a differential pressure larger than 5 Pa);
- d) the ratio of the highest to the lowest local gas velocities is less than 3:1.

If the above requirements are not met the uncertainty of measurement will be higher than that specified by ISO 9096:2017(E) and the sampling location will not be in compliance.

The above requirements are generally fulfilled in sections of duct with at least five hydraulic diameters of straight duct upstream of the sampling plane, and two hydraulic diameters downstream of the sampling plane (five hydraulic diameters from the top of a stack).

LES-SR-001-007 LES0763M Report 22/R2147 – A1

3.2 De-dust 1 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Height above ground level	~10 metres
Stack diameter	1.75 metres
Distance from sampling ports to downstream stack exit	~20 metres
Distance from sampling ports to upstream disturbance	~2 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	90 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c	Yes
ISO 9096:2017(E) d)	Yes

Table 2: De-dust 1 Stack Compliance with	ISO 9096:2017 general requirements
--	------------------------------------

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E)

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

3.3 De-dust 2 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Height above ground level	~12 metres		
Stack diameter	1.86 metres		
Distance from sampling ports to downstream stack exit	~9 metres		
Distance from sampling ports to upstream disturbance	~7 metres		
Number of sampling ports	2		
90° angle	Yes		
Sampling port size	90 mm		
ISO 9096:2017(E) a)	Yes		
ISO 9096:2017(E) b)	Yes		
ISO 9096:2017(E) c)	Yes		
ISO 9096:2017(E) d)	Yes		

Table 3: De-dust 2 Stack	Compliance with ISO 9096:2017	general requirements
--------------------------	-------------------------------	----------------------

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E)

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E) and the limitations of the plant design.

3.4 De-dust 3 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Height above ground level	~12 metres
Stack diameter	1.90 metres
Distance from sampling ports to downstream stack exit	~20 metres
Distance from sampling ports to upstream disturbance	~7 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	90 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c)	Yes
ISO 9096:2017(E) d)	Yes

Table 4: De-dust 3 Stack Compliance with ISO 9096:2017 general requirement	ements	equiremen	general req	:2017	9096:2	ISO	ce with	omplia	ck C	Stac	dust 3	e 4: De	Tah
--	--------	-----------	-------------	-------	--------	-----	---------	--------	------	------	--------	---------	-----

The sampling position fulfils the recommendations for the required diameters, and meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E).

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

SABS 1 5 0 9 0 0 1 (Sanas T0846

3.5 Waste Gas Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Height above ground level	~13 metres			
Stack diameter	3.29 metres			
Distance from sampling ports to downstream stack exit	~30 metres			
Distance from sampling ports to upstream disturbance	~2 metres			
Number of sampling ports	2 (Only one was used)			
90° angle	Yes			
Sampling port size	80 mm			
ISO 9096:2003 a)	Could not be confirmed			
ISO 9096:2003 b)	Could not be confirmed			
ISO 9096:2003 c)	Could not be confirmed			
ISO 9096:2003 d)	Could not be confirmed			

Table 5:	Waste	Gas Stack	Compliance wit	th ISO 9096:201	7 general	l requirements
					Bernelter	I CO WILL CARECING

The sampling position does not fulfil the recommendations as per the required diameters. It could not be established if the sampling location meets a), b), c) and d) of the general requirements. Only one sampling port was used for sampling, because there is an analyser on the second port.

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

QUALITY ASSURANCE AND QUALITY CONTROL 4.

4.1 Sample identification

All filters and solutions are labelled using pre-printed adhesive labels. Their identification codes are recorded on site observation sheets prior to the start of each measurement.

If additional samples are taken they are labelled on site at the completion of each measurement. Pre-printed adhesive labels are also used for this purpose.

4.2 Chain of custody

A chain of custody form accompanies the samples as the samples proceed from one measurement site to another.

4.3 Facility accreditation

The relevant accreditation numbers of the service provider undertaking each item of work is shown below.

Table 6: Scope of accreditation

Test parameter	Sampling	Analysis
Volumetric flow rate	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Particulate matter	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Water vapour	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Nitrogen oxides	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Oxygen	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Carbon dioxide	ISO 17025:2017	ISO 17025:2017
N-1-6-1	Levego Environmental Services	Levego Environmental Services
Carbon monoxide	ISO 17025:2017	ISO 17025:2017
ALL ALL A CONTRACT	Levego Environmental Services	Levego Environmental Services
Sulphur dioxide	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services

Table 7: Facility accreditation number

Facility	Accreditation number
Levego Environmental Services	SANAS Testing Laboratory T0846

4.4 Sampling equipment

Team 1 used the following sampling equipment:

- Apex Model XC-572 source sampling train (Console Serial Number: 1011090)
- Dry gas meter: (Serial Number: 1902092)
- Barometer: (Serial Number: DB17)
- Pitot tube: (Serial Number: ST-1)
- Nozzle(s): (Set Number (s): NS5-2/3/7)
- Flue-gas analyser: Seitron Chemist 600 (Serial Number: 1076)

Calibration records are included in the attachment section of this report.

5. RESULTS AND DISCUSSION

5.1 General

Testing only commenced after confirmation was received from the South 32 Hotazel Manganese Mines (Pty) Ltd staff that the plant was stable and operating under normal conditions.

In this report, an analyte concentration that was measured to be below the limit of detection for a particular laboratory test method is reported at the limit of detection, unless otherwise indicated. For calculation of a pollutant concentration, the analyte amount is calculated and is then divided by the gas volume sampled.

5.2 Results

The result summaries are attached as Appendix A to Appendix D.

5.2.1 Measurement Uncertainty

The measurement uncertainties are shown in Appendices E to H. The tables show the averages over three tests of the measured results, the uncertainties in measurement units, and uncertainties as a proportion (%) of the measured values.

5.3 Discussion

5.3.1 De-dust 1, 2 and 3 stacks

Please note there was visible dust on the stack exit, during sampling.

With regards to the measured CO, CO_2 and NO_x results were below the limits of detection and have been reported at the limit of detection.

5.4 Compliance

As set out in the Atmospheric Emission Licence (AEL), supplied by South 32 Mamatwan Hotazel Manganese Mines, license number: NC/AEL/JTG/MAM01/2012, the emission limits are set as presented in the following table and compared with measured values.

Substance of substance		Date to be achieved by:	Emission limit	De-dust 1 Stack test average	De-dust 2 Stack test average	De-dust 3 Stack test average	Waste Gas Stack test average
Common name	Chemical symbol		mg/Nm³, 273 K, dry, 101.3 kPa				
Particulate	27/4	01/04/2020	50	34.11	85.06*	N/A	114.84*
matter N/A	01/04/2020	135	N/A	N/A	13.76	N/A	
Nitrogen oxides	NOx	01/04/2020	700	<u>0.82</u>	<u>0.82</u>	<u>0.82</u>	322.37
Sulphur dioxide	SO ₂	01/04/2020	500	<u>0.57</u>	<u>0.67</u>	4.94	658.17*

Table 8: Compliance table

Note: Italic underlined values are below the LOD of the method of analysis.

*Average concentration exceeds the permissible emission limit.

N/A: Not Applicable

Italic = Results include a result, or results, reported at the laboratory test methods' LOQ

6. APPENDICES

Appendix A - Test Results: De-dust 1 Stack – PM, O₂, CO₂, CO, NO_x and SO₂ Appendix B - Test Results: De-dust 2 Stack – PM, O₂, CO₂, CO, NO_x and SO₂ Appendix C - Test Results: De-dust 3 Stack – PM, O₂, CO₂, CO, NO_x and SO₂ Appendix D - Test Results: Waste Gas Stack – PM, O₂, CO₂, CO, NO_x and SO₂

Appendix E: Uncertainties Reporting Summaries – De-dust 1 Stack Appendix F: Uncertainties Reporting Summaries – De-dust 2 Stack Appendix G: Uncertainties Reporting Summaries – De-dust 3 Stack Appendix H: Uncertainties Reporting Summaries – Waste Gas Stack

sanas

7. ATTACHMENTS

- Proof of delivery
- Test sheets
- · Chain of custody sheets and laboratory analysis sheets
- Calibration and verification certificates

We would like to take this opportunity to thank the South 32 Hotazel Manganese Mines (Pty) Ltd personnel that assisted us in the survey. We consider the measurement survey to be successful, and an accurate reflection of the plant conditions at the time of measurement.

Yours sincerely,

etlho


Report Writer Levego Environmental Services

H. M. Yingwani

Approved by (Technical Signatory) Levego Environmental Services

APPENDICES

LES-SR-001-007 LES0763M Report 22/R2147 – A1

Page 16 of 25

		RESULTS	(Den) I tol		
S	outh 32 Hotazel Ma	inganese Mines ist 1 Stack	(Pty) Ltd		
		S0763M			
	DATE	28-Feb-22	28-Feb-22	28-Feb-22	1
	TEST START	11:05	12:30	13:55	
	TEST STOP	12:12	13:37	15:03	
PARAMETER	TEST	1	2	3	Average
O2	% (dry)	20.90	20.90	20.90	20.90
co	ppm (dry)	2.00	2.00	2.00	2.00
CO:	% (dry)	0.70	0.70	0.70	0.70
Na (by difference)	% (dry)	78.40	78.40	78.40	78.40
Dry Gas Density	kg/Nm³	1.29	1.29	1.29	1.29
Barometric Pressure	mb	894.00	894.00	894.00	894.00
Static Pressure	mb	-0.20	-0.20	-0.20	-0.20
Absolute Pressure	mb	893.80	893.80	893.80	893.80
Moisture Content	96	1.91	1.21	1.12	1.42
Gas Temperature	°C	59.00	59.23	60.23	59.49
Wet Gas Density	kg/Nm'	1.28	1.29	1.29	1.29
Duct Size	m	1.75	1.75	1.75	
Duct Area	m ²	2.41	2.41	2.41	
Gas Density	kg/m ³	0.93	0.93	0.93	0.93
Velocity Head	mb	0.04	0.04	0.04	0.04
Sample Time	sec	3,600.00	3,600.00	3,600.00	79.5.5
Gas Velocity	m/s	2.99	2.98	2.99	2.99
Gas Volume Flow (actual)	m³/s (actual)	7.18	7.18	7.19	7.18
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	5.21	5.20	5.19	5.20
Gas Volume Flow NTP (dry)	Nm ³ /s (dry)	5.11	5.14	5.13	5.13
Gas Volume Flow NTP (dry, 10% O2)	Nm ³ /s (dry, O ₂)	0.05	0.05	0.05	0.05
Gas Volume Flow (actual)	m ³ /h (actual)	25,857.64	25,832.24	25,866.72	25,852.20
Gas Volume Flow NTP (wet)	Nm ³ /h (wet)	18,757.78	18,726.34	18,695.09	18,726.40
Gas Volume Flow NTP (dry)	Nm ³ /h (dry)	18,399.14	18,499.25	18,484.94	18,461.1
Gas Volume Flow NTP (dry)	Nm ³ /h (dry, O ₂)	167.26	168.17	168.04	167.83
Nozzle Diameter	mm	12.66	12.66	12.66	
Sampled Volume (dry)	m	1.37	1.38	1.38	
Sampled Volume NTP (dry)	Nm'	1.00	1.00	1.00	
PM Collected	mg	64.22	16.22	21.59	
PM Concentration (dry)	mg/m³ (dry)	46.79	11.72	15.67	24.73
PM Concentration NTP (dry)	mg/Nm³ (dry)	64.50	16.17	21.68	34.11
Sampled Volume (wet)	m ³ (wct)	1.40	1.40	1.39	
Sampled Volume NTP (wet)	Nm ³ (wet)	1.02	1.02	1.01	
PM Concentration (wet)	mg/m ³ (wet)	45.89	11.58	15.49	24.32
PM Concentration NTP (wet)	mg/Nm ³ (wet)	63.26	15.97	21.44	33.56
PM Emission Rate	mg/s	329.63	83.07	111.32	174.68
PM Emission Rate	kg/h	1.19	0.30	0.40	0.63
SO2 Collected	mg	0.57	0.57	0.57	
SO ₂ Concentration (dry)	mg/m³ (dry)	0.41	0.41	0.41	0.41
SO2 Concentration NTP (dry)	mg/Nm ³ (dry)	0.57	0.56	0.57	0.57
SO ₂ Concentration (wet)	mg/m³ (wet)	0.41	0.40	0.41	0.41
SO ₂ Concentration NTP (wet)	mg/Nm ³ (wet)	0.56	0.56	0.56	0.56
SO2 Emission Rate	mg/s	2.91	2.90	2.92	2.91
SO2 Emission Rate	kg/h	0.01	0.01	0.01	0.01
NOx Concentration NTP (dry)	mg/Nm ³ (dry)	0.82	0.82	0.82	0.82
NOx Emission Rate	mg/s	4.20	4.22	4.22	4.21
NOx Emission Rate	kg/h	0.02	0.02	0.02	0.02
CO Concentration NTP (dry)	mg/Nm3 (dry)	2.50	2.50	2.50	2.50
CO Emission Rate	mg/s	12.77	12.84	12.83	12.82
CO Emission Rate	kg/h	0.05	0.05	0.05	0.05

Appendix A - Test Results: De-dust 1 Stack - PM, O2, CO2, CO, NOx and SO2

Italic, underlined = Values are below the detection limit, but the laboratory test method's limit of quantification (LOQ) is reported.

	outh 32 Hotazel Ma	RESULTS	(Ptu) I td		
30		st 2 Stack	(Pty) Ltu		
		50763M			
	DATE	26-Feb-22	26-Feb-22	26-Feb-22	
	TEST START	09:45	11:10	12:32	
	TEST STOP	10:53	12:17	13:40	
PARAMETER	TEST	1	2	3	Averages
D2	% (dry)	20.90	20.90	20.90	20.90
0	ppm (dry)	2.00	2.00	2.00	2.00
CO2	% (dry)	0.70	0.70	0.70	0.70
N2 (by difference)	% (dry)	78.40	78.40	78.40	78.40
Dry Gas Density	kg/Nm ³	1.29	1.29	1.29	1.29
Barometric Pressure	mb	894.00	894.00	894.00	894.00
Static Pressure	mb	-0.43	-0.43	-0.43	-0.43
Absolute Pressure	mb	893.57	893.57	893.57	893.57
Moisture Content	96	2.33	1.51	1.64	1.83
Gas Temperature	°C	58.38	61.62	64.31	61.44
Wet Gas Density	kg/Nm²	1.28	1.29	1.28	1.28
Duct Size	m	1.86	1.86	1.86	
Duct Area	m ²	2.72	2.72	2.72	-
Gas Density	kg/m³	0.93	0.93	0.92	0.92
Velocity Head	mb	0.48	0.49	0.48	0.48
Sample Time	sec	3,600.00	3,600.00	3,600.00	
Gas Velocity	m/s	10.13	10.28	10.24	10.22
Gas Volume Flow (actual)	m³/s (actual)	27.53	27.92	27.83	27.76
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	20.00	20.09	19.86	19.99
Gas Volume Flow NTP (dry)	Nm ¹ /s (dry)	19.53	19.79	19.54	19.62
Gas Volume Flow NTP (dry, 10% O2)	Nm ¹ /s (dry, O ₂)	0.18	0.18	0.18	0.18
Gas Volume Flow (actual)	m³/h (actual)	99,090.33	100,521.07	100,177.19	99,929.5
Gas Volume Flow NTP (wet)	Nm ³ /h (wet)	71,997.07	72,331.75	71,509.21	71,946.0
Gas Volume Flow NTP (dry)	Nm ¹ /h (dry)	70,317.34	71,240.53	70,335.40	70,631.0
Gas Volume Flow NTP (dry)	Nm ³ /h (dry, O ₂)	639.25	647.64	639.41	642.10
Nozzle Diameter	mm	6.42	6.42	6.42	
Sampled Volume (dry)	m ²	1.16	1.17	1.17	
Sampled Volume NTP (dry)	Nm³	0.84	0.84	0.83	
PM Collected	mg	76.39	67.67	70.57	
PM Concentration (dry)	mg/m³ (dıy)	65.78	57.64	60.33	61.25
PM Concentration NTP (dry)	mg/Nm² (dry)	90.54	80.11	84.52	85.06
Sampled Volume (wet)	m ³ (wet)	1.19	1.19	1.19	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.86	0.86	0.85	
PM Concentration (wet)	mg/m³ (wet)	64.25	56.78	59.34	60.12
PM Concentration NTP (wet)	mg/Nm3 (wet)	88.43	78.90	83.13	83.49
PM Emission Rate	mg/s	1,768.44	1,585.30	1,651.33	1,668.30
PM Emission Rate	kg/h	6.37	5.71	5.94	6.01
SO2 Collected	mg	0.57	0.57	0.57	
SO2 Concentration (dry)	mg/m³ (dıy)	0.49	0.48	0.48	0.49
SO2 Concentration NTP (dry)	mg/Nm³ (dry)	0.67	0.67	0.68	0.67
SO2 Concentration (wet)	mg/m³ (wet)	0.48	0.48	0.48	0.48
SO ₂ Concentration NTP (wet)	mg/Nm ³ (wet)	0.66	0.66	0.67	0.66
SO2 Emission Rate	mg/s	13.12	13.28	13.26	13.22
SO ₂ Emission Rate	kg/h	0.05	0.05	0.05	0.05
NOx Concentration NTP (dry)	mg/Nm ^v (dry)	<u>0.82</u>	<u>0.82</u>	<u>0.82</u>	<u>0.82</u>
NOx Emission Rate	mg/s	16.04	<u>16.25</u>	16.04	<u>16.11</u>
NOx Emission Rate	kg/h	0.06	0.06	0.06	0.06
CO Concentration NTP (dry)	mg/Nm³ (dry)	2.50	2.50	<u>2.50</u>	2.50
CO Emission Rate	mg/s	48.82	<u>49.46</u>	<u>48.83</u>	49.04
CO Emission Rate	kg/h	<u>0.18</u>	<u>0.18</u>	<u>0.18</u>	0.18

Appendix B - Test Results: De-dust 2 Stack - PM, O2, CO2, CO, NOx and SO2

Italic_underlined = Values are below the detection limit, but the laboratory test method's limit of quantification (LOQ) is reported.

LES-SR-001-007 LES0763M Report 22/R2147 - A1 SABS

T0846

Sc	outh 32 Hotazel Ma		(Pty) Ltd		
		ist 3 Stack			
	1	S0763M			and the second
	DATE	25-Feb-22	25-Feb-22	25-Feb-22	
	TEST START	12:01	13:26	14:46	
B I B I I CETTER	TEST STOP	13:09	14:34	15:53	
PARAMETER	TEST	1	2	3	Averages
01	% (dry)	20.90	20,90	20.90	20.90
co	ppm (dry)	2.00	2.00	2.00	2.00
CO2	% (dry)	0.70	<u>0.70</u>	<u>0.70</u>	<u>0.70</u>
Na (by difference)	96 (dry)	78.40	78.40	78.40	78.40
Dry Gas Density	kg/Nm ³	1.29	1.29	1.29	1.29
Barometric Pressure Static Pressure	mb	891.00	891.00	891.00	891.00
	mb	-1.08	-1.08	-1.08	-1.08
Absolute Pressure	mb	889.92	889.92	889.92	889.92
Moisture Content	%	2.14	1.17	1.10	1.47
Gas Temperature	°C	49.15	50.23	51.46	50.28
Wet Gas Density	kg/Nm³	1.28	1.29	1.29	1.29
Duct Size		1.90	1.90	1.90	
Duct Area	m ²	2.84	2.84	2.84	
Gas Density	kg/m³	0.95	0.95	0.95	0.95
Velocity Head	mb	1.82	1.79	1.79	1.80
Sample Time	sec	3,600.00	3,600.00	3,600.00	(starting)
Gns Velocity	m/s	19.55	19.35	19.38	19.43
Gas Volume Flow (actual)	m ³ /s (actual)	55.44	54.86	54.95	55.08
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	41.27	40.70	40.61	40.86
Gas Volume Flow NTP (dry)	Nm³/s (dry)	40.38	40.22	40.16	40.26
Gas Volume Flow NTP (dry, 10% O ₂)	Nm ³ /s (dry, O ₂)	0.37	0.37	0.37	0.37
Gas Volume Flow (actual)	m³/h (actual)	199,578.71	197,494.41	197,827.20	198,300.11
Gas Volume Flow NTP (wet)	Nm ³ /h (wet)	148,554.19	146,513.21	146,203.65	147,090.35
Gas Volume Flow NTP (dry)	Nm³/h (dry)	145,378.63	144,803.70	144,590.61	144,924.31
Gas Volume Flow NTP (dry)	Nm³/h (dry, O2)	1,321.62	1,316.40	1,314.46	1,317.49
Nozzle Diameter	mm	4.63	4.63	4.63	
Sampled Volume (dry)	m³	1.19	1.19	1.21	-
Sampled Volume NTP (dry)	Nm³	0.88	0.89	0.89	
PM Collected	mg	11.90	11.50	13.21	
PM Concentration (dry)	mg/m³ (dry)	10.04	9.64	10.94	10.21
PM Concentration NTP (dry)	mg/Nm ³ (dry)	13.49	12.99	14.81	13.76
Sampled Volume (wet)	m ³ (wet)	1.21	1.21	1.22	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.90	0.90	0.90	
PM Concentration (wet)	mg/m ³ (wet)	9.83	9.53	10.82	10.06
PM Concentration NTP (wet)	mg/Nm' (wet)	13.20	12.84	14.64	13.56
PM Emission Rate	mg/s	544.73	522.56	594.71	554.00
PM Emission Rate	kg/h	1.96	1.88	2.14	1.99
SO: Collected	mg	11.96	0.57	0.57	1000000
SO ₂ Concentration (dry)	mg/m³ (dry)	10.09	0.48	0.47	3.68
SO ₂ Concentration NTP (dry)	mg/Nm³ (dry)	13.56	0.64	0.64	4.94
SO: Concentration (wet)	mg/m ³ (wet)	9.88	0.47	0.46	3.60
SO ₂ Concentration NTP (wet)	mg/Nm ³ (wet)	13.27	0.63	0.63	4.84
SO: Emission Rate	mg/s	547.50	25.76	25.52	199.59
SO ₂ Emission Rate	kg/h	1.97	0.09	0.09	0.72
NOx Concentration NTP (dry)	mg/Nm³ (dry)	0.82	0.82	0.82	<u>0.82</u>
NOx Emission Rate	mg/s	33.15	<u>33.02</u>	32.97	<u>33.05</u>
NOx Emission Rate	kg/h	0.12	0.12	0.12	0.12
CO Concentration NTP (dry)	mg/Nm³ (dry)	<u>2.50</u>	2.50	<u>2.50</u>	<u>2.50</u>
CO Emission Rate	mg/s	100.93	100.53	100.38	100.62
	kg/h	0.36	0.36	0.36	0.36

Appendix C - Test Results: De-dust 3 Stack - PM, O2, CO2, CO, NOx and SO2

Italic, underlined = Values are below the detection limit, but the laboratory test method's limit of quantification (1.0Q) is reported. Italic = Results include a result, or results, reported at the laboratory test methods's LOQ

LES-SR-001-007 LES0763M Report 22/R2147 – A1

(Sanas

U

Page 19 of 25

The second se	TEST	RESULTS			
So	uth 32 Hotazel Ma	nganese Mines (Pty) Ltd		
	Waste	Gas Stack			
	LE	S0763M	A REAL PROPERTY		the state of the state
	DATE	02-Mar-22	02-Mar-22	02-Mar-22	
	TEST START	11:20	12:48	14:13	
	TEST STOP	12:24	13:52	15:17	
PARAMETER	TEST	1	2	3	Averages
01	% (dry)	17.61	16.99	17.54	17.38
CO	ppm (dry)	6,589.31	5,392.94	5,272.50	5,751.58
CO ₂	% (dry)	4.27	4.37	4.31	4.32
№ (by difference)	% (dry)	77.42	78.05	77.59	77.69
Dry Gas Density	kg/Nm'	1,31	1.31	1.31	1.31
Barometric Pressure	mb	892.00	892.00	892.00	892.00
Static Pressure	mb	-3.53	-3.53	-3.53	-3.53
Absolute Pressure	mb	888.47	888.47	888.47	888.47
Moisture Content	%	3.48	2.45	2.79	2.91
Gas Temperature	°C	164.00	166.19	168.31	166.17
Wet Gas Density	kg/Nm ³	1.30	1.30	1.30	1.30
Duct Size	m	3.29	3.29	3.29	
Duct Area	m ²	8.50	8.50	8.50	
Gas Density	kg/m³	0.71	0.71	0.70	0.71
Velocity Head	mb	3.11	3.10	3.11	3.11
Sample Time	see	3,840.00	3,840.00	3,840.00	
Gas Velocity	m/s	29.61	29.59	29.72	29.64
Gas Volume Flow (actual)	m ³ /s (actual)	251.75	251.56	252.65	251.99
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	137.93	137.14	137.07	137.38
Gas Volume Flow NTP (dry)	Nm³/s (dry)	133.13	133.78	133.24	133.38
Gas Volume Flow NTP (dry, 10% O2)	Nm ³ /s (dry, O ₂)	41.07	48.72	41.94	43.91
Gas Volume Flow (actual)	m³/h (actual)	906,307.33	905,617.74	909,522.73	907,149.27
Gas Volume Flow NTP (wet)	Nm³/h (wet)	496,560.51	493,712.15	493,454.26	494,575.64
Gas Volume Flow NTP (dry)	Nm ³ /h (dry)	479,278.83	481,610.52	479,663.28	480,184.21
Gas Volume Flow NTP (dry)	Nm³/h (dry, O2)	147,868.41	175,404.74	150,984.92	158,086.02
Nozzle Diameter	mm	4.63	4.63	4.63	
Sampled Volume (dry)	m'	1.77	1.80	1.82	
Sampled Volume NTP (dry)	Nm³	0.97	0.98	0.99	
PM Collected	mg	140.36	60.60	136.86	
PM Concentration (dry)	mg/m³ (dry)	79.16	33.60	75.08	62.61
PM Concentration NTP (dry)	mg/Nm ⁹ (dry)	144.49	61.64	138.38	114.84
Sampled Volume (wet)	m ³ (wet)	1.84	1.85	1.88	
Sampled Volume NTP (wet)	Nm ³ (wet)	1.01	1.01	1.02	
PM Concentration (wet)	mg/m³ (wet)	76.41	32.78	72,98	60.72
PM Concentration NTP (wet)	mg/Nm ³ (wet)	139.46	60.13	134.51	111.37
PM Emission Rate	mg/s	19,236.11	8,246.26	18,437.43	15,306.60
PM Emission Rate	kg/h	69.25	29.69	66.37	55.10
SO2 Collected	mg	646.97	744.86	544.82	2011 (Mar.) 8
SO2 Concentration (dry)	mg/m³ (dry)	364.90	413.04	298.86	358.93
SO2 Concentration NTP (dry)	mg/Nm³ (dry)	666.00	757.65	550.86	658.17
SO ₂ Concentration (wet)	mg/m ³ (wet)	352.20	402.92	290.51	348.54
SO2 Concentration NTP (wet)	mg/Nm ³ (wet)	642.82	739.08	535.46	639.12
SO2 Emission Rate	mg/s	88,666.00	101,358.70	73,396.18	87,806.96
SO2 Emission Rate	kg/h	319.20	364.89	264.23	316.11
NOx Concentration NTP (dry)	mg/Nm ³ (dry)	321.48	313.65	331.99	322.37
NOx Emission Rate	mg/s	42,798.96	41,960.32	44,234.86	42,998.05
NOx Emission Rate	kg/h	154.08	151.06	159.25	154.79
CO Concentration NTP (dry)	mg/Nm ³ (dry)	8,234.45	6,739.38	6,588.87	7,187.57
CO Emission Rate	mg/s	1,096,277.07	901,598.80	877,899.97	958,591.95
CO Emission Rate	kg/h	3,946.60	3,245.76	3,160.44	3,450.93
Go Labson Ane		212 10:00	-,- 12.1 0	-	
Isokinetic Rate	%	96	97	98	1
ISOAIICIIC Mile	1				

Appendix D - Test Results: Waste Gas Stack - PM, O2, CO2, CO, NOx and SO2

> SABS 150 9001

sanas T0846

South 3	AEL Reporting Sum 32 Hotazel Manganese De-dust 1 Stac LES0763M	Mines (Pty) I	Ltd	
			Concentrations	
Substance or mixture of substances		Average	Uncertair confiden	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm ³ (dry)	%
Particulate matter	N/A	34.11	± 1.21	± 3.55
Carbon dioxide	CO2	<u>13,744</u>	<u>± 261</u>	± 1.90
Carbon monoxide	СО	<u>2.50</u>	± 0.05	± 1.97
Nitrogen oxides	NOx expressed as NO2	<u>0.82</u>	± 0.02	± 2.04
Sulphur dioxide (wet chemical)	SO ₂	0.57	± 0.10	± 17.96

Appendix E: Uncertainties Reporting Summaries - De-dust 1 Stack

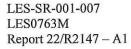
Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

South 3	AEL Reporting Sum 32 Hotazel Manganese De-dust 2 Stac LES0763M	Mines (Pty) I	_td	
			Concentrations	
Substance or mixture of substances		Average	Uncertain confidene	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm ³ (dry)	%
Particulate matter	N/A	85.06	± 2.85	± 3.4
Carbon dioxide	CO2	<u>13,744</u>	<u>± 261</u>	<u>± 1.9</u>
Carbon monoxide	СО	<u>2.50</u>	<u>± 0.05</u>	<u>± 2.0</u>
Nitrogen oxides	NOx expressed as NO2	<u>0.82</u>	± 0.02 ± 2.0	
Sulphur dioxide (wet chemical)	SO ₂	0.67	± 0.12	± 18.0


Appendix F: Uncertainties Reporting Summaries - De-dust 2 Stack

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

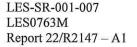
sanas

T0846

SABS

150 9001

South 3	AEL Reporting Sum 32 Hotazel Manganese De-dust 3 Stac LES0763M	Mines (Pty) I	Ltd		
			Concentrations		
Substance or mixture of substances		Average		tainty (95% dence, k=2)	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm ³ (dry)	%	
Particulate matter	N/A	13.76	± 0.58	± 4.2	
Carbon dioxide	CO2	<u>13,744</u>	<u>± 261</u>	<u>± 1.9</u>	
Carbon monoxide	Carbon monoxide CO		± 0.05	± 2.0	
Nitrogen oxides	NOx expressed as NO2	<u>0.82</u>	± 0.02	± 2.0	
Sulphur dioxide (wet chemical)	SO ₂	4.94	± 0.23	± 13.1	


Appendix G: Uncertainties Reporting Summaries - De-dust 3 Stack

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

T0846

South 3	AEL Reporting Sum 32 Hotazel Manganese Waste Gas Stac LES0763M	Mines (Pty) I	.td	
			Concentrations	
Substance or mixture of substances		Average	Uncertaint confidenc	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm ³ (dry)	%
Particulate matter	N/A	114.84	± 3.85	± 3.4
Carbon dioxide	CO2	84,756	± 6443	± 7.6
Carbon monoxide	CO	7,187.57	± 159.34	± 2.2
Nitrogen oxides	NOx expressed as NO ₂	322.37	± 6.59	± 2.0
Sulphur dioxide (wet chemical)	SO ₂	658.17	± 22.02	± 3.3

Appendix H: Uncertainties Reporting Summaries - Waste Gas Stack

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

ATTACHMENTS

LES-SR-001-007 LES0763M Report 22/R2147 – A1

Page 25 of 25

REPORT 23/R2307

STACK EMISSION MEASUREMENT SURVEY (COMPLIANCE)

FOR

SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN

SAMPLING PERIOD: NOVEMBER 2022 – JANUARY 2023

E&OE

LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD Reg No 2017/188749/07. a LEVEGO affiliated company Directors: G B Woollatt, D L Posthumus, C M Malinda. Tel: (011) 608-4148. Fax: (011) 608-2621. www.levego.co.za Building R6, Pinelands Site, Ardeer Rd, Modderfontein, 1645. P O Box 422, Modderfontein 1645

Building R6, Pinelands Site, Ardeer Rd, Modderfontein, 1645. P O Box 422, Modderfontein 1645

Your Reference: Order no. 4542492488

Our Reference: LES0913M Quotation 22/QF3452/hy

Enquiries: H. M. Yingwani Cell: 083 402 4436 E-mail: <u>hlayiseka@levego.co.za</u>

Date: 06 February 2023

SOUTH32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN MINE PO BOX 506 HOTAZEL SOUTH AFRICA 6000

Attention: Mr Sisa Teka

Dear Sir,

REPORT No: 23/R2307 – STACK EMISSION MEASUREMENT SURVEY, SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN

Please find attached our final report for the stack emission measurement survey performed on the various stacks described in this report at 32 Hotazel Manganese Mines (Pty) Ltd, Mamatwan.

We thank you for this opportunity to be of service, and trust that the attached meets your approval.

If you have any queries, please do not hesitate to contact us at the number provided above.

Yours sincerely,

H. M. Yingwani Project manager On behalf of Levego Environmental Services (Pty) Ltd

Copyright of this document is reserved. Publication without written approval from Levego Environmental Services is prohibited.

LES-SR-001-007 (E01) LES0913M Report 23/R2307

Page 2 of 23

TABLE OF CONTENTS

<u>1.</u>	INTRODUCTION5
1.1	SCOPE OF WORK
<u>2.</u>	SUMMARY OF TEST PROGRAM: METHOD STATEMENTS AND DEVIATIONS5
2.1	VELOCITY, VOLUME, PRESSURE AND TEMPERATURE
2.2	PARTICULATE MATTER
2.3	WATER VAPOUR
2.4	NITROGEN OXIDES
2.5	OXYGEN AND CARBON DIOXIDE
2.6	CARBON MONOXIDE
2.7	SULPHUR DIOXIDE
2.8	KEY PERSONNEL
<u>3.</u>	MEASUREMENT AND SAMPLING LOCATIONS7
3.1	GENERAL REQUIREMENTS FOR SAMPLING LOCATIONS7
3.2	DE-DUST 1 STACK
3.3	DE-DUST 2 STACK
3.4	DE-DUST 3 STACK
3.5	WASTE GAS STACK
<u>4.</u>	QUALITY ASSURANCE AND QUALITY CONTROL11
4.1	SAMPLE IDENTIFICATION11
4.2	CHAIN OF CUSTODY
4.3	FACILITY ACCREDITATION12
4.4	SAMPLING EQUIPMENT12
<u>5.</u>	RESULTS AND DISCUSSION
5.1	GENERAL
5.2	RESULTS
5.2	1 MEASUREMENT UNCERTAINTY
5.3	DISCUSSION
5.3	1 DE-DUST 1 STACK
5.4	COMPLIANCE

<u>6.</u> <u>APPENDICES</u>......14

	List of abbreviations, acronyms, and symbols (where applicable)				
μg	microgram				
ASTM	American Society for Testing and Materials				
BDL	below detection limit				
DCS	distributed control system				
DGM	dry gas meter				
ESP	electrostatic precipitator				
ISO	International Organisation for Standardisation				
kg/Nm ³	kilogram per normalised cubic metre (at NTP)				
kPa	kilopascal				
LECO	Laboratory Equipment Corporation				
LOD	limit of detection				
m	metre				
m ²	square metre				
m³/s	cubic metre per second				
mA	milliampere				
mb	millibar				
mg/m ³	milligram per cubic metre				
mg/Nm ³	milligram per normalised cubic metre (at NTP)				
mm	millimetre				
N/A	not applicable				
N/M	not measured				
ng	nanogram				
NIOSH	National Institute for Occupational Safety and Health				
NIST	National Institute of Standards and Technology				
Nm ³	normalised cubic metre (at NTP)				
NTP	normalised temperature and pressure (273 K and 1013.25 mb)				
O ₂ ref %	oxygen reference percentage				
PLC	programmable logic controller				
PM	particulate matter				
SCADA	supervisory control and data acquisition				
SEM	scanning electron microscope				
US EPA	United States Environmental Protection Agency				

1. INTRODUCTION

Levego Environmental Services was contracted to carry out a stack emission measurement survey to determine the source emissions from the stacks installed at the South 32 Hotazel Manganese Mines (Pty) Ltd plant.

The following was understood prior to the commencement of the work; the South 32 Hotazel Manganese Mines (Pty) Ltd staff would ensure that all plant operations were to their satisfaction, including the correct operation of all relevant pollution abatement equipment.

1.1 Scope of work

The table below outlines the scope of work that Levego Environmental Services completed during the stack emission measurement survey.

Release point	De-dust 1 Stack	De-dust 2 Stack	De-dust 3 Stack	Waste Gas Stack
Particulate matter	×	1	\checkmark	~
Water vapour	~	~	\checkmark	~
Oxygen	~	~	\checkmark	✓
Carbon dioxide	1	~	\checkmark	✓
Volumetric flow rate	~	~	\checkmark	✓
Nitrogen oxides	~	~	\checkmark	✓
Carbon monoxide	1	✓	\checkmark	✓
Sulphur dioxide	\checkmark	✓	\checkmark	✓

Table 1: Scope of measurements

2. SUMMARY OF TEST PROGRAM: METHOD STATEMENTS AND DEVIATIONS

2.1 Velocity, volume, pressure and temperature

Preliminary measurements, for calculation of the required nozzle size for isokinetic sampling, were determined using sampling and testing procedures as described in ISO 9096:2017(E) "Stationary Source Emissions – Manual Determination of Mass Concentration of Particulate Matter".

Velocity measurements are performed utilising a pitot tube and an inclined manometer. Volume flows are calculated from the average velocity and duct area. Pressure and temperature are measured directly utilising a barometer / manometer combination, and thermocouple, respectively.

2.2 Particulate matter

Particulate matter measurements were determined using sampling and testing procedures as described in ISO 9096:2017(E). "Stationary Source Emissions – Manual Determination of Mass Concentration of Particulate Matter".

SABS

High-purity pre-weighed quartz thimbles (30 mm diameter \times 100 mm long) were used to collect the particulate matter in the flue gas. The quartz filters are capable of withstanding temperatures of up to 800°C without filter media mass loss, and retain 99.9% of particles >0.3 µm.

2.3 Water vapour

Water vapour (H₂O) measurements were determined using sampling and testing procedures as described in US EPA Method 4 "Determination of Moisture Content in Stack Gases".

A gas sample is extracted isokinetically from the stack. H₂O is removed from the sample stream and determined gravimetrically.

2.4 Nitrogen oxides

Nitrogen oxides (NO_x) measurements were determined using sampling and testing procedures as described in US EPA Method 7E "Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of NO_x , which is the sum of NO and NO_2 .

2.5 Oxygen and carbon dioxide

Oxygen (O_2) and carbon dioxide (CO_2) measurements were determined using sampling and testing procedures as described in US EPA Method 3A "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of O_2 and CO_2 .

2.6 Carbon monoxide

Carbon monoxide (CO) measurements were determined using sampling and testing procedures as described in US EPA Method 10 "Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of CO.

2.7 Sulphur dioxide

Sulphur dioxide (SO₂) measurements were determined using sampling and testing procedures as described in US EPA Method 6 "Determination of Sulphur Dioxide Emissions from Stationary Sources".

A gas sample is extracted from the sampling point in the stack. The SO₂ and sulphur trioxide (SO₃), including those fractions in any sulphur acid mist, are separated. The SO₂ fraction is measured, *via* concentration of sulphate anion (SO₄^{2–}), by the barium-thorin titration method.

SABS

2.8 Key personnel

The project manager on this project was Hlayiseka Yingwani.

Team 1 consisted of Sizwe Lubuzo (team leader) and Lucky Mkalipi (sampling assistant).

3. MEASUREMENT AND SAMPLING LOCATIONS

3.1 General requirements for sampling locations

ISO 9096:2017(E) requires that the following criteria must be met:

- a) the angle of gas flow is less than 15° with regard to the duct axis;
- b) no local negative flow is present;
- c) the minimum velocity is higher than the detection limit of the method used for the flow rate measurement (for pitot tubes, a differential pressure larger than 5 Pa);
- d) the ratio of the highest to the lowest local gas velocities is less than 3:1.

If the above requirements are not met the uncertainty of measurement will be higher than that specified by ISO 9096:2017(E) and the sampling location will not be in compliance.

The above requirements are generally fulfilled in sections of duct with at least five hydraulic diameters of straight duct upstream of the sampling plane, and two hydraulic diameters downstream of the sampling plane (five hydraulic diameters from the top of a stack).

3.2 De-dust 1 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Table 2: De-dust 1 Stack	, Compliance with ISO 9096:2017	general requirements
--------------------------	---------------------------------	----------------------

~10 metres
1.75 metres
~18 metres
~2.5 metres
2
Yes
85 mm
Yes
Yes
Yes
Yes

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E)

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

3.3 De-dust 2 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Tuble 5: De dust 2 Stuck, compliance with 156 9090.2017 general requirements			
Height above ground level	~12 metres		
Stack diameter	1.86 metres		
Distance from sampling ports to downstream stack exit	~8 metres		
Distance from sampling ports to upstream disturbance	~8 metres		
Number of sampling ports	2		
90° angle	Yes		
Sampling port size	85 mm		
ISO 9096:2017(E) a)	Yes		
ISO 9096:2017(E) b)	Yes		
ISO 9096:2017(E) c)	Yes		
ISO 9096:2017(E) d)	Yes		

Table 3: De-dust 2 Stack, Compliance with ISO 9096:2017 general requirements

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E)

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E) and the limitations of the plant design.

3.4 De-dust 3 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Table 4: De-dust 3 Stack, Compliance with ISO 9096:2017	general requirements
---	----------------------

Height above ground level	~15 metres
Stack diameter	1.90 metres
Distance from sampling ports to downstream stack exit	~15 metres
Distance from sampling ports to upstream disturbance	~7 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	80 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c)	Yes
ISO 9096:2017(E) d)	Yes

The sampling position fulfils the recommendations for the required diameters, and meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E).

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

3.5 Waste Gas Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Table 5: Waste Gas Stack, Comphance with 150 9090.2017 general requirements			
~16 metres			
3.29 metres			
~20 metres			
~2 metres			
2 (Only one was used)			
Yes			
80 mm			
Could not be confirmed			
Could not be confirmed			
Could not be confirmed			
Could not be confirmed			

Table 5: Waste Gas Stack, Compliance with ISO 9096:2017 general requirements

The sampling position does not fulfil the recommendations as per the required diameters. It could not be established if the sampling location meets a), b), c) and d) of the general requirements. Only one sampling port was used for sampling, because there is an analyser on the second port.

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

4. QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Sample identification

All filters and solutions are labelled using pre-printed adhesive labels. Their identification codes are recorded on site observation sheets prior to the start of each measurement.

If additional samples are taken they are labelled on site at the completion of each measurement. Pre-printed adhesive labels are also used for this purpose.

4.2 Chain of custody

A chain of custody form accompanies the samples as the samples proceed from one measurement site to another.

4.3 Facility accreditation

The relevant accreditation numbers of the service provider undertaking each item of work is shown below.

Table 6: Scope of accreditation

Test parameter	Sampling	Analysis	
Volumetric flow rate	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Service	
Particulate matter	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	
Water vapour	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	
Nitrogen oxides	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	
Oxygen	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	
Carbon dioxide	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	
Carbon monoxide	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	
Sulphur dioxide	ISO 17025:2017	ISO 17025:2017	
	Levego Environmental Services	Levego Environmental Services	

Table 7: Facility accreditation number

Facility	Accreditation number			
Levego Environmental Services	SANAS Testing Laboratory T0846			

4.4 Sampling equipment

Team 1 used the following sampling equipment:

- Apex Model XC-572 source sampling train (Console Serial Number: 911058 and 0809061)
- Dry gas meter: (Serial Number: 5711 and 1900835)
- Barometer: (Serial Number: DB17)
- Pitot tube: (Serial Number: ST-A3390 and ST-A3399)
- Nozzle(s): (Set Number (s): NS1-3 and NS2-2)
- Flue-gas analyser: Seitron Chemist 600 (Serial Number: 1076)

Calibration records are included in the attachment section of this report.

5. RESULTS AND DISCUSSION

5.1 General

Testing only commenced after confirmation was received from the South 32 Hotazel Manganese Mines (Pty) Ltd staff that the plant was stable and operating under normal conditions.

In this report:

- An analyte concentration that was measured to be below the limit of detection for a particular laboratory test method is reported at the limit of detection, unless otherwise indicated. For calculation of a pollutant concentration, the analyte amount is calculated and is then divided by the gas volume sampled.
- Where averages are reported, these are the arithmetic mean, without any other statistical analyses applied.

$$A = \frac{1}{n} \sum_{i=1}^{n} a_i$$

Where:

A = average (arithmetic mean) n = number of data sets (generally three for this report) $a_i = data set values$

5.2 Results

The result summaries are attached as Appendix A to Appendix D.

5.2.1 Measurement Uncertainty

The measurement uncertainties are shown in Appendices E to H. The tables show the averages over three tests of the measured results, the uncertainties in measurement units, and uncertainties as a proportion (%) of the measured values.

With regards to the measured CO, CO_2 and NO_x results were below the limits of detection and have been reported at the limit of detection.

5.3 Discussion

5.3.1 De-dust 1 stack

The plant is stable but De-dust 3 had technical problems which causes the dust to flow heavily from time to time.

Waste Gas

Stack test

168.36*

N/A

578.11*

368.21

average

5.4 Compliance

As set out in the Atmospheric Emission Licence (AEL), supplied by South 32 Mamatwan Hotazel Manganese Mines, license number: NC/AEL/JTG/MAM01/2012, the emission limits are set as presented in the following table and compared with measured values.

Table 8: Compliance table Substance or mixture Emission De-dust 1 Date to be De-dust 2 De-dust 3 of substances achieved by: limit Stack test Stack test Stack test average average average Common Chemical mg/Nm³, 273 K, dry, 101.3 kPa name symbol Particulate 50 71.59* 17.28 N/A 01/04/2020 matter 135 156.96* \simeq Sulphur SO₂ 01/04/2020 500 0.59 0.63 0.63 dioxide Nitrogen NOx 700 01/04/2020 0.82 0.82 0.82oxides

Note: Italic underlined values are below the LOD of the method of analysis.

*Average concentration exceeds the permissible emission limit.

6. APPENDICES

Appendix A - Test Results: De-dust 1 Stack – PM, O₂, CO₂, CO, NO_x and SO₂ Appendix B - Test Results: De-dust 2 Stack – PM, O₂, CO₂, CO, NO_x and SO₂ Appendix C - Test Results: De-dust 3 Stack – PM, O₂, CO₂, CO, NO_x and SO₂ Appendix D - Test Results: Waste Gas Stack – PM, O₂, CO₂, CO, NO_x and SO₂

Appendix E: Uncertainties Reporting Summaries – De-dust 1 Stack Appendix F: Uncertainties Reporting Summaries – De-dust 2 Stack Appendix G: Uncertainties Reporting Summaries – De-dust 3 Stack Appendix H: Uncertainties Reporting Summaries – Waste Gas Stack

7. ATTACHMENTS

- Proof of delivery
- Test sheets
- Chain of custody sheets and laboratory analysis sheets
- Calibration and verification certificates

We would like to take this opportunity to thank the South 32 Hotazel Manganese Mines (Pty) Ltd personnel that assisted us in the survey. We consider the measurement survey to be successful, and an accurate reflection of the plant conditions at the time of measurement.

Yours sincerely,

Report Writer Levego Environmental Services

H. M. Yingwani

Approved by (Technical Signatory) Levego Environmental Services

LES-SR-001-007 (E01) LES0913M Report 23/R2307

SABS

Page 15 of 23

APPENDICES

LES-SR-001-007 (E01) LES0913M Report 23/R2307

Page 16 of 23

TEST RESULTS South 32 Hotazel Manganese Mines (Pty) Ltd					
	De-dust	1 Stack			
	LESO	913M			
	DATE	27-Nov-20	27-Nov-20	27-Nov-20	
	TEST START	09:10	10:30	11:53	
	TEST STOP	10:18	11:38	13:00	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	The plant declared stable	The plant declared stable	The plant declared stable	Averages
Da	% (dry)	20.90	20.90	20.90	20.90
со	ppm (dry)	2.00	2.00	2.00	2.00
CO1	% (dry)	<u>0.70</u>	0.70	<u>0.70</u>	<u>0.70</u>
№ (by difference)	% (dry)	78.40	78.40	78.40	78.40
Dry Gas Density	kg/Nm'	1.29	1.29	1.29	1.29
Barometric Pressure	mb	890.00	890.00	890.00	890.00
Static Pressure	mb	-0.39	-0.39	-0.39	-0.39
Absolute Pressure	mb	889.61	889.61	889.61	889.61
Moisture Content	96	1.35	1.09	1.04	1.16
Gas Temperature	°C	42.46	46.00	50.85	46.44
Wet Gas Density	kg/Nm'	1.29	1.29	1.29	1.29
Duct Size	m	1.75	1.75	1.75	
Duct Area	m²	2.41	2.41	2.41	
Gas Density	kg/m ³	0.98	0.97	0.95	0.97
Velocity Head	mb	0.54	0.51	0.49	0.51
Sample Time	sec	3,900.00	3,900.00	3,900.00	0.51
Gas Velocity	m/s	10.47	10.26	10.09	10.27
Gas Volume Flow (actual)	m ³ /s (actual)	25.17	24.69	24.27	24.71
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	19.13	18.55	17.97	18.55
Gas Volume Flow NTP (dry)	Nm ³ /s (dry')	19.13	18.35	17.57	18.33
Gas Volume Flow (actual)	m ³ /h (actual)	90,626.18	88,882.64	87,379.64	88,962.82
Gas Volume Flow NTP (wet)	Nm ³ /h (wet)	68,862.69	66,789.04	64,677.54	66,776.42
Gas Volume Flow NTP (dry)	Nm ¹ /h (dry)	67,934.33	66,057.88	64,002.11	65,998.11
Nozzle Diameter	mm	6.42	6.42	19 160	05,998.11
Sampled Volume (dry)	m ²	1.29	1.27	6.42	
Sampled Volume (dry)	Nm ³		0.96	1.26	
		0.98	1	0.93	
PM Collected	mg	56.20	78.24	70.53	50 10
PM Concentration (dry)	mg/m³ (dry)	43.43	61.54	56.06	53.67
PM Concentration NTP (dry)	mg/Nm ² (dry)	57.16	81.89	75.73	71.59
Sampled Volume (wet)	m ³ (wet)	1.31	1.29	1.27	
Sampled Volume NTP (wet)	Nm ³ (wet)	1.00	0.97	0.94	63.04
PM Concentration (wet)	mg/m ³ (wet)	42.85	60.86	55.47	53.06
PM Concentration NTP (wet)	mg/Nm' (wet)	56.39	81.00	74.94	70.78
PM Emission Rate	mg/s	1,078.61	1,502.69	1,346.40	1,309.23
PM Emission Rate	kg/h	3.88	5.41	4.85	4.71
SO1 Collected	mg	0.57	0.57	<u>0.57</u>	2005
SO ₂ Concentration (dry)	mg/m³ (dry)	<u>0.44</u>	0.45	0.45	0.44
SO ₂ Concentration NTP (dry)	mg/Nm' (dıy)	0.58	0.59	<u>0.61</u>	0.59
SO2 Concentration (wet)	mg/m ³ (wet)	<u>0.43</u>	0.44	0.45	0.44
SO1 Concentration NTP (wet)	mg/Nm ³ (wet)	0.57	<u>0.59</u>	<u>0.60</u>	0.59
O2 Emission Rate	mg/s	<u>10.88</u>	<u>10.89</u>	<u>10.82</u>	10.86
SO2 Emission Rate	kg/h	<u>0.04</u>	<u>0.04</u>	<u>0.04</u>	<u>0.04</u>
Ox Concentration NTP (dry)	mg/Nm' (dry)	<u>0.82</u>	0.82	0.82	<u>0.82</u>
NOx Emission Rate	mg/s	<u>15,49</u>	<u>15.06</u>	14.60	15.05
NOx Emission Rate	kg/h	0.06	<u>0.05</u>	<u>0.05</u>	<u>0.05</u>
CO Concentration NTP (dry)	mg/Nm ³ (dry)	2.50	2.50	<u>2.50</u>	2.50
CO Emission Rate	mg/s	47.16	<u>45.86</u>	44.43	45.82
CO Emission Rate	kg/h	<u>0.17</u>	<u>0.17</u>	<u>0.16</u>	<u>0.16</u>
sokinetic Rate	%	99	99	100	
SORDELIC Rate	70	99	99	100	

Appendix A - Test Results: De-dust 1 Stack - PM, O2, CO2, CO, NOx and SO2

Italic, underlined = Values are below the detection limit, but the laboratory test method's limit of quantification (LOO) is reported.

LES-SR-001-007 (E01) LES0913M Report 23/R2307

	TEST R				
	South 32 Hotazel Mang		(Pty) Ltd		
De-dust 2 Stack					
*	LESO	1			al and
	DATE	28-Nov-22	28-Nov-22	28-Nov-22	
	TEST START	09:17	10:43	12:04	
	TEST STOP	10:25	11:50	13:12	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	Declared stable	Declared stable	Declared stable	Averages
01	% (dıy)	20.90	20.90	20.90	20.90
0	ppm (dry)	2.00	<u>2.00</u>	<u>2.00</u>	2.00
201	% (dry)	<u>0.70</u>	<u>0.70</u>	<u>0.70</u>	<u>0.70</u>
№ (by difference)	% (dry)	78.40	78.40	78.40	78.40
Dry Gas Density	kg/Nm ³	1.29	1.29	1.29	1.29
Barometric Pressure	ութ	897.70	897.70	897.70	897.70
itatic Pressure	ու	-0.39	-0.39	-0.39	-0.39
Absolute Pressure	ութ	897.31	897.31	897.31	897.31
foisture Content	%	2.06	1.75	1.72	1.84
as Temperature	°C	68.62	67.92	72.62	69.72
Vet Gas Density	kg/Nm³	1.28	1.28	1.28	1.28
Duct Size	m	1.86	1.86	1.86	
Duct Area	m ²	2.72	2.72	2.72	
as Density	kg/m³	0.91	0.91	0.90	0.91
elocity Head	mb	0.49	0.49	0.48	0.49
ample Time	sec	3,900.00	3,900.00	3,900.00	
Ins Velocity	m/s	10.36	10.37	10.34	10.36
Gas Volume Flow (actual)	m ¹ /s (actual)	28.16	28.17	28.08	28.14
Gas Volume Flow NTP (wet)	Nm³/s (wet)	19.93	19.98	19.65	19.85
Gas Volume Flow NTP (dry)	Nm³/s (dry)	19.52	19.63	19.31	19.49
Jas Volume Flow (actual)	m³/h (actual)	101,363.31	101,419.71	101,103.07	101,295.3
as Volume Flow NTP (wet)	Nm³/h (wet)	71,742.86	71,928.49	70,730.84	71,467.40
as Volume Flow NTP (dry)	Nm³/h (dry)	70,264.95	70,669.00	69,515.68	70,149.88
lozzle Diameter	nun	6.42	6.42	6.42	
ampled Volume (dry)	m³	1.28	1.29	1.28	
Sampled Volume NTP (dry)	Nm'	0.91	0.91	0.90	
PM Collected	mg	20.67	13.21	13.06	
PM Concentration (dry)	mg/m' (dıy)	16.17	10.24	10.19	12.20
M Concentration NTP (dry)	mg/Nm3 (diy)	22.84	14.45	14.56	17.28
Sampled Volume (wet)	m' (wet)	1.31	1.31	1.30	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.92	0.93	0.91	
PM Concentration (wet)	mg/m³ (wet)	15.83	10.07	10.01	11.97
PM Concentration NTP (wet)	mg/Nm ³ (wet)	22.37	14.19	14.31	16.96
M Emission Rate	mg/s	445.79	283.57	281.21	336.86
M Emission Rate	kg/h	1.60	1.02	1.01	1.21
O2 Collected	mg	0.57	0.57	<u>0.57</u>	
602 Concentration (dry)	mg/m³ (dıy)	0.44	0.44	0.44	0.44
602 Concentration NTP (dry)	mg/Nm ³ (dry)	0.63	0.62	0.63	0.63
iO ₂ Concentration (wet)	mg/m ³ (wet)	0.43	0.43	0.43	0.43
O2 Concentration NTP (wet)	mg/Nm ³ (wet)	0.61	0.61	0.62	0.61
O ₁ Emission Rate	mg/s	12.23	<u>12.17</u>	<u>12.21</u>	12.20
O ₂ Emission Rate	kg/h	0.04	0.04	0.04	0.04
NOx Concentration NTP (dry)	mg/Nm ³ (dıy)	0.82	0.82	0.82	0.82
IOx Emission Rate	mg/s	16.02	16.12	<u>15.85</u>	16.00
VOx Emission Rate	kg/h	0.06	0.06	0.06	0.06
CO Concentration NTP (dry)		1			
25.56.00 85 20 122	mg/Nm [*] (dry)	<u>2.50</u>	<u>2.50</u>	<u>2.50</u>	2.50
CO Emission Rate	mg/s	<u>-48,78</u>	49.06	48.26	48.70
CO Emission Rate	kg/h	<u>0.18</u>	<u>0.18</u>	<u>0.17</u>	<u>0.18</u>

Appendix B - Test Results: De-dust 2 Stack - PM, O2, CO2, CO, NOx and SO2

Italic, underlined = Values are below the detection limit, but the laboratory test method's limit of quantification (LOQ) is reported.

LES-SR-001-007 (E01) LES0913M Report 23/R2307

Statistical and statistical statistics	TEST R	ESULTS			
	South 32 Hotazel Mang	anese Mines	(Pty) Ltd		
	De-dust	3 Stack			
	LESO	913M			
	DATE	17-Jan-23	17-Jan-23	17-Jan-23	
	TEST START	12:15	13:50	15:11	
	TEST STOP	13:22	14:58	16:18	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	The plant is stable but DD3 has technical problems	The plant is stable but DD3 has technical problems	The plant is stable but DD3 has technical problems	Averages
),	% (dry)	20.90	20.90	20.90	20.90
20	ppm (dry)	2.00	2.00	2.00	2.00
20:	% (dry)	0.70	0.70	0.70	0.70
Na (by difference)	% (dry)	78.40	78.40	78.40	78.40
Dry Gas Density	kg/Nm ³	1.29	1.29	1.29	1.29
Barometric Pressure	mb	894.00	894.00	894.00	894.00
tatic Pressure	mb	-0.98	-0.98	-0.98	-0.98
disolute Pressure	mb	893.02	893.02	893.02	893.02
foisture Content	%	2.04	1.48	1.03	1.52
Gas Temperature	°C	48.38	48.92	48.54	48.62
Vet Gas Density	kg/Nm ³	1.28	1.29	1.29	1.29
Duct Size	m	1.90	1.90	1.90	
Duct Area	m ²	2.84	2.84	2.84	
Gas Density	kg/m ³	0.96	0.96	0.96	0.96
/elocity Head	mb	1.81	1.79	1.80	1.80
Sample Time	sec	3,900.00	3,900.00	3,900.00	1100
Gas Velocity	m/s	19.41	19.28	19.31	19.33
Gas Volume Flow (actual)	m ³ /s (actual)	55.02	54.67	54.75	54.81
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	41.19	40.86	40.97	41.01
Gas Volume Flow NTP (dry)	Nm ³ /s (dry)	40.35	40.26	40.55	40.39
Gas Volume Flow (actual)	m ³ /h (actual)	198,069.96	196,804.97	197,107.45	197,327.4
Gas Volume Flow NTP (wet)	Nm ³ /h (wet)	148,298.36	147,104.88	147,507.13	147,636.7
Gas Volume Flow NTP (dry)	Nm ³ /h (dry)	145,269.93	144,925.46	145,994.84	145,396.7
Nozzle Diameter	mm	4.41	4.41	4.41	145,590.7
	m ³	1.20	1.17	1.20	
Sampled Volume (dry)	Nm ³	0.90	0.88	0.90	
Sampled Volume NTP (dry) M Collected		94.07	113.11	213.93	
STATES TO A STATE OF	mg	78.16	96.41	177.73	117.43
PM Concentration (dry)	mg/m³ (dry)	the second second	10.40-001-0150-0		
PM Concentration NTP (dry)	mg/Nm ³ (dry)	104.39	128.98	237.50	156.96
Sampled Volume (wet)	m' (wet)	-		-	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.92	0.89	0.91	115.82
PM Concentration (wet)	mg/m³ (wet)			235.06	115.82
PM Concentration NTP (wet)		102.26	127.07	000.0000000	
PM Emission Rate	mg/s	4,212.31		9,631.44	6,345.41
PM Emission Rate	kg/h	15.16	18.69	34.67	22.84
SO ₂ Collected	mg	0.57	0.57	<u>0.57</u>	
SO ₂ Concentration (dry)	mg/m³ (dry)	0.47	0.48	0.47	0.48
SO ₂ Concentration NTP (dry)	mg/Nm ³ (dry)	<u>0.63</u>	<u>0.65</u>	0.63	<u>0.63</u>
SO ₂ Concentration (wet)	mg/m ³ (wet)	0.46	0.48	0.47	0.47
SO ₂ Concentration NTP (wet)	mg/Nm ³ (wet)	0.62	0.64	0.62	0.63
SO ₂ Emission Rate	mg/s	25.38	26.02	<u>25.52</u>	25.64
O2 Emission Rate	kg/h	0.09	0.09	<u>0.09</u>	<u>0.09</u>
VOx Concentration NTP (dry)	mg/Nm ³ (dry)	0.82	0.82	0.82	<u>0.82</u>
NOx Emission Rate	mg/s	<u>33.13</u>	<u>33.05</u>	<u>33.30</u>	<u>33.16</u>
NOx Emission Rate	kg/h	0.12	0.12	0.12	<u>0.12</u>
CO Concentration NTP (dry)	mg/Nm³ (dry)	2.50	<u>2.50</u>	2.50	2.50
CO Emission Rate	mg/s	100.86	100.62	101.36	100.94
CO Emission Rate	kg/h	<u>0.36</u>	<u>0.36</u>	<u>0.36</u>	<u>0.36</u>
solvinatio Pata	04	106	104	106	
sokinetic Rate	%	100	104	100	

Appendix C - Test Results: De-dust 3 Stack - PM, O2, CO2, CO, NOx and SO2

Italic, underlined = Values are below the detection limit, but the laboratory test method's limit of quantification (LOQ) is reported.

LES-SR-001-007 (E01) LES0913M Report 23/R2307

SABS

	TEST R	ESULTS			
	South 32 Hotazel Mang	anese Mines	(Pty) Ltd		
	Waste G	as Stack			
	LESO	1			
	DATE	26-Nov-22	26-Nov-22	26-Nov-22	
	TEST START	09:46	11:16	12:36	
	TEST STOP	10:50	12:20	13:40	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	The paint declared stable	The paint declared stable	The paint declared stable	Averages
0:	% (dıy)	17.66	17.44	17.26	17.45
со	ppm (dıy)	25,764.13	32,115.63	24,516.44	27,465.40
CO2	% (dıy [.])	3.47	3.69	3.78	3.64
N2 (by difference)	% (dıy.)	76.26	75.62	76.48	76.12
Dry Gas Density	kg/Nm³	1.31	1.31	1.31	1.31
Barometric Pressure	ան	891.00	891.00	891.00	891.00
Static Pressure	mb	-3.53	-3.53	-3.53	-3.53
Absolute Pressure	mb	887.47	887.47	887.47	887.47
Moisture Content	%	2.69	2.43	3.06	2.73
Gas Temperature	°C	148.56	153.69	148.00	150.08
Wet Gas Density	kg/Nm³	1.29	1.30	1.29	1.29
Duct Size	m	3.29	3.29	3.29	
Duct Area	m ²	8.50	8.50	8.50	
Gas Density	kg/m³	0.73	0.73	0.73	0.73
Velocity Head	mb	2.67	2.74	2.71	2.71
Sample Time	sec	3,840.00	3,840.00	3,840.00	
Gas Velocity	m/s	26.97	27.46	27.18	27.21
Gas Volume Flow (actual)	m ³ /s (actual)	229.31	233.48	231.08	231.29
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	130.09	130.86	131.27	130.74
Gas Volume Flow NTP (dry)	Nm ¹ /s (dry)	126.59	127.68	127.25	127.17
Gas Volume Flow (actual)	m³/h (actual)	825,528.95	840,515.96	831,878.26	832,641.00
Gas Volume Flow NTP (wet)	Nm³/h (wet)	468,332.09	471,109.08	472,564.45	470,668.54
Gas Volume Flow NTP (dry)	Nm ³ /h (dry)	455,725.92	459,639.24	458,086.01	457,817.00
Nozzle Diameter	nm	4.70	4.70	4.70	
Sampled Volume (dry)	m³	1.67	1.72	1.71	
Sampled Volume NTP (dry)	Nm³	0.95	0.96	0.97	
PM Collected	mg	167.34	159.58	158.63	
PM Concentration (dry)	mg/m³ (dry)	100.09	92.90	92.54	95.18
PM Concentration NTP (dry)	mg/Nm3 (dry)	176.42	165.75	162.90	168.36
Sampled Volume (wet)	m ³ (wet)	1.72	1.76	1.77	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.97	0.99	1.00	
PM Concentration (wet)	mg/m³ (wet)	97.39	90.64	89.70	92.58
PM Concentration NTP (wet)	mg/Nm3 (wet)	171.68	161.71	157.91	163.77
PM Emission Rate	mg/s	22,333.69	21,162.09	20,728.49	21,408.09
PM Emission Rate	kg/h	80.40	76.18	74.62	77.07
SO2 Collected	mg	711.99	489.63	462.68	
5O1 Concentration (dry)	mg/m' (dry)	425.85	285.04	269.91	326.94
SO2 Concentration NTP (dry)	mg/Nm ³ (dıy)	750.65	508.55	475.14	578.11
SO2 Concentration (wet)	mg/m ³ (wet)	414.39	278.10	261.64	318.04
SO2 Concentration NTP (wet)	mg/Nm ³ (wet)	730.44	496.17	460.58	562.40
SO2 Emission Rate	mg/s	95,024.68	64,931.02	60,459.62	73,471.77
SO2 Emission Rate	kg/h	342.09	233.75	217.65	264.50
NOx Concentration NTP (dry)	mg/Nm ³ (dry)	354.32	376.12	374.20	368.21
VOx Emission Rate	mg/s	44,852.98	48,022.52	47,615.39	46,830.30
NOx Emission Rate	kg/h	161.47	172.88	171.42	168.59
CO Concentration NTP (dry)	mg/Nm ¹ (dry)	32,196.59	40,133.85	30,637.40	34,322.61
CO Emission Rate	mg/s	4,075,783.50	5,124,192.72	3,898,489.53	4,366,155.2
CO Emission Rate	kg/h	14,672.82	18,447.09	14,034.56	15,718.16
		1		11,004.00	13,710.10

Appendix D - Test Results: Waste Gas Stack - PM, O2, CO2, CO, NOx and SO2

Italic, underlined = Values are below the detection limit, but the laboratory test method's limit of guantification (LOO) is reported.

LES-SR-001-007 (E01) LES0913M Report 23/R2307

Page 20 of 23

Appendix E: U	ncertainties Reporting Sum	nmaries – De-d	ust 1 Stack		
AEL Reporting Summaries South 32 Hotazel Manganese Mines (Pty) Ltd De-dust 1 Stack LES0913M					
Concentrations					
Substance or mixture of substances Average Uncertainty (95% confidence, k=2)					
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm ³ (dry) %		
Particulate matter	N/A	71.59			
Carbon dioxide CO ₂ 13,744		<u>13,744</u>	<u>± 261</u>	<u>± 1.9</u>	
				<u>± 2.0</u>	
Nitrogen oxides	NOx expressed as NO ₂	<u>0.82</u>	<u>± 0.02</u>	<u>± 2.0</u>	
Sulphur dioxide (wet chemical)	SO ₂	<u>0.59</u>	<u>± 0.11</u>	<u>± 18.0</u>	

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as *underlined italics*.

Appendix F: Uncertainties Reporting Summaries – De-dust 2 Stack

AEL Reporting Summaries					
Sout	h 32 Hotazel Manganese M	ines (Pty) Ltd			
	De-dust 2 Stack				
LES0913M					
Concentrations					
Substance or mixture	Average	Uncertainty (95% confidence, k=2)			
Common name Chemical symbol mg/Nm ³ (dry) mg/Nm ³ (dry) %				%	
Particulate matter	N/A	17.28	± 0.68	± 3.9	
Carbon dioxide	<u>13,744</u>	<u>± 261</u>	<u>± 1.9</u>		
Carbon monoxide	<u>2.50</u>	<u>± 0.05</u>	<u>± 2.0</u>		
Nitrogen oxides	NOx expressed as NO ₂	<u>0.82</u>	<u>± 0.02</u>	<u>± 2.0</u>	
Sulphur dioxide (wet chemical)	SO2	<u>0.63</u>	<u>± 0.11</u>	<u>± 18.0</u>	

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as *underlined italics*.

Appendix G: Uncertainties Reporting Summaries - De-dust 3 Stack

So	AEL Reporting Summ uth 32 Hotazel Manganese M De-dust 3 Stack LES0913M			
			Concentrations	
Substance or mixture of substances		Average	Uncertainty (95% confidence, k=2)	
Common name	Chemical symbol	mg/Nm ³ (dry)	mg/Nm ³ (dry) %	
Particulate matter	N/A	156.96	± 5.27	± 3.4
Carbon dioxide CO_2 <u>13,744</u> ± 261 ± 1		<u>± 1.9</u>		
Carbon monoxide CO 2.50 ± 0.05				<u>± 2.0</u>
Nitrogen oxides	NOx expressed as NO2	0.82	± 0.02	± 2.0
Sulphur dioxide (wet chemical)	SO ₂	0.63	± 0.11	± 18.0

Limit of Quantification (LOQ):

· Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

Appendix H: Uncertainties Reporting Summaries - Waste Gas Stack

So	AEL Reporting Summ uth 32 Hotazel Manganese M Waste Gas Stack LES0913M	ines (Pty) Ltd		
			Concentrations	
Substance or mixture of substances			Uncertain confidenc	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm ³ (dry)	%
Particulate matter	N/A	168.36	± 5.67	± 3.4
Carbon dioxide CO ₂		71,544	± 4630	± 6.5
Carbon monoxide CO 34,322.61				± 5.2
Nitrogen oxides	NOx expressed as NO2	368.21	± 7.53	± 2.0
Sulphur dioxide (wet chemical)	SO ₂	578.11	± 19.42	± 3.4

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

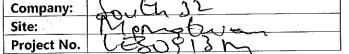
• Where the average is of all the results from values below the LOQ, it is shown as *underlined italics*.

ATTACHMENTS

LES-SR-001-007 (E01) LES0913M Report 23/R2307

Page 23 of 23

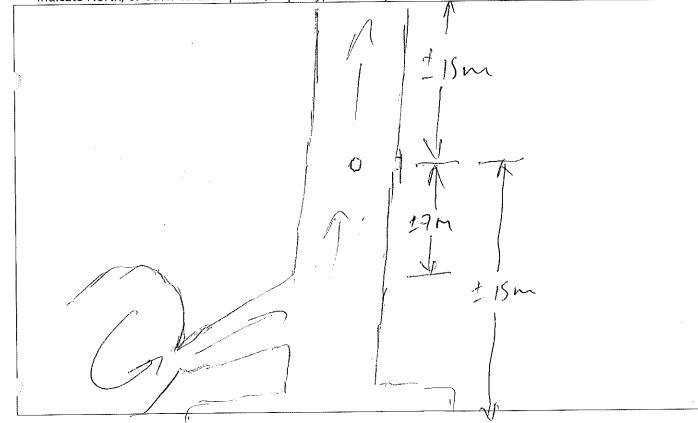
C			1111
	LES-A-F-017	Page:	1 of 1
	REPORT SHEET FOR WORK DONE / DOWN TIME	Revision Status :	E01
Environmental Services		Effective date	2010-04-11
	Report S	Report Sheet for Work Done / Down Time	/ Down Time
Project Number	1450 P 131~		
Client (Company) Client Plant (Site)	SOCNA 32 Client Contact Number MSURPACE Team Leader	lumber 57250	
Date Work Carried Out / Reason	Start End No of Her Worlded (11)		
For Down Time	Time Time Down Time	Client Rep Levego Rep Client Name Signaturo	Levego
aptime Setunde M		Firm'e	
1 Carlor			
23 11 Don wet by	5 whe at . 20 15: 30	15 Strand	
Dedut L			X
29/1 2022 Mr Phalends 10	\$ }		X
its at say	The beach		
"Intrave Onwetther	H 13:00 20:00		
ITIVE WERE TO TO TO TO			
The print out		b'c	
The second	tel ve vision de la contra de l	SWCS 1	1. A
	and have		2
A CONCA)		
UIK: LES-A-F-UI/ - Report Sheet For Downtime (workdone).docx THIS IS A CONTROL 1 ED DOCTIMENT AND THE STE		n Heerden (QM)	I Page
	A CONTAINED DUCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROP	CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD	ICES (PTY) LTD


ť

			Revision Status :	E01
cativitatinganuatives	WEFURI SHEET FUR WUXD JUNE JUNE IN	Effective date	date	2010-04-11
	Repc	rt Sheet fo	Report Sheet for Work Done / Down Time	/ Down Tir
Project Number	145 of 13M			
Client (Company) Client Plant (Site)	Mrnebuer Team Leader	Client Contact Number Team Leader	FILLE	
Date Work Carried Out / Reason	rt / Reason Start End No of Hrs Worked / Hrs Time Down Time	Client Rep Name	Levego Rep Client Name Signature	Levego ure Signature
rallow Driving 60	Enrimen 16:00 11:00	0	J. C.	X
23 11 LON ACCESS	00.60	Sist.	String.	
	· · · ·	5,5 4	fire	
and and	Not low			
25/1/2012 Section The	6 20 c c s : 45 11 : 00	659	Sirves	A)
	500			
Count by	to construction			
1, Set up an		, Č	e U	C R
24/1/2020 WI Prof &	5 Streek 03 3015.00	1 \$ \$+\$	41	D
DTR: LES-A-F-017 - Report Sheet For Downtime (workdone).docx	Downtime (workdone). docx Repieved b	Repiewed by: Schalk van Heerden (QM) vertre son v voorvorv on 1 vVv	M) VFGO ENVIRONMENTAL S	I P a g e ERVICES (PTY) LTD
THIS IS A CONTROLLED DO	THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE INFORMATION CONTAINED WITHIN IS THE SULE FRUEEKLIN OF DEVELOPMENT AND THE PROPERTY OF DEVELOPMENT AND TH	TE FRUERALX UP		

								· .	<u></u>
Q			LES-A-F-017	017	Page:			1 of 1	
5						Revision Status :	H	E01	
LEVEGO Environmental Services	REPORT SHEET FOR V	HEET FO	R WOR	WORK DONE / DOWN TIME	I	Effective date	5	2010-04-11	
				Report	Sheet f	or Work [Jone /	Report Sheet for Work Done / Down Time	e
Project Number	2	0713V	 						
Client (Company) Client Plant (Site)	Me	the 31	3L Reference	Client Contact Number Team Leader	ict Number r	Sirve			
	Moule Carried Out / Beason	Start	Fud	No of Hrs Worked / Hrs	Client Rep	Levego Rep	Client	Levego	
For Do	For Down Time	Time	e	Down Time	Name	Name	Signature	Signature	-
rivid water 1	Are-JHR to better 10:30		00,17		Sisp	Sto we			
Il si And Perry	L'ENE WOIL	00:50	12:30		5,59	Sizura		E E E	
X 2 del current. Lei	verte setup	1	1. K		Srsa	SIZZNE		F.J.	
10000	The control and								
Schilden Scholar	Le Pi A th	THR WICH			Pro P	Struck			
2	> monder + conf	2) X -		-				
									ł
DTR: LES-4-F-017 - Rez	DTR: LES.4-F-017 - Report Sheet For Downtime (workdone).docx	lone).docx		Reviewed by: S	Reviewed by: Schalk van Heerden (QM)	(MQ)		P a g e	
THIS IS A CONT	ROLLED DOCUMENT AND	THE INFORM	ATION CON	THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD	PROPERTY OF	LEVEGO ENVIRONA	MENTAL SERV	ICES (PTY) LTD	

ì


	LES-A-F-010	Page:	1 of 2	
	SITE OBSERVATION SHEET	Revision Status :	E07	
LEVEGO Environmental Services	ISO 9096			

	0	<i>n</i>	
Location:	Press	\$7-3	
Date:	202310	TIT	
Technician:	51215	6	

1. Sketch (refer to Site Observation Examples <u>LES-A-F-097</u>)

Draw the Stack/Duct sampling location, showing the orientation of sampling ports. Mark the ports (i.e. P1, P2, etc.) For typical examples, refer to LES-A-F-097 Site Observation Examples, Figures 1 to 5. Indicate North, or other cardinal points, as per typical example in LES-A-F-097, Figure 5.

2. Occurrence Report

Deviations, abnormalities or problems experienced; (Any related to method, procedure or process operating conditions)

conditions)		······································
The plant is trable	fut tobult 3 hes	Pot
treppical problems in	lich could bue dult	to flow
Auguilo from time f	s bre the effect	15 pwort
of high and part	the proceeding with	the Survey
Also the formed of	Greffen would go	rep. and
Dr volocity woyld po	down for about fire	Seconds
then byle to its	worn velocity.	٩
DTR: LES-A-F-010 - ISO 9096 Site Observation	Reviewed by: Harvey Butcher (QM)	1 Page
THIS IS A CONTROLLED DOCUMENT AND THE	INFORMATION CONTAINED WITHIN IS THE SOLE PROPER	TY OF LEVEGO
	ONMENTAL SERVICES (PTY) LTD	\int
		1

SCA.					——————————————————————————————————————		
		LES-A-F-010)	Page:		2 of 2 E07	
	SIT	E OBSERVATION		Revision	Status :		
LEVEGO Environmental Services		ISO 9096		Effective	date	2019-07	7-25
				th az	1. 1. 2		
Company: 50	uth 32		Locati	on:	yot J		
Site:	Phipt	wan	Date:		107 1/ 2-		
Project No.	50913	n	Techn	ician: Sr2	we		
3. Stack/Duct Info	ormation (ref	er to Site Obser	vation Example				·····
How were dimension	ns and details ob	tained?	Measured	Estimat		Histor	
Material	Steel	Brick	Glass reinforc (GRP)		Other (specify)		Refer Figure
Support structure	Free standing	Steel frame	Multi-flue wit (provide skete	hin windshield ch)	Other (specify)		
	Vertical	- Horizontal	Angle to hori		Angle to vertica		3
orientation	~			degrees		degrees	
onap -	Circular 🧹	Rectangular	Square		Other (specify)		3
Flow direction of an	gled duct	Up (u) ± 15	$Down(\mathbf{d}) \neq$	<u>-1 -t</u>	1		
		SAMPLIN	G PORT – DIMEN	SIONS	h 715	m	1
Height above groun	d level	- llas since (norte) or to stack ovit		a t (S	m	1&3
Straight duct downs	stream from sam	pling plane (ports open (stack exit),	or closed (balance	e of plant)?			1&3
Straight duct upstre					b + 7	m	1&3
Port diameter (d)		80 mm	Rectangular por	rt dimensions	12/2	, mm	1&4
	tee tag Alterna	to mm	Wall + insulatio		5	mm	18:4
Boss length (l)			JCT/STACK - DIN		t the first	1.144.1.1	l
<u> </u>			m				
Circumference (out Outside diameter (C		191		neter = circumfe	rence ÷ π		
Wall + insulation th		t 1,15	mm				1
Inside diameter (ID)		D 19	m ID =	= OD – (2×t÷1000))		1
Number of ports		1 2					
Angle between port	t centre lines	α 90	degrees				1
Port centre lines to	Inlet centre line	φ	degrees ψ		grees		2
	RE	CTANGULAR/SQU	JARE DUCT/STAC	K – DIMENSION	IS		
Depth outside		Lo	m				4
Wall + insulation th	nickness	<u>t</u>	mm				4
Inside depth		L .	m L #	Lo (2×t÷1000)			4
Width outside		W _o		$\langle \rangle$			4
Wall + insulation th	nickness		T mm	₩ _o - (2×t÷1000))		4
Inside width		D.		<u>= wo ~ (2×t÷1000</u> L×W)÷(L+W)	· /		1
Equivalent diamete Number of ports &		1		side dimensioned	d L or W?	¢~~~	4
Angle of flow with				gle of flow <15°		(Yes)	No
axis =		tin terretaria		t axis, for each		Yes	No
Negative flows pre	sentr	DBO	CESS INFORMATI	ON SALES		<u> </u>	<u>– Č</u>
Carrier of nollistand	De	iler furnace	Kiln	Crusher,	or mill O	ther (speci	fy below)
Source of pollutant Pollution control e			Fabric filter	Scrubbe		ther (speci	
1	daihmenr 53	a <u></u>		<u> </u>		- <u>1</u>	
Comments:							
L <u></u>							
DTR: LES-A-F-010 - 1	SO 9096 Site Obser	vation	Reviewed by:	Harvey Butcher (QM)	2 P a g	g e

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

LES-A-F-009		Page:	1 of 9
	IEET	Revision Status :	E09
LEVEGO Environmental Services		Effective date	2018-10-22
Project No. LES UT/ 3M	Date	2023-0	1 17
Company South 32	Technic	ian 1 South	<u>,' / `</u>
Site Mon moter 19mm	Technic		······································
Location desure 3	Technic	ian 3	
Duct/Stack Dimensions & Information	Samplin	ng Points – Method	\checkmark
Round		6 – General Rule (cent	
Diameter 1, 9 m	ISO 909	6 – Tangential Rule (n	o centre point) 7
Rectangular ,)	ISO 909	6 – Rectangular	
Depth (L) / m	US EPA	Method 1 – Circular	
Width (W)	US EPA	Method 1 – Rectangu	lar /
Barometer	Other (s	pecify below)	
Barometer Number A-R 17			
Flue Gas Analyser	Samplin	ng Points – Details	
Analyser Model Suffor	Number	r of Ports Used	2
Analyser Serial Number	Points p	er Traverse	4
Pitot Tube	Total Nu	umber of Points	13
Pitot Tube Number (T-A3385	Time pe		<u> </u>
Pitot Tube Number\$7-A3385Pitot Tube Coefficient\$0,84	Samplin	g Time Total (mins)	65
Probe	Console	e Details	
Probe Number 81		Number	080706/
Probe Length FFE		eter Number	1900835
Liner Material		alibration Factor (γ)	0,579
	ΔΗ@ (0	.75 scfm)	4972 mm H ₂ C
LEAK TEST REQUIREMENTS		This document cons	
Pitot Tube		Page 1 = information	
Pressure, or vacuum $\ge \pm 180 \text{ mm H}_2\text{O}$ Time $\ge 1 \text{ minute}$			y traverse measurements
Sampling Train		Pages 4 & 5 = 1st tes	
Vacuum ≥ −15 inch Hg Time ≥ 1 minute		Pages 6 & $7 = 2nd$ te. Pages 8 & $9 = 3rd$ tes	
		$ruyes \circ \alpha y = 310 \ les$	a measarements
SAMPLING TIME REQUIREMENTS – LEVEGO PROCEDUI	KE .		
1. Sampling time: \geq 2 minutes per point			

3. The sampling time at each point shall be the same. The number of minutes sampled at each point shall be an integer, or an integer plus one-half minute.

incogai, or ai	
Example 1:	$60 \div 13 = 4.62$ minutes per point, which is less than the maximum of 5 minutes per point, but it
13 points	is not an integer, or an integer plus one-half minute.
·	Sampling time = 5 minutes per point.
	Total sampling time = 65 minutes
	the second

4. Record velocity head (Δp) and update orifice flow (ΔH) at least every 5 min. Update temperatures and vacuum readings at the same time.

	The same time.
Example 2:	$60 \div 8 = 7.5$ minutes per point, which exceeds the maximum of 5 minutes per point.
8 points	$7.5 \div 2 = 3.75$ minutes per point, which is not an integer, or an integer plus one-half minute.
	Sampling time = 8 minutes per point, with an update every 4 minutes.
	Total sampling time = 64 minutes
L	

Acceptance Signature: Technician's Signature:

DTR: LES-A-F-009 - Isokinetic Measurement/Speet.docx THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

		ES-A-F-009		Page:		 u	2 0	of 9		
			CHEET	Revision Status :				: E09		
LEVEG D Environmental Services	ISOKINETIC	MEASUREMENT	51161	Effective date					22	
Project No.	ES0 9131 afut 3	7	Date: Test Nu Test Mo	thod	202 I Mb	3/0)		ones		
	or E?	itions) – Measure % v/v dry % v/v dry			M or E?			70 \	//v dry //v dry	
CO M	or E? M	% v/v dry	H ₂ O (m		M or E?	6	4		% v/v	
Test Equipment Nozzle Number	1052-	- 2	K-facto	r (Δp to Δl tric Press	H Iso)	0	981		mb	
Nozzle Diameter Leak Tests	<u> </u>	Wakę side	Static (d	luct) press			15	m	m H₂O	
Pitot Tube Leak? (Pass, or not) At Pressure/Vacuum	Impact side	0/C		oisture)		2,	04	>	% v/\ %	
Sampling Train DGM – Prior At Vacuum of DGM – Post At Vacuum of	Start $*$ 7^{2} 5^{4} -1^{5} inch Hg $*$ 5^{15} -1^{5} inch Hg	End * 7949 -/9 inch Hg * 618	Filter N Probe Chain c	Sample E umber Wash Num of Custody	nber	0	¥12= ¥13 P8	P-)7 66 60	ウン	
e Z E Time	c DGM	igits on DGM	ual Orifice	cack remp obe Temp	ilter Temp	GM Outlet	pinger Exit	ıp Vacuum	lsokinetic	
Port (Traverse Line) Traverse Point No. Sampling Time		Velocity l Desired O	Actual O	Stack Probe	Filter	DGM (Impinge	Pump Va	lsol	
Port Port	N M ³	Δp ΔH mm mm H ₂ O H ₂ O	1.1.1	ts tp C °C	tr °C	t _{mo} °C	ti °C	inch Hg	%	
1 1 9 12:1	5 05 52,2020	20 197		2 -		72	24	-1		
1 2 10 2 3 15		20,620,2 20 19,7	20 4	48 - 8 - 1 -		32	16	-7		
1 5 15		20,4201 25,4201	20 4	8 -		34 35	is K			
1 6 70 1 7 35 2 8 40		22246	2 4	/		<u>ر</u> ز ۲۶	15	7		
294		36 75.4	36 4	1 - 		}] 35	16	-1 -1		
2 11 (5		34 33,4	34 9	- 8-		35	ß			
~ 13 65 13:2	1 593,5512	39 MS	30 4	91-		<u>کک</u> PTO I	1/4 for cont	inuatio	n of ta	
_ ,	\mathcal{A}	HTT	Δετοι	otance Sig	ınatur o:-		H		\sim	
Technician's Signat DTR: LES-A-F-009 - Is	okinetic Measureme	nt Short.docx	Revie	ved by: Scho	ılk van He		(1)		a g e	
THIS IS A CONTR	OLLED DOCUMENT	AND THE INFORMA	TION CONTAI	NED WITHIN TY) LTD	N IS THE S	DLE PRC	PERTY C	JF LEVEG	U	

S.

		LES-A-F-	009			Page:			4	of 9	· .
				Revision Status :				E	09		
LEVEGO avironmental Services	ISOKINETI	C MEASU	REMENT						2	018-10-	-22
roject No.	150913	m		Date			202	3/21	17		
ocation	DEOUL	<u>}``</u>			Num		2	(
					Meth		$\frac{1}{12}$	el thar	alavant	onac	
	(for K-factor calc	ulations) –	Measured	i (IVI), or ا	Estima	itea (E	M or E		elevan	. ones.	v/v dry
)2	Mor E?		v/v dry	H ₂ CH ₄			MorE				v/v dry
O ₂	M or E?		v/v dry v/v dry		(moist	-) ²	MorE		10		% v/\
O Equipmont		$\overline{\mathbf{M}}$	v/v ury		Detai			·		~	
est Equipment	N157 -	-)_]		ctor (Δ		H Iso)	1	2 94	3	
lozzle Diameter		<u> </u>	mm		metric				894	-	mb
eak Tests		7 	3		c (duc			1		° m	ım H₂C
itot Tube	Impact sid	e Wal	ke side	L	Calcu						
eak? (Pass, or no			, k	H ₂ O	(mois	ture)		$ \rangle$	48		% v/\
t Pressure/Vacu					inetic			10	3,42	5	%
ampling Train	Start		nd	Test	t & Sa	mple	Details	, 			
DGM – Prior	+ 196	* / *	-6	Filte	r Num	ber			ZVZ	2-4	> -17
At Vacuum of	-19 inch I		inch Hg	Prol	be Was	sh Nur	mber	$\overline{\mathbf{v}}$	313	<u>SG</u>	
DGM – Post	* (10		0	Cha	in of C	ustod	у ^{– а алу} ну	0	981	0	
At Vacuum of	-19 inch I	Hg 19	inch Hg						/		
	* Last three	e digits on	DGM								
verse Line) e Point No. ppling Time <u>I</u> D	ock DGM me Reading	/ Head	Desired Orifice	ctual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	mpinger Exit	ump Vacuum	Isokinetic
		Velocity Head	esired	Actual	Stac	Prob	Filte	DGN	Impin	Pump	ŝ
ort (Tra Travers San				ΔН	ts	tp	tr	t _{mo}	tı		
	Vm	Δр		∆⊓ mm H₂O	ده د °C	•р •С	°C	°C	°C	inch	%
	:mm m ³	mm H₂O	mm H2O					C		Hg	
11512	50 583, 423	2 19.6	19	19	48		~ ~	35	25		
1210	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20	19.3	195	4-1			36	13	-	
1315		186	18	18	45			3 C	1文		
1420		20.6	19.4	20	49			36	[5	-1	
1 (28		20	187	191	48		-	32	14	-/	
		21	105	ー <i>ルノ</i> ー・ りょい	44	_		32	14	-1	
1 6 30			$\frac{-1}{2}$	ンリ フノ	45	<u> </u>		27	/ / /h.	-1	
1 1 2		Frank 1	GK. 5 +	32	48			37	18		
2840			<u>₽<u>,</u> <u></u></u>	<u>)</u>)4	49			37	14		
2945		36	7.8	<u>17</u>	· /			3	17. 1C	<u>-/</u>	
2 10 50		56	34:2	<u>y4</u>	φ <i>~</i>)		-	1 7)			· · · · ·
2/11/15		34	12,5	JL	49			<u>5</u>			
2/12/0		<u> </u>	27.0	30	50			J.J	14	/'	
2 13 65 14	:58 594 1506	34	250	30	4ºP			127	1/6	/	·
0					• /			• PTO	ر ر	tinuatio	n of tak
	$I \cap$	A VII								//	
									112		the state of the s
echnician's Sign		+ 1		Ac	rontar	ice Siz	mature:	-7	[]]	1	\supset

 $\sum_{i=1}^{n}$

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO

2	LES-A-F-009
LEVEGO Environmental Services	ISOKINETIC MEASUREMENT SHEET

At Pressure/Vacuum

Sampling Train

DGM – Prior

At Vacuum of

At Vacuum of

DGM - Post

Revision Status :	E09
Effective date	2018-10-22

6 of 9

Project No.	LEJ0913M
Location	Defust 3

*

Start

780

Sto

-tg inch Hg

19 inch Hg

* Lást three digits on DGM

End

-19 inch Hg

→1° inch Hg

* 780

* 510

				ſ		0 201		>	
Project No.	LES	0913m			Date:	2023	110	<u>T</u>	
Location	Dorf	ust 3_		ļ	Test Number	3			
	- Cr Sp				Test Method	M6_			
Flue Gas Analys	is (for K-	factor calculat	ions) – Measured	d (N	vl), or Estimated (I	<u>=)? – Mark</u>	the rel	evant on	les.
O ₂	MorE		% v/v dry		H ₂	M or E?			% v/v dry
CO ₂	MorE		% v/v dry		CH4	M or E?			% v/v dry
CO	MorE		% v/v dry		H ₂ O (moist)	M or E?	n	\sim	% v/v
Test Equipment			······································		Test Details				
Nozzle Number		NS2-2		ļ	K-factor (Δp to L	1 Iso)	D,S	<u>767</u>	
Nozzle Diameter		4-41	mm		Barometric Press		8	94	mb
Leak Tests	,	(, , , , , , , , , , , , , , , , , , 	······································		Static (duct) pre	ssure		40	mm H₂O
Pitot Tube	Lau State	Impact side	Wake side		Site Calculation	าร			
	n a t \	NAU	υÇ		H ₂ O (moisture)		1), X	23	% v/v
Leak? (Pass, or I							1 1 1	101	%
At Pressure/Vac	uum 🛛 🕹	00 mm H ₂ O	2400 mm H₂O		Isokinetic	N 1998	1 / 1	5151	/0]

Test & Sample Details

Page:

Filter Number	LEV22-9-1781
Probe Wash Number	071345
Chain of Custody	419860

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	o Velocity Head	HD Desired Orifice	P Actual Orifice	Stack Temp	et en p	ح Filter Temp	DGM Outlet	- Impinger Exit	Pump Vacuum	Isokinetic
		min	hh:mm	m ³	mm H₂O	mm H ₂ O	mm H2O	°C	°C	°C	°C	°C	inch Hg	% .
1	1	ſ	15'11	574-58-16	19,6	17,	119	48		<u> </u>	35	2)	-7	
1	2	10	p 	, ,	20	16 7	195	48	-	****	35	18	P	
1	3	K			19.8	141	19	48	•		35	16		
2	4	20			171	15 1	19	4.8			36	14	-/	
1	S	25			20	19,3	185	48			36	14	- /'	
7	6	30			r	213	21	49			37	16	-/-	
1	7	38			22	21.3	21	49	,		35	13		
1	8	40			32	30 8	32	48			37	1-7	-1	
2	P	45			76	74.8	34	48			37	14		
2	10	SO			36	34.8	34	45			37	13		
2	- 11	15			34	32,7	34	49			38	13	-1	
2	12	60			32	30,4	32	45			38	13	<u> </u>	
5	N	67	11:18	58,7255	30	29.0	30	¢q		-	57	13	/	
				730	-0	Xí					PTO	for con	tinuatic	n of table

Technician's Signature:

Acceptance Signature:

6 Page

Reviewed by: Schalk van Heergen (AM) DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

Page Revision Effective date 1 of 1 LES-L-F-054 E02 2017-04-11 FLUE GAS ANALYSER MEASUREMENT SHEET Management System Manual 50913m 7 DATE 75 PROJECT NUMBER OPERATOR CLIENT (COMPANY) SPECIALIST/ASSISTANT CLIENT PLANT (SITE) lon TEST NUMBER SAMPLING LOCATION (STACK) б L 131 2 POINTS ACROSS 4 NUMBER OF PORTS USED ANALYSER MODEL ANALYSER SERIAL No. 1076 1 SAMPLE % % ррлъ ppn ppm % ppm អាះពាព ppm % ID H₂ SO2 NO NO₂ CO2 со CH4 NO_s Tim 02 0 <u>d</u> ٢ 5 ť 00 0 000 \mathcal{O} 7 Ť <u>0</u> D £ 11 \mathcal{T} ()Ł R O £ Ø É É Ō $\overline{\mathbf{U}}$ 0 \mathfrak{D} C 6 Ð ۵ D C ত 0 Ø ٠ 0 7 0 11 Ô D t D 21 $\overline{\mathbf{0}}$ 12 2 g 6 \mathbf{t} C 20 13 も S 14 2^{\pm} ~ $\overline{\mathfrak{o}}$ 12 0 0 \circ 7.6 15 D 0 \mathcal{O} \mathcal{O} 16 I \mathcal{O} 8 yÐ. \mathcal{O} 17 \mathcal{D} \mathcal{O} D -10 -10 18 0 \mathbf{O} 0 \mathcal{D} Ð 7 19 C Ð D 20 $\overline{\mathbf{O}}$ € $\overline{\mathbb{O}}$ 0 \overline{O} Q 21 \mathcal{D} 5 Ø 6 0 Ð 22 υ \mathcal{O} ð 8 Ø Ð 23 00 0 B σ Ф 24 \bigcirc 0 e D 25 Ð 10g 3 B 人 Ô Õ 26 o 0 D D 20 27 $\overline{\mathbb{O}}$ D В Ú 28 7 \overline{O} Ö D $\overline{\mathcal{O}}$ t 29 \mathcal{O} 0 $\bar{\mathcal{O}}$ σ 20 30 31 32 33 34 35 36 37 38 39 40 Partner / Manus Operator US for printed from the Levego Environmental Services (Pty) Ltd. QMS this document is uncontrolled. The user is responsible for ensuring this document is the current, authorised, version. One

۰.

- Ali

A	LES-A-F-011	Page:	1 of 1	
	MOISTURE WEIGHTS - (METHOD 5, 6, 13B	Revision Status :	E03	
 LEVEGO Environmental Services	& 17 (ISOKINETIC))	Effective date	2017-04-12	

Balance ID:	B	26	Site / Plant Name:	South 32 (MIMI)
Date (dd/mm/yyyy):	12	101 /2023	Stack Name:	DEOLIST.3
Job File Number:	LES		Project Manager:	Hleys c/cy
Method:	mb		Team Leader:	Sizea
	lu,			
Test Number:	Impinger No.	Pre-weight	Post-weight	Material / Solution:
		Test '		
	1	721-3	122,9	Water / 10% H ₂ O ₂
	2		TT -	Water / 10% H ₂ O ₂
	3	et	At -	Empty
······································	4	846:6	868.1	Silica Gel
PW1 / NW2 / Acete	ne	776	97,3	
		Test	2	
	1	234.4	130	Water / 10% H ₂ O ₂
	2		+1-	Water / 10% H ₂ O ₂
	3	(A)		Empty
	<u>A</u>	8681	8831	🗧 Silica Gel
PW1 / NW2 / Acet	one	211	1N1, b	1
		Test	3	
l na stada en geste ne ne se sa tra-	1	2-341	227,6	Water / 10% H ₂ O ₂
	2		-51.	Water / 10% H ₂ O ₂
	3 .		Por	Empty
	4	883.1	8756	Silica Gel
PW1 / NW2 / Acet		216	88.6	
			Blank	
The second s	1			Water / 10% H ₂ O ₂
······································	2			Water / 10% H ₂ O ₂
	3		7	Empty
	4			Silica Gel
PW ¹ / NW ² / Acet	I	716	110.6	· · · · · · · · · · · · · · · · · · ·
		Note	es:	
a <u>de server de la deserver de la deserver</u> I	<u></u>			
			2	

1 - Probe Wash, 2 - Nozzle Wash

턯

Q.

Signature Team Leader:	Signature Project Manager:	
DTR: LES-A-F-011 - Moisture Weights (Method 5,	Reviewed by: Schalk van Heerden (QM)	1 Page
6. 13B & 17 (Isokinetic).docx	ORMATION CONTAINED WITHIN IS THE SOLE PRO MENTAL SERVICES (PTY) LTD	OPERTY OF LEVEGO

i.

	LES-A-F-010	Page:	1 of 2
	SITE OBSERVATION SHEET	Revision Status :	E07
LEVEGO Environmental Services	ISO 9096	Effective date	2019-07-25
Company: Sou	Da	te: 25224	I 276

1	Sketch	(refer to Site	Observation	Examples	LES-A-F-097)
1.	JACIUI		- Buddleviou		

309131

Draw the Stack/Duct sampling location, showing the orientation of sampling ports. Mark the ports (i.e. P1, P2, etc.) For typical examples, refer to LES-A-F-097 Site Observation Examples, Figures 1 to 5. Indicate North, or other cardinal points, as per typical example in LES-A-F-097, Figure 5.

Technician:

			A Lest		
		0	The The second s	-	1.4
. •			trou		
1	1			 	

2. Occurrence Report

Project No.

Deviations, abnormalities or problems experienced; (Any related to method, procedure or process operating conditions)

DTR: LES-A-F-010 - ISO 9096 Site Observation Sheet	Reviewed by: Harvey Butcher (QM)	1 Page
THIS IS A CONTROLLED DOCUMENT AND THE INFO	RMATION CONTAINED WITHIN IS THE SOLE PRO	PERTY OF LEVEGO
ENVIRONM	IENTAL SERVICES (PTY) LTD	

4

		LES-A-F-01	0		Page:		2 of 2	
	SITE	OBSERVATIO	N SHEET		Revision S	Status :	E07	
LEVEG 🛛 Environmental Services		ISO 9096			Effective o	date	2019-0	7-25
······································						1 1	\rightarrow	}
Company: South	1 <u>32</u>			ocation:	Lo Lo L	PINC	7)0	
Site: 🔨 🔨 🤟		1000		ate: 🤇	14) & 4	use:	<u>1 E</u>	
Project No. VGN	91300		Т	echnician:	_ دېکر 🗆	<u>v~16</u>		
. Stack/Duct Informat	tion (refe	er to Site Obsei	vation Exa	mples LES	-A-F-097)			
How were dimensions an	d details obt	ained?	Measure	ed 🗸	Estimate	ed	Histor	rical
Material Steel		Brick	Glass re	nforced pol	ymer	Other (spec	ify)	Refer
			(GRP)		. dalatatal	Other (spec	.: 6 .A	Figure
	tanding	Steel frame	provide	ie within wi sketch)	nasnieia		.11y)	
structure Duct/stack Vertic	al 📈	Horizontal		horizontal	(δ)	Angle to ve	rtical (β)	3
orientation					degrees	ļ	degrees	
Shape Circul	ar 🧹	Rectangular	Square			Other (spec	cify)	
Flow direction of angled	duct	Up (u) ±18	ر Down (1 m			3
		SAMPLIN	G PORT – DI	MENSIONS	5			
Height above ground lev	el					h 1-1	<u> </u>	1
Straight duct downstrear		oling plane (port	s), or to stac	k exit		a + 1	<u>}</u> m	1&3
is downstream d	isturbance o	pen (stack exit),	or <u>closed</u> (b	alance of p	lant)?			1&3
Straight duct upstream f			Antis Antis		t the second	b t 7	<u>, 5 m</u>	1&3
Port diameter (d)		ζς mm	Rectangula	r port dim	ensions	I INS.	/ <u>~</u>	1&4
Boss length (l)		D mm	Wall + insu	lation thic	kness (t)	l 'S	mm	1&4
		CIRCULAR D	UCT/STACK	- DIMENSI	ONS			
Circumference (outer)			m					
Outside diameter (OD)			m	diameter =	= circumfere	ence ÷π		
Wall + insulation thickne	EE	. t	mm					1
Inside diameter (ID)		D 1.7		1D = OD -	(2×t÷1000))		1
Number of ports	and the second s							1
Angle between port cent	re lines	α φυ	degrees					1
Port centre lines to Inlet		φ	degrees	ψ	dec	grees		2
I OIL COLLE MICE LO HIEL	DF/	TANGULAR/SQ						
Depth outside	11L4	Lo	m					4
Wall + insulation thickne		t		n				4
Inside depth		L	m	L = 10/7 (2	×t÷1000)			4
malue depth :		W _o		1	Δ			4
				11			• •	4
Width outside	255		/ mm					4
Width outside Wall + insulation thickne	255	t		$W = W_0 -$	(2×t÷1000))		
Width outside Wall + insulation thickne Inside width	255	t W	(10-		(2×t÷1000) -(L+W))		
Width outside Wall + insulation thickne Inside width Equivalent diameter		t		(2×L×W)÷				4
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca	tion	t W	m	(2×L×W)÷ On side d	·(L+W) imensioned	L or W?	to Yes	4 No
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar	tion	t W	(10-	(2×L×W)÷ On side di Angle of	·(L+W) imensioned	L or W? with regard	to Yes	
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar axis =	tion d to duct	t W	m	(2×L×W)÷ On side di Angle of	-(L+W) imensioned flow <15° y	L or W? with regard	to Yes	
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar	tion d to duct	t W Be	m	(2×L×W)÷ On side d Angle of duct axis,	-(L+W) imensioned flow <15° y	L or W? with regard	Yes	No No
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar axis = Negative flows present?	tion d to duct	t W De	degrees	(2×L×W)÷ On side d Angle of duct axis,	-(L+W) imensioned flow <15° y	L or W? with regard point?		No No
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar axis = Negative flows present? Source of pollutant	tion d to duct Boi	t W De PRO ler furnace	degrees	(2×L×W)÷ On side d Angle of duct axis, MATION	(L+W) imensioned flow <15° for each p	L or W? with regard point? or mill	Yes	No No No fy below
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar axis = Negative flows present? Source of pollutant Pollution control equipm	tion d to duct Boi	t W De PRO ler furnace	degrees CESS INFORI	(2×L×W)÷ On side d Angle of duct axis, MATION	(L+W) imensioned flow <15° for each p Crusher, o	L or W? with regard point? or mill	Yes Other (speci	No No No fy below
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar axis = Negative flows present? Source of pollutant	tion d to duct Boi	t W De PRO ler furnace	degrees CESS INFORI	(2×L×W)÷ On side d Angle of duct axis, MATION	(L+W) imensioned flow <15° for each p Crusher, o	L or W? with regard point? or mill	Yes Other (speci	No No No fy below
Width outside Wall + insulation thickne Inside width Equivalent diameter Number of ports & Loca Angle of flow with regar axis = Negative flows present? Source of pollutant Pollution control equipm	tion d to duct Boi	t W De PRO ler furnace	degrees CESS INFORI	(2×L×W)÷ On side d Angle of duct axis, MATION	(L+W) imensioned flow <15° for each p Crusher, o	L or W? with regard point? or mill	Yes Other (speci	No No No fy below

 DTR: LES-A-F-010 - ISO 9096 Site Observation Sheet
 Reviewed by: Harvey Butcher (QM)
 2 | P a g e

 THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
 ENVIRONMENTAL SERVICES (PTY) LTD

LES-A-F-009	Page:	1 of 9
	Revision Status :	E09
ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22

Project No.	LESORISM
Company	Sarta 32
Site	Menzetwen
Location	Deduct 1

Duct/Stack Dimensions & Information

Duct/Stack Dimensions of	
Rou	nd
Diameter	/175 m
Rectan	gular /
Depth (L)	$M \sim m$
Width (W)	m m
Barometer	1
Barometer Number	DBIt
Flue Gas Analyser	
Analyser Model	Suitron
Analyser Serial Number	1076
Pitot Tube	
Pitot Tube Number	ST-A3390
Pitot Tube Coefficient	0,84
Probe	
Probe Number	
Probe Length	KFE
Liner Material	55

LEAK TEST REQUIREMENTS

Pitot Tube		
Pressure, or vacuum	≥ ±180 mm H₂O	Time ≥ 1 minute
Sampling Train		
Vacuum	\geq -15 inch Hg	Time ≥ 1 minute

Date 2024/11 DA Technician 1 Gizhove Technician 2 Cruck-1 Technician 3

Sampling Points – Method	✓
ISO 9096 – General Rule (centre point)	<u> </u>
ISO 9096 – Tangential Rule (no centre point)	
ISO 9096 – Rectangular	
US EPA Method 1 – Circular	
US EPA Method 1 – Rectangular	
Other (specify below)	

Sampling Points – Details		
Number of Ports Used	2	
Points per Traverse	7	
Total Number of Points	13	
Time per Point (minutes)	. \$	
Sampling Time Total (mins)	(S	

Console Details

Console Number	911058	
DGM Meter Number	\$71(
DGM Calibration Factor (y)	0,996	
ΔH@ (0.75 scfm)	48.112	mm H₂O

This document consists of 9 pages
Page 1 = information common to the tests
Pages 2 & 3 = velocity traverse measurements
Pages 4 & 5 = 1st test measurements
Pages 6 & 7 = 2nd test measurements
Pages 8 & 9 = 3rd test measurements

SAMPLING TIME REQUIREMENTS – LEVEGO PROCEDURE

- 1. Sampling time: ≥ 2 minutes per point
- 2. Total sampling time: ≥1 hour
- 3. The sampling time at each point shall be the same. The number of minutes sampled at each point shall be an integer, or an integer plus one-half minute.

integer, or a		
Example 1:	$60 \div 13 = 4.62$ minutes per point, which is less than the maximum of 5 minutes per point, but it	
13 points	is not an integer, or an integer plus one-half minute.	-
•	Sampling time = 5 minutes per point.	-
	Total sampling time = 65 minutes	
	· · · · · · · · · · · · · · · · · · ·	a

4. Record velocity head (Δp) and update orifice flow (ΔH) at least every 5 min. Update temperatures and vacuum readings at the same time.

reaunys ac i	ile Same and,
Example 2:	$60 \div 8 = 7.5$ minutes per point, which exceeds the maximum of 5 minutes per point.
8 points	$7.5 \div 2 = 3.75$ minutes per point, which is not an integer, or an integer plus one-half minute.
	Sampling time = 8 minutes per point, with an update every 4 minutes.
	Total sampling time = 64 minutes

Acceptance Signature: Technician's Signature: Reviewed by: Schalk van, Heerden (QM) 1 Page DTR: LES-A-F-009 - Isokinetic Medsurement Sheet.docx THIS IS A CONTROLLED DOQUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

LEVEGO Environmental Services	

DGM - Post

At Vacuum of

At Vacuum of

Page:	2 of 9
Revision Status :	E09

ISOKINETIC MEASUREMENT SHEET

A inch Hg

524

- V inch Hg

inch Hg

inch Hg

q0.

コイ

2

* Last three digits on DGM

Effective date

2018-10-22

Project No.	INES OFNIM	
Location	DedusEI	

Project No. 1250817M	Date: 201411 27
Location DecayEI	Test Number 1
	Test Method MG
Flue Gas Analysis (for K-factor calculations) – Measur	ed (M), or Estimated (E)? – Mark the relevant ones.
02 M or E? 🛛 % v/v dry	H ₂ M or E? % v/v dry
CO2 M or E? M v/v dry	CH ₄ M or E? % v/v dry
CO M or E? 🔨 % v/v dry	H ₂ O (moist) M or E? M % V/V
Test Equipment	Test Details
Nozzle Number NSI-3	K-factor (Δp to ΔH lso) $\frac{4}{7}S(1)$
Nozzle Diameter 6, 42 mm	
Leak Tests	Static (duct) pressure mm H ₂ O
Pitot Tube Impact side Wake side	Site Calculations
Leak? (Pass, or not) DF OF	H ₂ O (moisture)
At Pressure/Vacuum	Isokinetic 7908 %
Sampling Train Start End	Test & Sample Details
DGM-Prior * 686 * 686	Filter Number 45 V21-Q-1778

Filter Number	hev22-Q-1778
Probe Wash Number	09054
Chain of Custody	09856

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading Vm	dP Velocity Head	Desired Orifice	Actual Orifice	at Stack Temp	et Probe Temp	4 Filter Temp	DGM Outlet	- Impinger Exit	Pump Vacuum	Isokinetic
		min	hh:mm	m ³	mm H₂O	mm H ₂ O	mm H ₂ O	°C	°C	°C	°C	°C	inch Hg	%
1	1	8	01:70	128,4712	7,4	33,4	34	40		·	33 <	23	-1	
1	5	10		┼╺┙╌┼╌╵╺┈──	2,6	343	ZUP	42	•	×	33	18	-1	
1	3	1.5			2,6	34.1	36	42		·	3Š	1.4		
1	4	20	•		5	31.1	36	42			35	N	-1	
1	2	25			12.2	7.0) 8	42			27	ų		
1	1	12			8	36,1	36	42			37	11	·	
1	7	38			36	34.3	36	41			37.	16	-1	
2	x	10			2,6	34.7	36	43			33-	12	·	
. 2	R	W.S			8	76.0	36	43		-	37	41	-1	
2	10	lo			2,8	352	35	47			40	12	<u></u>	
2	15	SS			28	351-	36	44			41	12		
2	10.	60			7,6	24.2	36	144	·	<u></u>	41	11	-1	
12	17	65	10:18	129.7436	7.14	33.4	34	40		-	47_	<u> </u>	1 -p	
h	4-9		.s <u>j - Le</u>		1	$\overline{\mathbf{N}}$					PTO 1	for cont	tinuatio	n of table

Technician's Signature:

Acceptance Signature:

2 Page

Reviewed by: Schalk van Heerder DTR: LES-A-F-009 - Isokinetic Measurement Speet docx €м)/ THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

)			LES-A-	F-009				Page:				3 of 9		
		4	$\left(\right)$								Revisi	ion Sta	tus :		E09		
En	L. viro	.E∨E nment	c G C al Serv	vices	ISOKINETIC	MEAS	UREMEN	T SH	EET		Effect	tive dat	e		2018-1	0-22	
	roi	ect l			Date:									, , , ,			
		ation								t Num	nber			(cc	ontinued)		
•										t Metl							
	T		ntinu g	Clock	DGM	gq	9	e	3	ę	Ę	Ê	let	1	<u>/</u>		
lant (Training)	5	Traverse Point No.	Sampling Time	Time	Reading	Velocîty Head	Desired Orifice	Actual Orifice		Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokinetic	
140		e Poi	plin			locit	ired	tiaľ		Stac	rob	Filte	Dew	pin	du	<u>S</u>	
E		versi	Sam			¢.	Des	4	t di Bart				Υ ⁻ .		P		
	5	Tra			Vm	Δр	ΔН	ΔI	4	ts	tp	X	t _{mo}	ti			
			uin.	hh:mm	m ³	mm	mm H2O	mm	H₂O	°C	°C	°C ,	°C	°C	inch Hg	%	
			Ľ			H₂O						- /			- Ing		
ļ											/	+/-					
ļ										-		/					
-										/							
								_	-		/-						
-								\cap		n/							
-				1				A	\overline{f}	\mathcal{H}							
\vdash									\cup_{j}	Y		+					
-									+					-			
-							/	- /	/								
							K-f	/								-	
-						+ + -	$\left \right\rangle$	/									
-						\times		-								-	
-						/	-/-						-				
-					/	1											
-		1			/-		/			<u> </u>		-		-			
-							/	-								-	
-			<u> </u>			-/		1						1			
					1/		1	1		1	-	-	1				
			<u> </u>		\vee	/	-					-					
			<u> </u>	/	1	/						-					
				-/	1/			-		-							
				-/-	/-	-		1		1							
	.			1	<u> / / </u>	+	-			1							
-				/				-				-					
			+/		+ //	•••	-	-		-							
-		+	1/-		+ //	-		-		-							

Technician's Signature:

Acceptance Signature:

 DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx
 Reviewed by: Schalk van Heerden (QM)
 3 | P a g e

 THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
 ENVIRONMENTAL SERVICES (PTY) LTD

LEVEGO Environmental Service

At Vacuum of

LE	S-A	۱-F	-0(0 9 0
		•••		_

ISOKINETIC MEASUREMENT SHEET

ーン inch Hg

-21 inch Hg

Effective date

Revision Status :

2018-10-22

Project No.	LESOFILM	
Location	DEdust 1	

	Date: 22211127
Project No. LES DEIDM	
Location Dedust 1	Test Number 2
	Test Method M. 6
Flue Gas Analysis (for K-factor calculations) – Measure	d (M), or Estimated (E)? – Mark the relevant ones.
O₂ M or E? № % v/v dry	H ₂ A 2 % v/v dry
CO2 M or E? 1 % % v/v dry	CH4 M or E? % v/v dry
CO M or E? M % v/v dry	H ₂ O (moist) M or E? <u>% v/v</u>
Test Equipment	Test Details
Nozzle Number	K-factor (Δp to ΔH Iso) 4.51
Nozzle Diameter 6,42 mm	Barometric Press 870 mb
Leak Tests	Static (duct) pressure
Pitot Tube Impact side Wake side	Site Calculations
Leak? (Pass, or not) OC Ja	H₂O (moisture) /, ♡? % v/v
At Pressure/Vacuum 18 Omm H2O 18 Omm H2O	Isokinetic 93, 10 %
Sampling Train Start End	Test & Sample Details
DGM-Prior * 771 * 796	Filter Number 60002=9-1780
At Vacuum of -21 inch Hg -21 inch Hg	Probe Wash Number 09096 G
DGM - Post * 560 * 560	Chain of Custody DY856

* Last three digits on DGM

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Bút	Pump Vacuum	Isokinetic
Por	Тr		hh:mm	V _m m ³	∆p mm	ΔH mm H ₂ O	ΔH mm H ₂ O	ts °C	tp ℃	া °C	t _{mo} °C	ti ℃	inch	%
		min			H₂O								Hg	
1	1	5	10:30	128,7820	7,2	32,5	34	44			43	21	- <u>(</u>	
2	2	10		<u> </u>	7,6	34.3)4	44			44	17	-1	
1	3	1S			26	34-3	36	44			44	13		
2	4	20			S	76.1	36	64			44	11	-1	
1	(S			7,6	34.5	34	45			44	1	~!	
1	ſ.	10			2L	325	34	46			44	12	-1	
1	1	35			7	31. 2	32	47-			44	12	-r	
2	8	00			7-14	33, 4	34	46			94	$($ S	-/	
V	-1	is			5,2	325	32	47			44	15	-1	
r	10	50			7,6	347)	34	4			40	12	-1	
2	11	35			7,0	13,4	34	168		<u> </u>	44	11_	mp	
Z	11V	60			7	31.6	32	48			45	13	-1	
7	(3	65	11:38	131, 0456	7	31.6	12	48			45	14	5-1	
L	المرية (ا					- (PTO 1	for con	tinuatio	on of table

Technician's Signature:

Acceptance Signature:

Reviewed by: Schalk van Heerden (QMY 4 Page

DTR: LES-A-F-009 - Isokinetic Measurement Sheet focx THIS IS A CONTROLLED DOQUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

2		LES-A-F-009		Page:		5 of 9		
LEVEGO Environmental Services	ISOKINET	IC MEASUREMENT	SHEET	Revisio Effectiv	n Status : /e date	E09 2018-10-22		
Project No.			Date: Test Nu Test Me	mber		(continued		
Port (Traverse Line Traverse Point Nc Sampling Tim	ock DGM Reading	Ppe Ap Δp ΔH mm mm H2O H2O Image: Application of the second of the secon	AH ts mm H ₂ O °C	Loobe Temps		tı C inch Hg Mmb Aacını L Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg		

Technician's Signature:

Acceptance Signature:

 DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx
 Reviewed by: Schalk van Heerden (QM)
 5 | P a g e

 THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
 ENVIRONMENTAL SERVICES (PTY) LTD

O2

CO₂

CO.

Test Equipment

Nozzle Diameter Leak Tests

Leak? (Pass, or not)

At Pressure/Vacuum

Sampling Train

DGM – Prior

At Vacuum of

At Vacuum of

DGM - Post

Pitot Tube

1	FS.	Δ_	F.,	009
-	L.J."	~	1 -	

ISOKINETIC MEASUREMENT SHEET

% v/v dry

% v/v dry

% v/v dry

Wake side

& Òmm H₂O

End

88

110

21

- V inch Hg

inch Hg

DR

mm

Effective date

2018-10-22

6 of 9

E09

Project No.	C	Gr	5130	Λŗ	
Location	Ě	1-60	ust		

M or E?

M or E?

M or E?

 $1 \wedge$

*

*

Impact side

Start

188

-y inch Hg

190

h inch Hg

 $\frac{O}{100}$ mm H₂O

Flue Gas Analysis (for K-factor calculations) – Measured

M

42

Date:	2022	11/22	
Test Number	3 /	<u> </u>	
Test Method	mb		
(M), or Estimated (E)? – Mark	the relevant one	S.
H ₂	M or E?		% v/v dry
CH ₄	M or E?		% v/v dry
H ₂ O (moist)	M or E?'	M	% v/v
Test Details		``	
K-factor (Δp to	ΔH Iso)	4.511	
Barometric Pres	iS	850	mb
Static (duct) pre	essure	-4	mm H₂O
Site Calculatio	ns	r	
H ₂ O (moisture)		1,04	% v/v
lsokinetic		58,61	%
Test & Sample	Details		
Filter Number		LEV22-Q	-1770
Probe Wash Nu	ımber	040P5B	
		I de de la l	

Chain of Custody マースタンム

* Last three digits on DGM

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokinetic
ort	Trav			Vm Nm	Δр	ΔΗ	ΔН	ts	t _p	tr in	t _{mo}	ti .		
		min	hh:mm	m ³	mm H₂O	mm H ₂ O	mm H₂O	°C	- °C	°C	°C	°C	inch Hg	%
14	1	5	(1:S)	131.0714	\mathbf{r}	71.6	32	50	46		46	24	- ^	
1	2	-10	11 ()	<u> 0 2 1 1 1 1 1 1 1 1 1</u>	2,4	23.4	34	50			46	12-	-1	
1	3	15			2,1	32,5	32	SO			46	11	(
1	4	20			7	31.6	32	50			46	10	1 -	
1	S	25			2,2	32,5	34	50			46	01	-1°	
1	6	30	,		7	31.6	32	Su			46	11)	
1	7	35		(a)	68	202	32	30			46	11	-1	
2	R	40	>		5	31.6	25	50			46	16	1	
v	9	as			2.2	32,5	22	52			96	12	-/	
2	10	50			6,8	30,7	32	52			46	12		
2	Cr	55			88	3007	32	52			4-5	$()$	-1	<u> </u>
2	12	6	>		2	31. 6	32_	53			45	13	-1	
	13	65	13:00	1323086	6-8	30,2	32	52			42	14	-1	
L	<u> </u>	1		6				Ŷ			PTO 1	for con	tinuatic	on of table

Technician's Signature:

Acceptance Signature:

6 Page

DTR: LES-A-F-009 - Isokinetic Measurement Sheet, for Reviewed by: Schalk van Heerden (2017) 6 P a THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

LEVEGO Environmental Services

	LES-A-F-009	Page:	7 of 9	
		Revision Status :	E09	
LEVEGO Environmental Services	ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22	
Project No.	Date:		/	

Location						Т	Test Number						(continued)		
			<u> </u>				Т	est Meth	od						
Tab	ole co	ntinu									1				
Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actu	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokinetic	
1				Vm	Δр	ΔH	ΔH	ts C °C	t _₽ °C	tr ℃	rmo °C	tı °C	inch	%	
		min	hh:mm	m³	`mm H₂O	mm H₂O	mm H ₂ (-/			Hg	/0	
					:										
									/						
	•							1							
										1				1	
		<u> </u>													
	1					/									
 					/										
					/					_					
				/											
			· · · · · · · · · · · · · · · · · · ·	/											
				1 /											
													l		
				/									<u> </u>		
ļ		<u></u>	<u> </u> ,	/							_				
L		<u> </u>	L/								1			1	

Technician's Signature:

Acceptance Signature:

ļ

Reviewed by: Schalk van Heerden (QM) 7 | Page DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

	LES-A-F-011	Page:	1 of 1	
	MOISTURE WEIGHTS - (METHOD 5, 6, 13B	Revision Status :	E03	-
LEVEGD Environmental Services	& 17 (ISOKINETIC))	Effective date	2017-04-12	_

Balance ID:	Bal	26	Site / Plant Name:	South JUM
Date (dd/mm/yyyy):	27-1	11 / 2022	Stack Name:	Durke I
Job File Number:	LES	09/3 M	Project Manager:	A-19UKCK0
Method:	MI	>	Team Leader:	Sizences
Test Number:	Impinger	Pre-weight	Post-weight	Material / Solution:
	No.			
		Test 1	te agrica de la	n an tha an
	1	232,7	235.1	Water / 10% H ₂ O ₂
· · · · · · · · · · · · · · · · · · ·	2		AT.	Water / 10% H ₂ O ₂
T	3	- A	# *	Empty
	4	796,2	814 L	Silica Gel
PW1 / NW2 / Aceto	ne	21.20	88, 's	
		Test 2		
	1	232,4	2:84,6	Water / 10% H ₂ O ₂
	2		Aco	Water / 10% H ₂ O ₂
	3	A		Empty
	4	800fr	810,9	Silica Gel
PW1 / NW2 / Aceto	ne	21.6	٩١, ١	
		Test 3	/ • /	
	1	27S,L	232,7	Water / 10% H ₂ O ₂
	2		71	Water / 10% H ₂ O ₂
	3			Empty
	4	, 812,9	816,5	Silica Gel
PW1 / NW2 / Aceto	ne	21.6	102.1	
		Test 4 / Bl	ank	
	1			Water / 10% H ₂ O ₂
· · · · · · · · · · · · · · · · · · ·	2	Δ		Water / 10% H ₂ O ₂
	3			Empty
	4			Silica Gel
PW ¹ / NW ² / Acetor	ne		·	
	· · · · · · · · · · · · · · · · · · ·	Notes:		an in the present of the prime
				······································
· · · · · · · · · · · · · · · · · · ·				
ANNUMBER (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		······································		

1 - Probe Wash, 2 - Nozzle Wash

Signature Team Leader:	Signature Project Manager:
DTR: LES-A-F-011 - Moisture Weights Method 5,	Reviewed by: Schalk van Heerden (CM) 1 P a g e
6, 13B & 17 (Isokinetic).docx	
THIS IS A CONTROLLED DOCUMENT AND THE INFO	ORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
ENVIRON	MENTAL SERVICES (PTY) LTD

,45°,

LES-L-F-054

 Page
 1 of 1

 Revision
 E02

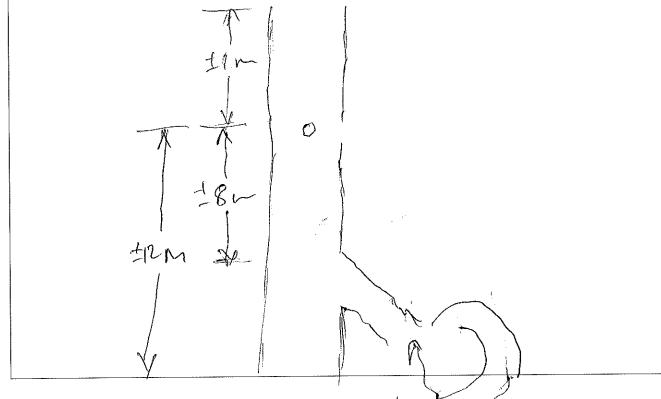
 Effective date
 2017-04-11

FLUE GAS ANALYSER MEASUREMENT SHEET

Management System Manual

PROJECT NUI	MBER	103	5091	5 m	DATE		202	11/52	}	
CLIENT (COMPANY)			15	<u>2</u> 2	OPERATOR	:	Side			
CLIENT PLAN	T (SITE)	Mie.	and h	<u> </u>	SPECIALIST	SPECIALIST/ASSISTANT		RT 1		
SAMPLING LO	OCATION (STACK)	A	duck	1	TEST NUME	BER	1	$\frac{1}{2}$		
NUMBER OF I		- UA	Jusc Z	<u></u>	POINTS ACI		1	<u>ل</u>		
ANALYSER SE					+		13			
ANALI SEK SI	CRIAL NO.	1076			ANALYSER	MODEL	Seit	non		
bh:mm	%	%	ppm	%	ppm	ppm	ppm		%	0 AL OUT
Time	0 ₂	CO2	со	CH ₄	NO _x	NO	NO ₂	SO ₂	70 H ₂	SAMPLE ID
	201	Ø	Q		Ð	0	0			
	2013	$\mid \underline{\vee}$	0	<u>↓ </u>	6	\cup	<u> </u>			
	20,5	0	Ø	<u> </u>	$\overline{2}$		U U			
·.	291	6	$-\underline{o}$				0			
	120/0	0	\overline{D}	<u> </u>	$\overline{0}$	0				
	1-20-1	\square	\square		0	0	0			
· · · · ·	20,6	$\downarrow \underline{\mathcal{V}}$	0			$\perp \circ$				r r
	205	<u>+ 2</u>	+ 0	<u> </u>	$\square O$	8	<u> </u>			1
	1-20, J.	$\vdash \mathcal{D}$	<u> </u>		<u> </u>		\cup			
	20,5		\mathcal{O}		0	0	0			
	- P	A1-	1	1						
	20, 5	<u> </u>	-0	17	<u>o</u>	<u> </u>		, 11		
	245	6	0	ļļ	0	D	J			
	2.64	0			\bigcirc	Q	0			
	261	D	0		J D		\Box			/
	204		Q		$\overline{\mathcal{D}}$	D	5			
		1			6	\mathcal{O}	C.			
	267	Q_	0		Ð	6	6			
	26.9	U	D		<u> </u>					1
	105	<u> </u>	<u> </u>		Q	\Box	6			
	20, 5	$\square D$			$L(\mathcal{S})$	$ $ \mathcal{O}	<u> </u>	ζ		
	1 200				,					•
	299	0				0	N			
	26,7	O	0	ļ	0	O	1)			
	201	B	<u>S</u>		Q		\mathcal{D}			
	1 366	$\overline{\mathcal{O}}$			$-\tilde{r}$	U C	$ $ \rangle			
	50°P	<u>`O</u>	6		- T	6	-D			
	2014	Ð	$\overline{\mathcal{Q}}$		6		0		1	C
	201	- 5-	$\overline{2}$			B	\overline{O}			177
	- iof	(j			D	\mathcal{D}	A			10
	Do.P	0	(Ç		0	0	S			
·	500	\overline{O}	<u> </u>		Δ		0			
										All Statements and a second seco
	20,9	3	D	\neg	\$	0	<u> </u>			5
·	28 5	U	0		8	<u> </u>				
	20,9	Ð	\mathcal{O}		S	U U	U			
	209	Õ	c		Q	U	a			
	20,9	0	\mathcal{O}		Û	S	0			
	20,5	_ Ō	Õ		\overline{O}	ں ک	4		and the second sec	
	20.5	0	Ð		ŏ	0	0			
	10,0	0	Ð		\sim	৩	<u> </u>	1		
	16.9	$\setminus D$	6		0	۲,	0	1 7		
	3.8.64		0	1	0	V		\Box		
	Im	/						- YU		1
perator	- AHI	/					Dartman / 3 /	77/		_
	1-1-101						Partner / Manager	// /		
	e 1 14							· · · ·		

Once downloaded and/or printed from the Levego Environmental Services (Pty) Ltd. QMS this document is uncontrolled. The user is responsible for ensuring this document is the current, authorised, version.


LEVEGO Environmentol Services	LES-A-F-010	Page:	1 of 2
	SITE OBSERVATION SHEET	Revision Status :	E07
	ISO 9096	Effective date	2019-07-25

Company:	Soma 3L	Lc
Site:	Monghron	D
Project No.	LETUY (3m	Т

Location:	DEJUSE 2
Date:	2012/11/28
Technician:	Sizetie

1. Sketch (refer to Site Observation Examples <u>LES-A-F-097</u>)

Draw the Stack/Duct sampling location, showing the orientation of sampling ports. Mark the ports (i.e. P1, P2, etc.) For typical examples, refer to LES-A-F-097 Site Observation Examples, Figures 1 to 5. Indicate North, or other cardinal points, as per typical example in LES-A-F-097, Figure 5.

2. Occurrence Report

Deviations, abnormalities or problems experienced; (Any related to method, procedure or process operating conditions)

DTR: LES-A-F-010 - ISO 9096 Site Observation Sheet	Reviewed by: Harvey Butcher (QM)	1 Page
THIS IS A CONTROLLED DOCUMENT AND THE INFO	RMATION CONTAINED WITHIN IS THE SOLE PRO	PERTY OF LEVEGO
ENVIRONM	IENTAL SERVICES (PTY) LTD	

	LES-A-F-01	0		Page:		2 0	of 2			
	OBSERVATIO	DN SHEET Revision Status :					E07			
LEVEGO Environmental Services	ISO 9096		Effective	date	20	19-0 ⁻	7-25			
6		> >			ocation:	N	18	E Z		
Company: 50	NON	SIL		I			28US	1.0		
Site: M	Xe ny	(In	<u> 29</u>)ate:	- 20	2011	120		
Project No.	えってい	<u>n</u>	-		echnicia	$n: \leq r$	2040	(
. Stack/Duct Info	ormation	(refe	r to Site Obse	rvation Exa	mples LE	S-A-F-097)				
How were dimensio	ns and detail	ls obta	ined?	Measur	ed V	Estimate	ed		Histor	ical
Material	Steel \		Brick	Glass re (GRP)	inforced p	olymer	Other (spe	ecify)		Refer Figure
Support structure	Free standing		Steel frame	1	ue within v sketch)	vindshield	Other (spe	ecify)		
Duct/stack	Vertical		Horizontal		o horizonta		Angle to v	vertical (β) dea		3
orientation	Circular	1/	Destangular	Square		degrees	Other (spe	· · ·	lees	
Shape Flow direction of an	Circula		Rectangular Up (u) + C		1) de	~		actry)		3
Flow direction of an	igied dact	I		IG PORT - D		IC		·		
Height above grour	d loval		SAWFLIN			.	h 4 ,	')	m	1
Straight duct down		samnl	ing plane (port	s) or to stac	k exit	1. The second	ate		m	183
Is downstre	am disturba	nce or	<u>en</u> (stack exit),	or closed (b	alance of	plant)?	- +· 6			18.3
Straight duct upstre				<u> </u>		<u>p</u>	btQ	,	m	1&3
Port diameter (d)		<u>p</u>	mm	Rectangula	ar port din	nensions	IN	1/100	mm	1&4
Boss length (l)		(T mm	Wall + ins			1 C	\	mm	1&4
	·		CIRCULAR D				<u>1</u>	- 1]	<u> </u>
Circumference (out	or)	<u></u>	CINCULAR D	m				******		
Outside diameter (C					diameter	= circumfere	ence ÷ π			
Wall + insulation th			tζ	mm						1
Inside diameter (ID			D /	m	ID = OD	- (2×t÷1000)				1
Number of ports			12							
Angle between por	t centre lines		a 65	degrees						1
Port centre lines to			φ	degrees	ψ	deg	rees			2
		RECT	ANGULAR/SQ	JARE DUCT/	STACK – E	DIMENSIONS	ś			
Depth outside	N	* -	Lo	m						4
Wall + insulation th	ickness		t	mpi-						4
Inside depth	· · · · · · · · · · · · · · · · · · ·		L	/ m	/L ≕ L₀ – (2×t÷1000)				4
Width outside			W。	<u> </u>		· · · · · · · · · · · · · · · · · · ·				4
Wall + insulation th	lickness		t'		$\leq \wedge$					4
Inside width			W	m	······	- (2×t÷1000)				.4
Equivalent diamete			De	m	(2×L×W)					
Number of ports &		· (,		ر. 		dimensioned		•	<u> </u>	4
Angle of flow with	regard to due	ct		degrees		f flow <15° v		10 1	es	No
axis =		<u> </u>		i te v v s		s, for each p	Unit		es (TNO
Negative flows pres	sent:								<u> </u>	
Source of pollutant	n i v V seguna na tali	Boilo	r furnace	CESS INFORI Kiln	MANUN	Crusher, o	or mill	Other (snecif	y below
Pollution control ed		ESP	Tuttlace	Fabric filter		Scrubber	4 1114			y below
	faihineur	<u></u>								
Comments:										

1

 DTR: LES-A-F-010 - ISO 9096 Site Observation Sheet
 Reviewed by: Harvey Butcher (QM)
 2 | P a g e

 THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
 ENVIRONMENTAL SERVICES (PTY) LTD

	LES-A-F-009	Page:	1 of 9	
		Revision Status :	E09	
rices	ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22	

Date

Technician 1 Technician 2

Technician 3

Lue

ISO 9096 - General Rule (centre point)

ISO 9096 - Tangential Rule (no centre point)

1-

mm H₂O

7

1088

12

This document consists of 9 pages

Pages 4 & 5 = 1st test measurements Pages 6 & 7 = 2nd test measurements

Pages 8 & 9 = 3rd test measurements

Page 1 = information common to the tests Pages 2 & 3 = velocity traverse measurements

Sampling Points – Method

ISO 9096 – Rectangular US EPA Method 1 – Circular US EPA Method 1 – Rectangular

Other (specify below)

Sampling Points – Details Number of Ports Used Points per Traverse

Total Number of Points Time per Point (minutes) Sampling Time Total (mins)

DGM Meter Number DGM Calibration Factor (γ)

ΔH@ (0.75 scfm)

Console Details

Project No.	LESOSISM
Company	South 32
Site	Menytwan
Location	DESCORC2

Duct/Stack Dimensions & Information

Rou	nd
Diameter	<u>1,86 m</u>
Rectan	gular /
Depth (L)	<u>// m</u>
Width (W)	/ / / m
Barometer	
Barometer Number	DR 17
Flue Gas Analyser	<u> </u>
Analyser Model	SerCro-
Analyser Serial Number	1026
Pitot Tube	
Pitot Tube Number	ST-13190
Pitot Tube Coefficient	0,84
Probe	_
Probe Number	U.Y.
Probe Length	87E
Liner Material	<u>(</u> \$

LEAK TEST REQUIREMENTS

Pitot Tube			
Pressure, or vacuum	י ≤ ו	±180 mm H₂O	Time ≥ 1 minu
Sampling Train			
Maguuma	~	1E inch Ug	Timo > 1 minut

Vacuum ≥ -15 inch Hg Time ≥ 1 minute

SAMPLING TIME REQUIREMENTS – LEVEGO PROCEDURE

1. Sampling time: \geq 2 minutes per point

DTR: LES-A-F-009 - Isokinetic Measurement Sheet doc

- 2. Total sampling time: ≥1 hour
- The sampling time at each point shall be the same. The number of minutes sampled at each point shall be an integer, or an integer plus one-half minute.

te

Example 1:	$60 \div 13 = 4.62$ minutes per point, which is less than the maximum of 5 minutes per point, but it
13 points	is not an integer, or an integer plus one-half minute.
	Sampling time = 5 minutes per point.
	Total sampling time = 65 minutes

4. Record velocity head (Δp) and update orifice flow (ΔH) at least every 5 min. Update temperatures and vacuum readings at the same time.

reduings at the sume time.		
Example 2:	$60 \div 8 = 7.5$ minutes per point, which exceeds the maximum of 5 minutes per point.	
8 points	$7.5 \div 2 = 3.75$ minutes per point, which is not an integer, or an integer plus one-half minute.	
	Sampling time = 8 minutes per point, with an update every 4 minutes.	
	Total sampling time = 64 minutes	

Technician's Signature	•
------------------------	---

Acceptance Signature:

Reviewed by: Schalk van Heerden (SM) 1 | P a g e

THIS IS A CONTROLLED DOCUMENT AND THE WFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO

	LES-A-F-009	Page:	2 of 9
		Revision Status :	E09
/EGD antal Services	ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22

Project No. LGS 0913 M Location Dedust 2	Test Number 1
	Test Method MG
Flue Gas Analysis (for K-factor calculations) – Measured	(M), or Estimated (E)? – Mark the relevant ones.
O₂ M or E? M % v/v dry	H ₂ M or E?
ΣO ₂ M or E? γ ∧∧ % v/v dry	CH4 M or E? / % v/v di
CO M or E? V~ % v/v dry	H ₂ O (moist) M or E? M % v/
Fest Equipment	Test Details
Nozzle Number N1(1-3	K-factor (Δp to ΔH Iso) 4.74.4
Nozzle Diameter 6,42 mm	Barometric Press St 7, 7 m
Leak Tests	Static (duct) pressure 74 mm/H2
Pitot Tube Impact side Wake side	Site Calculations
Leak? (Pass, or not) OC OC	H ₂ O (moisture) % v
At Pressure/Vacuum ZO mm H2O 200mm H2O	Isokinetic
Sampling Train Start End	Test & Sample Details
DGM-Prior * 872 * 872	Filter Number
At Vacuum of -19 inch Hg -9 inch Hg	Probe Wash Number
$DGM \rightarrow Post$ * *	Chain of Custody
At Vacuum of inch Hg inch Hg	Chain of Custody
* Last three digits on DGM	
Last three digits on Dow	
Port (Traverse Line) Clock DGW Dout (Traverse Line) Indextrement of the second of the	Actual Onlice Stack Lemp Probe Temp Filter Temp DGM Outlet Impinger Exit Pump Vacuum
	okii ka
	Actival Stact Prob DGM Ump V Ise
er ei ei	′₄∕ /‴ /″ ⊑ ⊒
	AH to tr tro ti
E hh:mm m ³ mm mm H ₂ O m E H ₂ O	mH₂O °C °C °C °C inch %
	\$ 67 28 21 -1
1 210 223073	
1 3 6 / 70 3011 3	270 3014 - 1
1 4 20 1 1 1 290	071 30 13 -1
15 15 1 1 1 2 28 3	0713613-1
1620	
2 7 35	
2 8/41	
7 10 60	
11/12/60	
71365	
	PTO for continuation of ta
	N//
$\langle X X X \rangle$	
echnician's Signature:	Acceptance Signature:
DTR: LES-A-F-009 - Isokinetic Measurement Sheet. pdcx	Reviewed by: Schalk van Heerden (DM) 2 P a g e
THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION	
	RVICES (PTY) LTD

/

	3
į L	EVEGO
Enviro	nmental Service:

At Vacuum of

DGM - Post

At Vacuum of

L	ES-A-F-009	

Page: **Revision Status :**

4 of 9 E09

ISOKINETIC MEASUREMENT SHEET

524

*

-21

inch Hg

inch Hg

*

74

inch Hg 🧯

24

inch Hg

* Last three digits on DGM

Effective date

2018-10-22

Project No.	1.305131m
Location	De-Bust L

· ·
11105-
Date: 252 11 28
Test Number 7 17
Test Method MC
(M), or Estimated (E)? – Mark the relevant ones.
H ₂ M or E? % v/v dry
CH ₄ M or E? % v/v dry
H ₂ O (moist) M or E? / % v/v
Test Details
K-factor (Δp to ΔH Iso) 4264
Barometric Press 8977 mb
Static (duct) pressure $-\zeta_{\rm F}$ mm H ₂ O
Site Calculations
H ₂ O (moisture) 7/06 % v/v
Isokinetic ぷイ、60 %
Test & Sample Details
Filter Number
•

Filter Number	hever off
Probe Wash Number	50190
Chain of Custody	09851

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	H Desired Orifice	H Actual Orifice	at Stack Temp	د Probe Temp	er Filter Temp	DGM Outlet	🚽 🛛 Impinger Exit	Pump Vacuum	Isokinetic
P		min	hh:mm	m ³	тт H ₂ O	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	inch Hg	%
1	1	{	619'17	132,3786	そう	30,7	32	67	*****		28	21	<i>.</i> –1	
1	2	14			7	25,8	30	65			29	15	-1	
1	3	15			えと	50,7-	32	20			259	<u>5</u>	-1	
7	4	20			6,8	29.0	30	78	· ·		50	12	P	
1	5	V			7	29,8	30	20	e		30	12	-1	
1	6	30			2)	30,7	32	68			32	$ _{l}$		
1	2	35			20	707	32	69	~	-	32	18	1	
2	8	40		· .	3	28 8	30	68	~	-	32	13	-1	
2	9	4			1.I	30,7	32	18			22	11	-1	
Z	10	ζó			1 %	290	30	64	··		34	<u>(</u>	-1	
5	11	15			S.	23,8	05	68		-	35	12	1-1	
1V	h	6			7,2	30,7	32	68			36	11		
2	17	155	10:25	133,5212	6.8	28.0	30	168		r	36	11	·-/	
L <u>12</u>	····			/	\square	ч \					PTO f	for con	tinuatio	p of table

Technician's Signature:

Acceptance Signature:

Reviewed by: Schalk van Heerder (QM)

4 Page

DTR: LES-A-F-009 - Isokinetic Measurement Sheet docx THIS IS A CONTROLLED DOQUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

	LES-A-F-009	Page:	5 of 9	
	ISOKINETIC MEASUREMENT SHEET	Revision Status :	E09	
LEVEGD Environmental Services	ISOKINETIC MEASOREMENT SHEET	Effective date	2018-10-22	
Project No.	Date:			

Project No.	Date:	
Location	Test Number	(continued)
	Test Method	

Table continued

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokihetic
t (Trave	averse	Sampl			<u>. Sjaa</u>	11 A. 1997 A. 1997	1.1	St	Pro	Ē	DG	Impi	Pump	
Pol	Ē			W _m	Δр	ΔH	ΔΗ	ts	tp	tr	t _{mo}	1		
		min	hh:mm	m³	mm H₂O	mm H₂O	mm H₂O	°C	°C	°C	°	°C	inch Hg	%
											1			
										ĺ				
				-										
									Í					
						/	[
						/								
					/									
					, 									
			,							<u>.</u>				
			/											
		/	/											
		7												

Technician's Signature:

Acceptance Signature:

 DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx
 Reviewed by: Schalk van Heerden (QM)
 5 | P a g e

 THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
 ENVIRONMENTAL SERVICES (PTY) LTD

DGM - Post

At Vacuum of

At Vacuum of

	LES-A-F-009
ISOKINETIC	MEASUREMENT SHEET

inch Hg

218

~

Page:	6 of 9
Revision Status :	E09

Effective date

2018-10-22

Project No.	LET 0913m
Location	Acoust 2

/ inch Hg / V inch Hg

* Last three digits on DGM

ーシィ 'inch Hg

718

*

Project No.	50913m		Date: 2022 028						
Location	Suff 2		Test Number 2 1						
	<u> </u>		Test Method M 6						
Flue Gas Analysis (for	K-factor calculat	tions) – Measured	d (M), or Estimated (E)? – Mark the relevant ones.						
O ₂ M or	· E?	% v/v dry	H ₂ M or E? %v/v dry						
CO ₂ M or	• E? M	۱ % v/v dry	CH4 M or E? % v/v dry						
CO M or	· E? [//	<mark>∖</mark> % v/v dry	H ₂ O (moist) M or E? / % v/v						
Test Equipment	.		Test Details						
Nozzle Number	NS I-	3	K-factor (Δp to ΔH Iso) 4264						
Nozzle Diameter	6,42	mm	Barometric Press Sytin mb						
Leak Tests			Static (duct) pressure -4 mm H ₂ C						
Pitot Tube	Impact side	Wake side	Site Calculations						
Leak? (Pass, or not)	0/0	00	H ₂ O (moisture) 1,75 % v/v						
At Pressure/Vacuum	tso mm H2O	6 mm H ₂ O	lsokinetic 100,02 %						
Sampling Train	Start	End	Test & Sample Details						
DGM – Prior	* 9/0	* 910	Filter Number						
At Vacuum of	- I inch Ha	-71 inch Ha	Probe Wash Number 09:020						

Fliter Number	nova enn
Probe Wash Number	091026
Chain of Custody	04857

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokinetic
ť	Trav			Vm	Δр	ΔΗ	ΔH	ts	tp	tr	tmo	ti		
		uin B	hh:mm	m³	mm H₂O	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	inch Hg	%
1	1	{	10:47	133,6716	7.2	30.7-	32	68			36	23	-1	
1	2	- 10	/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22	307	32	18		·	35	21	C	
1	3	15			7.4	31.6	32	67			35	R	-1	
1	4	20			2	298	30	67			35	12	-1	
3	5	vS			7.4	31,6	35	67-	<u> </u>	-	32	Π	- (
1	6	30	}		17	27,8	30	6)			37	1	-1	
1	7	35	1		タ	27.8	20	6'6	e		36	15	<u>-</u> }	
2	8	40			70	30.7	32	67			36	12	1	
2_	3	45			7	29 8	30	60	-	-	30	11	-7	
-2	10	50			6.8	290	30	6è			32	11	1	
2	11	(5			1	248	30	64		•	3	01	-1	
12	12	60			4	29 8	30	70'			37	11	-1	
$\overline{\gamma}$	11	65	ji Sa	134,862,6	6.8	24,0	30	20	·		32	11	-p	
L				1-1-1-	~						PTO f	or cont	inuatio	n of table

Technician's Signature:

Acceptance Signature

Reviewed by: Schalk van Heerden (QM) 6 | Page

DTR: LES-A-F-009 - Isokinetic Measurement Sheet doc THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO

ENVIROMMENTAL SERVICES (PTY) LTD

LEVEGO
Environmental Services

LEVEGD ISOKINETIC MEASUREMENT SHEET Revision Status : E09 Itemmental Services Effective date 2018-10-22		LES-A-F-009	Page:	7 of 9
		ISOKINETIC MEASUREMENT SHEET	Revision Status :	E09
	LEVEGO ironmental Services	ISOKINETIC MEASOREMENT SHEET	Effective date	2018-10-22

Project No.	Date:	
Location	Test Number	(continued)
	Test Method	
Table continued		

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokinetic
	N. 13. S. F			Vm	∆р	ΔH	ΔН	ts	tp	tr	tmo	t	/	
		min	hh:mm	m³	mm H₂O	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	inch Hg	%
	 												1	
												/		
											\vdash			
										- /	/			
						· ··· · · · · · · · · · · · · · · · ·			/	/				
	 					·····			/					
	 								/					
							/	/						
						/	<u> </u>							
·														
						/								
					/	·····								
				/										
					·-, ··· · · · · ·									
										v)				
				/						·				
									<u></u>					

Technician's Signature:

Acceptance Signature:

DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx Reviewed by: Schalk van Heerden (QM) 7 | Page THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

	LEVEGO
Envi	ronmental Services

LES-A-F-009	Page:	8 of 9
	Revision Status :	E09
ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22

Project No.	LESU913M
Location	Dreuser

Project No. Wesvy BM	Date: 2024/1/28						
Location Dreußel	Test Number 3 (** (
	Test Method M 6						
Flue Gas Analysis (for K-factor calculations) – Measured (M), or Estimated (E)? – Mark the relevant ones.						
O2 200 M or E? % v/v dry	H ₂ M or E? % v/v dry						
CO2 M or E? <u>% v/v dry</u>	CH ₄ M or E? _ % v/v dry						
CO M or E? % v/v dry	H ₂ O (moist) M or E? <u>% v/v</u>						
Test Equipment	Test Details						
Nozzle Number N\$7-3	K-factor (Δp to ΔH Iso) 4.2.54						
Nozzle Diameter 6, 4, mm	Barometric Press 87구, mb						
Leak Tests	Static (duct) pressure mm H ₂ O						
Pitot Tube Impact side Wake side	Site Calculations						
Leak? (Pass, or not) DC DC	H ₂ O (moisture) $172 \% v/v$						
At Pressure/Vacuum 80 mm H20 18 0mm H20	Isokinetic %						
Sampling Train Start End	Test & Sample Details						
DGM-Prior *880 *880	Filter Number						
At Vacuum of inch Hg inch Hg	Probe Wash Number 091010						
DGM-Post * & & S60* & C S60	Chain of Custody						
At Vacuum of 24 inch Ha 24 inch Ha	×,						
* Last three digits on DGM	241/202						
5	1						

Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading Vm	d Φ Velocity Head	표 Desired Orifice	Actual Orifice	ت ^ر Stack Temp	et Probe Temp	t. Filter Temp	outlet DGM Outlet	a Impinger Exit	Pump Vacuum	Isokinetic
		uin	hh:mm	m ³	mm H₂O	mm H₂O	mm H₂O	℃	°C	°C	°C	°C	inch Hg	%
1	1	S	12,04	124-8906	ን	25,0	30	66		>	35	22	1	
1	2	10		· · · · ·	Fr	21,8	30	68			35	16	-7	
1	2	15			7	290)0	2-r			38	10^{10}	<u>c1</u>	
1	'Y	20			2,4	<u> </u>	32	72			37	14	-1	ļ]
2	S	VS			7	21.8	30	22		-	37	14	~/~	
1	C	70			J.S.	28.0	30	7-1_	e		39	13	-	
1	9	35			68	200	20	m	-		36	13	1 1	
7	8	40			6,6	28,1	30	77	.		23	15	1	
2	9	45			1.8	290	30	75			35	15	1	
Z	10	50			6.8	280	30	75		-	38	14		
r	(r	15			7	298	30	28			34	14	-1	
2	184	60			6,8	29.0	30	76	~	-	39	15	-1	
$\overline{\gamma}$	13	65	13:12	12,0456	3	278	30	77			39	17	~ P	
L		4			10			•			PTO f	or cont	inuatio	n of table

Technician's Signature:

Acceptance Signature:

Reviewed by: Schalk van Heerden (OM) & Page

DTR: LES-A-F-009 - Isokinetic Measurement Sheeddocx

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO

ENVIRONMENTAL SERVICES (PTY) LTD

LEVEGO Environmental Services

				-
	LES-A-F-009	Page:	9 of 9	
	ICOVINETIC MEASUDEMENT SUFET	Revision Status :	E09	
/EGO ental Services	ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22	-

Pro	oject	No.						Date:						
Loc	atio)	÷				Т	est Num	ber				(00	ontinued)
							T	est Meth	nod					
Tab	ole co	ntinu					T		1	·····	· ·····		r	
Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading Vm	Velocity Head	Desired Orifice	HΩ HΩ	at Stack Temp	et Probe Temp	म Filter Temp	DGM Outlet	a Impinger Exit	Pump Vacuum	lsokinetic
		min	hh:mm ·	m³	mm H₂O	mm H₂O	mm H ₂	o °c	℃	°	°C	°C	inch Hg	%
														<u>.</u>
										r				
								/	[
	<u> </u>							_/						<u>.</u>
								A						
						·								
	<u> </u>						/							
	 				/									
				/	/									
•				/										
			/											
<u>.</u> ,							-							
_,			/											
		-/					1							
		/												
	-	•												

Technician's Signature:

Acceptance Signature:

ş.,

Reviewed by: Schalk van Heerden (QM) DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx 9 | P a g e THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO **ENVIRONMENTAL SERVICES (PTY) LTD**

		LES-A-F-011		Page:		1 of 1
		IGHTS - (METHOD 5	, 6, 13B	Revision S	Status :	E03
Environmental Services	& 1	7 (ISOKINETIC))		Effective	date	2017-04-12
Balance ID:	18.02	(Site / Die	ant Name;?	A O A	OF 212
Date (dd/mm/yyyy):	28 1	11/ 12/22	Stack Na		DEGN	
Job File Number:	LES	11010		Manager:	Jaren	ic clana
Method:	N	6	Team Le		Sizz,	n <u>cre</u>
	1					
Test Number:	Impinger No.	Pre-weight	Post-	weight	Materi	al / Solution:
tali ye shekara		Test 1	.1		·	
	1	232,1	23	5,6	Wate	r / 10% H ₂ O ₂
	2		17		Wate	r / 10% H ₂ O ₂
	3					Empty
	4	89.0,6	9103	, 8	S	ilica Gel
PW1 / NW2 / Aceto	one	Eer S	25.	ــــــــــــــــــــــــــــــــــــــ		
		Test 2				•
	1	2331	23.	t ĭ	Wate	r / 10% H ₂ O ₂
	2		Ti	,	Wate	r / 10% H ₂ O ₂
	3		N.			Empty
	4	705,8	515.1	<u> </u>	S	ilica Gel
PW1 / NW2 / Aceto	one	266	46	<u> </u>		
	<u> </u>	Test 3		. **	•	
	1	232.9	2.34	Ρ		r / 10% H ₂ O ₂
	2		To man			r / 10% H ₂ O ₂
	3	9151	01			Empty
	4		54	6	5	ilica Gel
PW1 / NW2 / Aceto	one	Test 4 / Bl	- <u>48</u> ank	2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	1				Wate	r / 10% H ₂ O ₂
· · ·	2					7 / 10% H ₂ O ₂
	3		tt-le-			Empty
	4					ilica Gel
PW ¹ / NW ² / Aceto	.i		<u>د </u>			
	s e type e e a te	Notes:				
		· · · · · · · · · · · · · · · · · · ·				
		······				

÷

1 - Probe Wash, 2 - Nozzle Wash

Signature Team Leader:		Signature Project Manager:	
DTR: LES-A-F-011 - Moi	sture-Weights (Method 5,	Reviewed by: Schalk van Heerden (QM)	1 Page
6, 13B & 17 (Isokinetic).			
THIS IS A CONTROLLE	D DOCUMENT AND THE INFO	ORMATION CONTAINED WITHIN IS THE SOLE F	PROPERTY OF LEVEGO
6	ENVIRONN	VIENTAL SERVICES (PTY) LTD	
	nn		

Ľ

LES-L-F-054

FLUE GAS ANALYSER MEASUREMENT SHEET

Page Revision Effective date l of 1 E02 2017-04-11

Management System Manual

: :...:

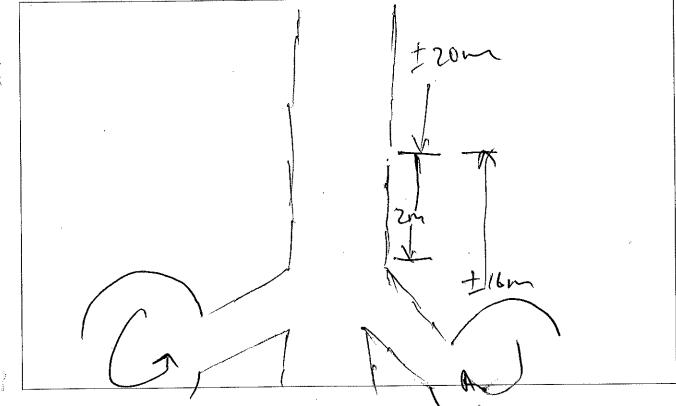
PROJECT NUMBER		Lot	190]	3m	DATE		22	22/11	128	
CLIENT (COMPANY	′)	Sou	1-02	32	OPERATO	R	Siz	surel -	(
CLIENT PLANT (SI	E)	Me	mp	Burren	SPECIALI	ST/ASSISTANT	lu	-k-1		
SAMPLING LOCAT	ON (STACK)	Aci	Just	2	TEST NUN	IBER	I	-3	· ·	
NUMBER OF PORTS	USED		2		POINTS A	CROSS	13			
ANALYSER SERIAL	No.	10	26	-	ANALYSE	R MODEL	Spie	20~		
hh;mm %		%	ppm	%	ppm	ppm	ррт	ppm	%	SAMPLE
Time O ₂		CO2	co	CH₄	NOx	NO	NO ₂	SO ₂	H ₂	ID
	A O	1			1.			1		

Time	0 ₂	CO2	со	CH	NOx	NO	NO ₂	SO ₂	H ₂	ID
1	20.9	Ø	S		Ø	O	$\overline{\mathcal{O}}$	5		
2	20,5	0	0		10	0	0			/
3	06.1	\square	000		17	Ø	D		/	/
	20,5	T N	Õ		V V	Ň	0			
	20.8	$\overline{\mathcal{O}}$	$\widehat{\mathbf{D}}$		D	Ň	0		/	
6	20,8	0000			$+$ \tilde{n}					
	- MJ	-77	- Q-				0	/	1	
·	701	-3-	8		<u> </u>		0	<u>├/</u>		
8	26,1		$\frac{\sigma}{\sigma}$	$\left - \right $			$\square \bigcirc$	<u>↓/</u>		
9	201	U U		(- 8	<u> </u>	<u> </u>	/		
10	20,9		Ð	L	0	\cup \cup				
	······································	T		V						
11	20,7	10	0	-7	<u> </u>	Q	0			
12	001	\square	Ö		$\overline{\mathfrak{O}}$	\cup \cup	N N	+		
13	- DD I	<u>ة</u>	0		Ū.	D	R		/	
14	508	Ň	5		15	N N	Ő		/	
15	2,4	5	ð		6				/	
16	4	1 K	D		10	0	$\vdash \underline{\heartsuit}$		/	
17	2014	D	Ñ		Q	ň	R	/		
18	1016	D	5	1	ð	0p	D D			·····
19	293	No-	0		0	Ŏ	- The			
20	20,1	5	X		Ū		6			
-v	/		U			<u> </u>	L			(
	207	0	n		Ö	• `				· · · · · · · · · · · · · · · · · · ·
21	124 8	0	2			<u> </u>	8	(;		
, <u> </u>	1 PTO	0	$\tilde{\mathcal{O}}$	/	D	6	- o	\		
ř	126/J		<u> </u>		0	$-\mathcal{O}$	-0			
24	107	<u> </u>	0			\rightarrow	<u> </u>			
25	L.O. T	$ \bigcirc$ $-$	\mathcal{O}			<u> </u>	0	······································		$ \subset $
16	269	D_{-}	15			\mathcal{D}	<u> </u>	·		
27	26,8	Ð	. ć2			12	67			7
		6	Ì		K	10	×			
19	26,1	<u>()</u>	\mathcal{D}			Ô -	~			
10	7,0,9	-	D 0	-		Õ	\overline{O}	<u> </u>		
	P 1. 7-									
1							······································			
2										
3		[
4										· · · · · · · · · · · · · · · · · · ·
5										
6										
7										
8	+ aak							· ·		
9	+//////					·····		· / · · ·		
×۲	/ 	1								
1		/				<u> </u>				
Operator	- MAND					1	Partner Manager		,	
l.	IY AX					l	11			
l	$\langle \nabla X \rangle$					-	<u> </u>			
\	\times / /									

Once downloaded and/or printed from the Levego Environmental Services (Pty) Ltd. QMS this document is uncontrolled. The user is responsible for ensuring this document is the current, authorised, version.

	LES-A-F-010	Page:	1 of 2
	SITE OBSERVATION SHEET	Revision Status :	E07
LEVEGO Environmental Services	ISO 9096	Effective date	2019-07-25
Company: Sout		cation: Westr G	us Startk

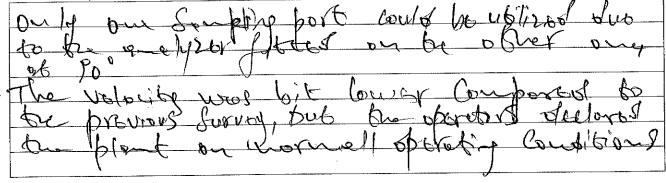
1. Sketch (refer to Site Observation Examples <u>LES-A-F-097</u>)


Draw the Stack/Duct sampling location, showing the orientation of sampling ports. Mark the ports (i.e. P1, P2, etc.) For typical examples, refer to LES-A-F-097 Site Observation Examples, Figures 1 to 5.

Technician:

i)

ATE


Indicate North, or other cardinal points, as per typical example in LES-A-F-097, Figure 5.

2. Occurrence Report

Project No.

Deviations, abnormalities or problems experienced; (Any related to method, procedure or process operating conditions)

 DTR: LES-A-F-010 - ISO 9096 Site Observation Sheet
 Reviewed by: Harvey Butcher (QM)
 1 | P a g e

 THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
 ENVIRONMENTAL SERVICES (PTY) LTD

\cap													
			LE	ES-A-F-0	10				Page:			2 of 2	
(T		SITE	OBS	ERVATI	ON S	SHEET			Revision S	Status :		E07	
LEVEGO Environmental Services				ISO 909	6				Effective	date		2019-0	7-25
						 -1 /**						- ¢,	D.L.
Company: 40	non 32						·	cation:	WY	25tp	<u>A re S</u>	7-72	v. te
Site: M	propt	-We	<u>ب</u>					te:	- Zarr/	4pl	b		
Project No. 🛛 🕹 🗲	3043	1~					Te	chnician	じょうと	we-			
. Stack/Duct Info	ormation	(refe	to	Site Obs	erva	tion Ex	am	ples LES	S-A-F-097)				
How were dimensio	ns and detail	s obta	ined	?		Measu	ired	1	Estimate			Histo	
Material	Steel		Bric	k		Glass r (GRP)	rein	forced po	olymer	Other (sp	104	F	Refer Figure
Support structure	Free standing		Stee	el frame				e within w sketch)	rindshield	Other (sp	ecify)		
	Vertical		Hor	izontal		Angle	to	horizonta		Angle to	vertica		3
orientation	`								degrees			degrees	
	Circular 🔉 🔪			tangular		Square				Other (sp	pecify)		
Flow direction of an	gled duct		Up	<u>(u) + 2</u>		Down			<u>~~`</u>				3
				SAMPL	ING	PORT – I	DIN	JENSION	S	1. A	11		1
Height above grour	nd level									<u>h</u> 7	<u>/o</u>	m	1&3
Straight duct down	stream from	sampl	ing j	plane (po	rts),	or to sta	ACK	exit		a 🕂	~~	111	1&3
	am disturba					<u>closed</u>	(ba	lance or	piant) r	b + -		m	1&3
Straight duct upstre	eam from san) ~ 17	loctangu	Jar	port din	nonsions	L L	L.	mm	184
Port diameter (d)			Ъ	mr					ckness (t)		UN VO	mm	184
Boss length (ℓ)		<u> </u>	×D0							21	<u> </u>	11111	
			C	IRCULAR	DUC		-	DIMENS	IONS				T
Circumference (out						m	· .	diamator	= circumfer	onco ' 17			
Outside diameter (<u> </u>		m		ulameter			······		1
Wall + insulation th			t D	20	3	<u>mm</u> m		ID = OD	- (2×t÷1000	1)			1
Inside diameter (ID	}			<u></u>	بر		<u>+</u> +		12	/			1
Number of ports Angle between por	t contro lines		α	KT/A-	~~	degrees	5					,	1
Port centre lines to			φ	12/ -		degrees		ψ	dee	grees			2
FOIL CEILLIC LINES TO	inter control .			GULAR/S	OUA				DIMENSION	S			
Depth outside			Lo		-	m			//				4
Wall + insulation th	nickness		t			njar	1	$\neg \uparrow$					4
Inside depth			L			K	ń [L∄L√-((2/×t÷1000)			-	4
Width outside			W.			<u> </u>	0	11					4
Wall + insulation th	1 ickness		t	/	/	mn		<i>µ</i>		3			4
Inside width			W			<u></u> 11	πĮ		-(2×t÷1000)			4
Equivalent diamete			De	1		ب ر	ⅇୣୄୗ	(2×L×W)					
Number of ports &				-			4		dimensioned				4
Angle of flow with axis =	regard to du	ct				degree	s		f flow <15° s, for each p		d to	(Yès)	No
Negative flows pre	sent?											Yes	$\square \mathbb{N}_{0}$
						SS INFO	RM	ATION				41	د به ایما به
	t	Boile	er fur	nace		Kiln			Crusher,				ify below) ify below)
Source of pollutant							L						IN DEIOW)
Pollution control e	quipment	ESP	<u>n -</u>		-1	Fabric filt	lei		Scrubber			ther (spec	ny below)
	quipment		57) Da	10	Fabric filt	ter		Scrubber			ther (spec	

DTR: LES-A-F-010 - ISO 9096 Site Observation Sheet

Reviewed by: Harvey Butcher (QM)

2 | P a g e

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

LES-A-F-009	Page:	1 of 9
	Revision Status :	E09
ISOKINETIC MEASUREMENT SHEET	Effective date	2018-10-22

Project No.	LET OPI3M
Company	South 32
Site	Menotura
Location	Westo Gus Storl

Date	2012/11/26
Technician 1	Sizuro
Technician 2	Luci
Technician 3	

Duct/Stack Dimensions & Information											
Round											
Diameter 3,2,9 m											
Rectangular , M											
Depth (L)	h m										
Width (W)											
Barometer	, v										
Barometer Number	NR IF										
Flue Gas Analyser											
Analyser Model	Scitzon										
Analyser Serial Number	1076										
Pitot Tube	· · · · · · · · · · · · · · · · · · ·										
Pitot Tube Number	51-43780										
Pitot Tube Coefficient	6.84										
Probe											
Probe Number	UP										
Probe Length	SPt										
Liner Material											

L	EA	K	TEST	REQ	UI	R	ΕN	/IEN	TS
---	----	---	------	-----	----	---	----	------	----

Pressure, or vacuum	i ≥ ±180 mm H ₂ O	Time ≥ 1 minute							
Sampling Train									
Vacuum	\geq -15 inch Hg	Time ≥ 1 minute							

ISO 9096 – General Rule (centre point)
ISO 9096 – Tangential Rule (no centre point)
ISO 9096 – Rectangular
US EPA Method 1 – Circular
US EPA Method 1 – Rectangular
Other (specify below)

Sampling Points - Method

Sampling Points – Details	
Number of Ports Used	1
Points per Traverse	8 x 2
Total Number of Points	16
Time per Point (minutes)	. G
Sampling Time Total (mins)	64

Console Details

1911034	
3711	
0,596	
49.12	mm H₂O
	9/1034 5711 0,996 48.122

This document consists of 9 pages									
Page 1 = information common to the tests									
Pages 2 & 3 = velocity traverse measurements									
Pages 4 & 5 = 1st test measurements									
Pages 6 & 7 = 2nd test measurements									
Pages 8 & 9 = 3rd test measurements									

SAMPLING TIME REQUIREMENTS – LEVEGO PROCEDURE 9

- 1. Sampling time: \geq 2 minutes per point
- 2. Total sampling time: ≥ 1 hour
- 3. The sampling time at each point shall be the same. The number of minutes sampled at each point shall be an integer, or an integer plus one-half minute.

Example 1:	60 ÷ 13 = 4.62 minutes per point, which is less than the maximum of 5 minutes per point, but it									
13 points	is not an integer, or an integer plus one-half minute.									
	Sampling time = 5 minutes per point.									
	Total sampling time = 65 minutes									

4. Record velocity head (Δp) and update orifice flow (ΔH) at least every 5 min. Update temperatures and vacuum readings at the same time.

Example 2:	$60 \div 8 = 7.5$ minutes per point, which exceeds the maximum of 5 minutes per point.									
8 points	$7.5 \div 2 = 3.75$ minutes per point, which is not an integer, or an integer plus one-half minute.									
	Sampling time = 8-minutes per point, with an update every 4 minutes.									
	Total sampling time = 64 minutes									
5										

Technician's Signature

Acceptance Signature:

1 | Page

Reviewed by: Schalk var Heerlyn (QM) DTR: LES-A-F-009 - Isokinetic Measurement Speet.docx THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO **ENVIRONMENTAL SERVICES (PTY) LTD**

A
LEVEGO
Environmental Service

			,											
LES-A-F-009							Page:				6 of 9			
								Revision Status :			1	E09		
LEVEGD Environmental Services					SHEET	HEET Effective date					2018-10-22			
Project No. LESO913								e:	72	art	121	<u></u>		
	ation			sto Qu	\$ 87	3 page		t Num		1	`(
								t Metl		Mb				
	Gas	Ana		K-factor calcul				r Estim	ated (E)	? – Mar	k the r	elevan	it ones.	whi day
O ₂			Mor		1	<u>% v/v dry</u>				M or E? M or E?				v/v dry v/v dry
CO ₂		: " 	Mor			% v/v dry			-+\	M or E?	-	-	70	% v/v
		•	Mor	E?	<u> </u>	% v/v dry) (mois t Deta	·					70 07 0
·····	t Equ zle N)				Δp to Δŀ	l Iso)	0	587	42	
	zle N zle D			103		mm			c Press	1130)	, X		4-	mb
	k Tes					110611			ct) press	ure	+	-7 [.	n	nm H₂O
r	t Tub			Impact side	W	ake side		ì	ulations			-9-Q-		
			or not)	0h		<u>b</u>) (moi			2.	7-8		% v/v
			acuum	180 mm H20	180	mm H ₂ O		Isokinetic PS L					•	%
	pling			Start		End	Test & Sample Details							
1	<u>и – Р</u>			* 975	* 4	75	Filter Number he Viz-P-1769							
1	/acuu			- 22 inch Hg	1-1	inch Hg	Probe Wash Number							
h	VI – P			* 226	r	26		Chain of Custody			PKS	86		
	/acuu			-2 inch Hg	1-2	Linch Hg			17				_	
				* Last three c	<u> </u>									
						19								
ê	o.	Ъ	Clock	DGM	ad	e	ë	臣	đ	뤝	tlet	sit	Ę	etic
erse Line)	Point No.	Ē	Time	Reading	/He	B	Orif	tack Temp	Tel	T e	GM Outlet	Jer F	acu	lsokinetic
erse	Poi	pling Time			ocity Head	red Orifice	tual Orifice	tach	robe Temp	Filter Temp	ν.Ν.	pinger Exit	Pump Vacuum	lso
Trav	erse	Sam			Velo	Desi	Act	S I	Ē			Ē	Pun	
Port (Trav	Traverse	S		Vm	Δр	 ΔΗ	ΔH	ts	tp	tí	t _{mo}	tı		1
Ă			hh:mm	m ³	mm	mm H ₂ O	mm H ₂ O	°C	°C	°C	°C	°C	inch	%
		min	{ { { { { { { { { { { { { { { } } } } }	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H₂O	11111120	11111120						Hg	
4	1	4	09:46	1295584	4.0	37.4	38	021			28	21	-1	
1	2	8			40	37.4	38	150			28	12		
1	3	12			42	19.2	4 2	149			30	$\left[t \right]$	1-	
1	4	16			42	147_	40	149			32	13	- P	
1	C	20			40	3.4	38	11.2)	15	- [
7 (74)			38	22.0	36	Tis &	•		32	13	1-			
1	5	C			37	205	SR	150		-	7	iv	1~0	
1	7	27			21	22 6	5 1	151			$\frac{1}{3}$	12	7-1	
1	9	32			30	22.4	25	10+			<u>,</u> 75	18	-1	
A	<u> </u>	36			38	200	\uparrow	1)1			16	15	,,	
11	0	60			1)*	LS		198		1	10	⊥∪	`	<u> </u>

Technician's Signature:

44

4 8

17

1

Acceptance Signature:

--

6 Page

-{

-1

-(

PTO for continuation of table

14

13

14

ž

36

36

DTR: LES-A-F-009 - Isokinetic Measurement Sheet.docx

Reviewed by: Schalk van Heerden (971) THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO

ENVIRONMENTAL SERVICES (PTY) LTD

4-

4

6

ţ,

0

6 3

Y

14)

147

14

		• •	LE	S-A-F-009			Page	: .			7 of 9	
		ISOK	INETIC M	EASUREMI	NT SHE	ET	Revision Status :				E09	
	EGO Ital Services						Effec	tive da	te		2018-1	10-22
Project Location	n	VES 0 WESta	n fi ly r	Sto.ac	<u> </u>	Date: Test Nun Test Met		2-) 1 1	2-14	2	(CC	ontinu
Port (Traverse Line) Traverse Point No.	e Clou Tim Sampling Tim Annu Annu Annu Annu Annu Annu Annu Ann	e Read	ing Δ m Hz 4+	m mm H ₂ O O 3-7 -4-								2001/101/101
	5 Signatur =-009 - Isokii	e: netic Medaurei	Henry Structure	docx.		eptance						>
THIS IS A	A CONTROLI	ED DOCUMET	TAND TH	E INFORMATI RONMENTAL	ON CONT	ewed by: . AINED WIT	THIN IS	an Heerd THE SOL	ten (QM) E PROPE	RTY OF	7 P a g	e

·

1

and the second second

ļ.

1.111

100 million (100 million)

1. 1

		<u>e</u> _		·	E2-A-F				Page:				of 9	
U	\mathcal{D}		ISOKI	NETIC I	MEASU	JREMENT	SHEET	-	Revis	ion Stati	1s :		09	
LEVEG ironmental S								Effective date				2	018-10	-22
oject No		LES	0912	SM			Dat			202		6		
cation		No	esta.	Gu	<u> </u>			t Num		2	11.17			х
<u></u>	- 1				<i>;</i>			t Meth		M	,			
ie Gas A	nalys	is (for h	<-factor	calcula	tions)	– Measure	ed (<u>M), o</u>	r Estim	ated (E	<u>:)?: – Ma</u>	r <u>k the r</u>	elevant	t ones.	1
2		M or		M	()	% v/v dry	H ₂	· · · ·	<u> </u>	M or E	?		~~~%	v/v dry
D ₂		M or	E?	\sim	1 . '	% v/v dry	CH4	1		MorE			%	v/v dry
))		M or		- N		% v/v dry	-) (mois	it)	M or E	?	~	`	% v/v
st Equip	ment			<u>.</u>				t Deta	ils		<u>.</u>			
zzle Nur	A		h M	1-	2		K-fa	actor (/	Δp to L	∖H lso)	U	. 9 ?	10	
zzle Diai			-107-	12 1	L _	mm		ometri				481		mb
ak Tests	55	I		-11-	F	<u></u>	سينتحص إبة	tic (duo				-7	L n	nm H ₂ O
ot Tube	<u>×</u>		Impac	t side	W/2	ke side		e Calcu			1	<i></i>		
	·	t at	inipac	2		Tr	-	D (mois	······································		2	San		% v/v
ak? (Pas			ACB.	U/C_	0	mm H ₂ O	-	kinetic			0	<u>15</u>		%
Pressure		uum	<u>18 Umr</u>							Dotalla)	0,0		
mpling T			Sta			End	-			Details	1.	C. K. S.	- ().	- ré 4' -
GM – Pric		41 C		16	* 6	4-6		er Nun			<u> he</u>	NU		114
Vacuum	n of∸	1.	-27 in	ich Hg		<u>inch Hg</u>	-	be Wa				407	40	
SM – Pos	sť		* 70	55	* 3 '	66	_ Cha	ain of (Custod	у	\sim	1.63	>6	
Vacuum	n of		-220	ich Hg	$ -\upsilon$	-inch Hg			· · · ·					
		1.	* Last f	three d	igits or	DGM			• •					
- <u>1</u>		Clock	DGI	M		in the second se	61				ų.	<u>.</u>		U
No.	a . I	Clock Time	Read	- 14 A	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	lmpinger Exit	Pump Vacuum	lsokinetic
i it i	E 5				уH	ō	ō	Υ ^Υ	Ē Į	Sr T	Õ	ger	Vac	oki
averse Point No.	rild	,			ocit	ired	tual	Stac	<u>l</u> op	Filte	19C	1pin	d	ls
verse Point No.	and	j I	1.11		Vel	Desi	Ac					–	- in d	
. 6 .	ດ			·	<u>^</u>				+	t:	t	ti	1	. <u>.</u> 6
			۷n		Δр				t _P °C	tr °C	t _{mo} °C	۳ <u>۲</u>	inch	%
	u	h:mm	m	2	mm H₂O	mm H₂O	mm H₂O	°C		L	L.	· ``	Hg	70
	·E	· · · · ·	<u></u>				<u> </u>	<u> </u>			200		-	
14	h 11	11	p. 5, 86	570	38	35.5	36	153			38	22	<u> </u>	
2					38	125.5	26	152	-	-	38	16	~-r	
<u>, </u> , ,	5	<u>.</u>			40	37,4	3.8	ISU		_	78	14		
-12-14	4				40		76	152	, , , , , , , , , , , , , , , , , , ,		78	12		
4.1	└ │─		· · · ·			14.4) 0	110			38	1.5		·······
152	-0	· .		·	38	35.5	31	152	*****		1	1)-	- <u> </u> [`_	
61	4.			1. 1 ^{.1}	36	35.5	36	153			38	13		
	28				40	37.4	38	113	·		38	12	1-1	
4 2	$\frac{1}{2}$				42	200	40	118			38	11	1	
101	24					100	4P	10			38		11	
173	36			• .	42	1), 2		138				+1.5-		
10	40				40	37,4	38	1758	-		38	$ \downarrow\rangle$	<u> </u>	
1 rr 1	in				40	3.7. 6	P38	153			40	14		·
	15				4)	78,	40	153	3		142	14	- 1	1
$\frac{1}{2}$	12				20	Fatte	36	175			41.	14	-1	· .
<u></u>)	· ア				\square	1.22. 5	50	125		l	PTO		tinuatio	n of table
				* 	V.						10	UC CUE	11	
			(2A	Λ		,							
	, <u> </u>	. 4		~	¥.]		· A.	reanter	nca Ci	gnature:		1		\rightarrow
hnician	rs Sig	nature		×4			- A(.ceptu	116 31	ginature.	14	1]] Þ	<u> </u>	~~~~~

Reviewed by: Schalk van Heerden (QM) 8 P a g e DTR: LES-A-F-009 - Isokinetic Measurement sheet Reviewed by: Schalk van Heerden (DM) 8 P a g THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO

10

ENVIRONMENTAL SERVICES (PTY) LTD

. t. Ł

			1. t	· .	LES-/	A-F-009			Page	:			9 of 9	
LEV	EG C		15	OKINET	IC MEA	SUREMEI	NT SHEE	т	Revis	ion Sta	tus :		E09	
ivironme								Effective date					2018-1	0-22
roject ocatio able co	n		Ne	091 362	Sh- Gu	§	Т	ate: est Num est Met		2 2 M	2/11	1/2	ردہ (co	ntinue
Traverse Point No.	Sampling Time	Clock Time		DGM Reading Vm	Velocity Head Vel	HD Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	ط Filter Temp	DGM Outlet	t Impinger Exit	Pump Vacuum	lsokînetic
14	60 1 1 1 1 1		B	m³	mm H₂O 38 40	mm H20 35.5 37,4	mm H2O 56 38	°C 153 153	°C	°C	°C 47	°C 15 15	inch Hg	%
16	BF	n;z	\$ /27,	1156	42	34,2	40	15)			43	15	-1	,,
		· · · · · · · · · · · · · · · · · · ·						-						
		·												
														······································
								······						
ician	's Sig	nature		 []]}			Acce	eptance	Signer	+111				
LES-A-	F-009	- Isokin	etic Mea	safenzent	Sheet	NFORMATIC	Revie	wed by:	Schalk v	an Hoor	fen (014)		9 P a g	e

	(LES-A	-F-009			Page	:			6 of 9		
	Ć	Ŋ		ISOKINE	TIC MFA	SUREMEN	IT SHEFT	•	Revis	ion Sta	tus :		E09	`	
1		EGC atal Ser							Effec	tive dat	te	2018-10-22			
	ject atio			508/ J	m			te: st Num	hor	20	22/	h/Λ	-6_		
	uaro	E 8		10.7.19	Cley		I	st Meth		-2 K	n				
Flu	e Ga	s Ana	ilysis (for	K-factor ca	[culations]) – Measu	· · ·			<u> </u>		releva	nt ones.		
O ₂			Mo	r E?	Ni	% v/v.drj	/ H ₂	200	1 - A.B. 	M or I	=?		P	6 v∕v dry	
CO	2		Mo		m	% v/v dry		4		M or I		CONTRACTOR DUCK	9	6 v∕v dry	
CO			Mo	r E?	<u>~</u>	% v/v drj		O (mois		M or I	-?	2		% v/v	
£		uipm		h ()				st Deta							
<u> </u>		Numb		N_{2}	<u></u>			actor (/				$\frac{D_{f}}{2}$	34		
L		Diame	eter	\$P)	<i>.</i> v	mm		ometri				87	<u> </u>	mb	
	k Te			Inner at -	ido V	(alco aldo		itic (duo	· • • • • • • • • • • • • • • • • • • •			5	£	mm H₂O	
	Pitot Tube Impact side Wake side							e Calcu		5 - 1945 - 19	. 5	10		D/ /	
[]	Leak? (Pass, or not) 0/C At Pressure/Vacuum 1/50 mm H2O 1/5 Omm H2O							<u>) (mois</u> kinetic	τure)		<u> </u> 5	12		% v/v	
1									mpla	Not-11-		わられ	r	%	
<u> </u>								Test & Sample Details							
	$\Sigma GM - Prior$ * $L \sim L$ At Vacuum of $- \sim Y$ inch Hg $- \sim Y$ inch Hg							Filter Number							
 				* (()						200	5.70				
1		M - Post * SS (* SS G) /acuum of inch Hg - 27 inch Hg						ain of C	usious	/	12	76	20		
	acui		·	* Last thre											
				Lastanc	e algits o										
Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	Isokinetic	
erse	Poin	ling			it i	O pa		, Y	pe	ter	S S	nge	Var	soki	
Lav.	LSe	du			/elo	esire	Actu	St	- d	E	G	<u>a</u>	Ľ,		
	rave	š										1997	.		
6	h			Vm ⁻	Δp	ΔH	ΔH	ts	t _p	tr 🖓	t _{mo}	ti			
		min	hh:mm	m ³	mm H₂O	mm H ₂ O	mm H₂O	°C	°C	°C	°C	°C	inch Hg	%	
1	1	4	1238	127,1650	42	29,2	40	146			43	22			
1	2	8			42	35,2	40	150		,	4)	15	-1	u	
1	1	12			4° O	37 ~4	38	148			43	16			
1	4	16			38	75.5)6	15.0	·		43	Δ	-1		
1	5	20			38	25.5	75	150		-	41	14	-1		
1	ĺ	ry			40	25.4	78	150	~		43	14			
1	ט ר	NO			3.8	201	31	149	~	- m	4-2	12	-1		
1	K	32			40	37.4	18	149		~	127	13	-1		
-1	م				42	34,2	40	148		-	47	17	11		
Ī	10	36 40		<u> </u>	10	37.4	28	147			ur	1/5	-1		
1	11				420	35.5	21	146		1	70 43	16	-1		
1(1	4	40			10 I P	37.5	26	146	**************************************	· 		16	~_P		
1	\mathcal{V}	48			27-	277	2/1.	146			U] 41	16	-P		
	IJ_	SV			~12-6	1776	24	1 79				<u> </u>	tinuation	n of table	
		1			NIN						FIUI	or con			
				1 A		1									
		- 1 - C		IM		1		_				1 1		فمستنب	
Techi	нсіа	n s 51	gnature:			/	Ac	ceptan	ce sign	ature;	_	/./.	/		
			-	tic Measurem	ient Shedt /	<u>/</u>		-		k van He	ertien (NI CONTRACTOR	Lotp (g e	

ENVIRONMENTAL SERVICES (PTY) LTD

Anna Carto - Mar

i e i s

				•	LES-4	\-F-009			Page	:			7 of 9		
				ISOKINETI	C MEA	SUREME	NT SHEI	T.	Revis	ion St	atus :		E09		
		ntal Se							Effec	tive da	ate		2018-1	0-22	
Project No. Les of 13m Date: 2.62/11/2.6 Location WeSter Gus Test Number 3 (continued) Table continued Test Method Mg															
Port (Traverse Line)	Traverse Point No.	Sampling Time	Clock Time	DGM Reading	Velocity Head	Desired Orifice	Actual Orifice	Stack Temp	Probe Temp	Filter Temp	DGM Outlet	Impinger Exit	Pump Vacuum	lsokinetic	
ď		min	hh:mm	V _m m ³	∆p mm H₂O	ΔH mm H ₂ O	∆H mm H₂C	ts °C	t _p °C	tı °C	t _{mo} °C	ti ℃	inch Hg	%	
Z 1 2	14 15 16	56 60 67	17 200	12.8,0060	38	35.5	36 18 36	147 147			43 43	r S 16	-1		
		69-	<u> </u>	100, 4064	, 0	<i></i>	<u>) </u>	147	-		43	17			
							,								
														·······	
												-			
			-												
													,		
			nature:	Medsurement SJ				eptance				Í		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
ТН	IS IS	A CON	ITROLLED	DOCUMENTANG	THEIN	FORMATIO	N CONTA	wed by: S	chalk va HIN IS T	in Heero HE SOI	ten (QM) E PR∩¤¤		7 P a g	e	

		LES-A-F-011	Page:		1 of 1	
LEVEGO		EIGHTS - (METHOD	5, 6, 13B	, 6, 13B Revision St		E03
Environmental Services	& `	17 (ISOKINETIC))	Effective da		ate	2017-04-12
Balance ID:	B.A	26	Site / Pla	ant Name:	5. 1th 32	(MANT)
Date (dd/mm/yyyy): 26	11 /2012	Stack Na		Levelt-	6201
Job File Number:	LES			Manager:	HIDLES	The second secon
Method:	M		Team Le		SILVE	x-y
Test Number:	Impinger	Pre-weight	Post	weight	Materia	/ Solution:
	No.			-	1. A	•
× .		Test		••••••••••••••••••••••••••••••••••••••		· ·
	1	233,8	24	40	Water /	′ 10% H ₂ O ₂
	12	-, -			14/-+	100/ 11 0

Water / 10% H₂O₂ 2 3 Empty 787. 802.1 4 0 Silica Gel 88.1 PW1 / NW2 / Acetone 21-6 Test 2 234.3 1 42 Water / 10% H₂O₂ 2 Water / 10% H₂O₂ 3 Empty 802.6 814.6 4 Silica Gel PW1 / NW2 / Acetone 40.6 21.6 Test 3 248. 235 1 ۴ Water / 10% H₂O₂ 2 Water / 10% H₂O₂ 3 Empty F26,4 4 814 Silica Gel PW1 / NW2 / Acetone 96 1 P. Test 4 / Blank 1 Water / 10% H₂O₂ 2 Water / 10% H₂O₂ 3 Empty 4 Silica Gel PW¹ / NW² / Acetone 961 24. Notes:

1 - Probe Wash, 2 - Nozzle Wash

Same

Signature Team Leader:	AD	Signature Project Manager:	
	loisture Weights (Method 5,	Reviewed by: Schalk van Heerden (QM)	1 P a g e
6, 13B & 17 (Isokinet			
THIS IS A CONTROL	LED DOCUMENT AND THE INF	ORMATION CONTAINED WITHIN IS THE SOLE PRO	PERTY OF LEVEGO
		MENTAL SERVICES (PTY) LTD	

On

LES-L-F-054

1 of 1 E02 2017-04-11 Page Revision Effective date

FLUE GAS ANALYSER MEASUREMENT SHEET

Management System Manual

PROJECT NUMBER	LEOFIIM	DATE	2024/1/26
CLIENT (COMPANY)	Sarter 72	OPERATOR	Sizuso
CLIENT PLANT (SITE)	Menseherra	SPECIALIST/ASSISTANT	Luitz
SAMPLING LOCATION (STACK)	Wilto Gul	TEST NUMBER	1-2
NUMBER OF PORTS USED	1	POINTS ACROSS	66
ANALYSER SERIAL No.	1076	ANALYSER MODEL	Sortan

hh:mm	%	%	pom	%	anda	ppm	ppm	ppm	%	SAMPLE	
Time	02	CO2	со	CH4	NOx	NO	NO ₂	SO ₂	H ₂	D7	
	181	12.0	55600		7/127	12					
	12.8	7-6	(400)		1 31	128	<u> </u>				i
	17-6	3.6	13100	ļ	$L \mid i_{2}$	17th	1 3			X	
	17-6	3-1	1060		181	178	3.			/	-
	A.S.	3.6	Soce		180	17.80	4				-
	113.6	7.4	7) (0)	1	180	176	<u> </u>		+/-		1.
	A-4	3.8	4360		180	176	<u> </u>		¥		-
	lia it	3.8	4560		125	$\left 1\right\rangle$	<u>_</u>	/	4		
	1,7%	3.5	5610		180	$ \uparrow\uparrow\downarrow]$	3~				ſ
	17.6	3-5	110		-179	172		2		` `	۱ <i>ľ</i>
	17.(7.6	4360		7 12-9	DA.	5			1 7	71
	17.9	12.2	2115	1	1179	176	3				
	- ips	7.5	4100		X-X	175	3				
	15.8	7.5	4200		177	174	7				
	110.1	3.4	4600		178	174	4			<u> </u>	_
	17.5	15.2	46-00	\top	178	178	4				-
				17			,				1
				+					<u> </u>		4
									<u> </u>		_
						-				1	_

a.	12.6	28 66580	-7 18	k	44	
21	12.6	2.7 6680	1 187	6 182	4-	
23	17.4	40 6680	81 6	7 18-5		
24	12,3	40 26700	-/-!\$	TAT		
25	13,5	421 (1904)	1 18	7 10	Ĵ	
20	17.4	7.9 8760		4 181	}	
28	17-1	7-2 8210		4 (81	7	
29	13.5	5.6 7620	1 18	2 170		
30	17.5	1)) 1700		6		

σ a 40 Operat Part

whiled from the Levego Environmental Services (Pty) Ltd. QMS this document is uncontrolled. The user is responsible for ensuring this document is the current, authorised, version. ided and/or

Ż.

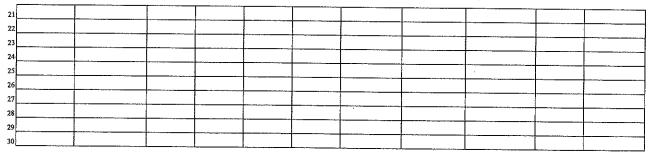
Ì

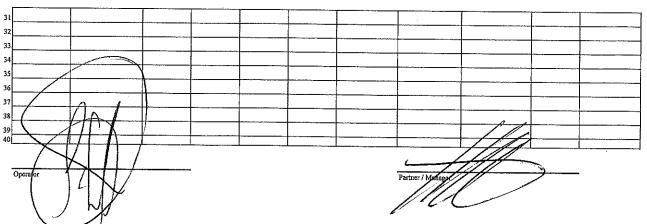
LES-L-F-054

 Page
 1 of 1

 Revision
 E02

 Effective date
 2017-04-11


FLUE GAS ANALYSER MEASUREMENT SHEET


Management System Manual

PROJECT NUMBER	LIJOTIJM	DATE	2022/11/26
CLIENT (COMPANY)	South 32	OPERATOR	lizuro
CLIENT PLANT (SITE)	Monuter	SPECIALIST/ASSISTANT	Cuck-
SAMPLING LOCATION (STACK)	Wala has	TEST NUMBER]]
NUMBER OF PORTS USED	1	POINTS ACROSS	(1
ANALYSER SERIAL No,	1076	ANALYSER MODEL	Skitron

hh:mm	%	<u>%</u>	ррт	%	ррт	ppm	ppm	ppm	%	SAMPLE
Time	O2	CO2	co	CH4	NOx	NO	NO ₂	SO ₂	H ₂	ID
	17.6	7.2	66260		180	126	4			
	17.1	3.6	12610		181	12.2	4			
	17.1	3.8	52900		180	122	1			
	120	th	1.811		The	121	3.		+	4
	60	25	0.300		112	I DA	. 9 ^m			
	(7.)	7.8	31776	1	182	1.78	4			
	17.0	4.1	19560	1	182	178	4		<u> </u>	
	17.7	2.8	7480		1825	127	4			
	17.4	7.6	1490		143	124	Ü4	/		
	17.7	3.8	1896		IK	itt	4			
	,		A .			······································		<u> </u>		
	A.A	1.7	1892	-7	1184	181	7			
	1 1	2	10001					-		

12	 $1\overline{)},\overline{\zeta}$	307	5786		18-4	181	3			
13	 1973	3.5	4341	T	183	150	5			
14	- P.J	5.6	3485	T	183	08)	٢	<u> </u>		<i></i>
15	 _ra,2_	3.8	13981		182	170	5			
16	 171	4.1	3689		184	180	4			
17									e	
18				1					1	
19	 							/		•
20	 							1		•

Once dowaloaded and/or printed from the Levego Environmental Services (Pty) Ltd. QMS this document is uncontrolled. The user is responsible for ensuring this document is the current, authorised, version.

				LEVEGO	Environmental Services	; ; ; ; ;	No:09860	5-	DATE RESULTS RECEIVED																00.00	09120	Qa		
·			84148	- A-				1, 3 L (M M.	SPECIAL INSTRUCTIONS																2625 40 10	223/01/11	2023-01-19 C 09:20C		
L REQUEST	54	N N N		2020	AT CV			Client Name: Sour to	SAMPLE CONTENT COLLECTION DATE	115	102	- RZ	21/ 1		1 1 m	22	× 13	- P	har						Time & Date:	Time & Date:	Time & Date:	Time & Date:	Time & Date:
CHAIN OF CUSTODY AND ANALYTICAL REQUEST	T TO:	erson	lumber	t to Lab	Date Requested Back	nber		00 No: CES 07/2 N	REQUIRED		VAP VCVX	A	00	SUV Level Do	i sall i sall		26) X (0)	N. Add I.								1 there has a hard	· · · · · · · · · · · · · · · · · · ·		
CHAIN OF CL) Ltd LAB SENT TO:	Contact Person	Contact Number	Date Sent to Lab	Date Reg	Page Number	. Carley	Levego Job No:	TEST NO. STACK DESCRIPTION METHOD USED & ANALYSIS	RA .)	4	R)		3	e (Signature:	Signature:	P LEG Signature:		Signature:	Signature:
	onmental Services (Pty	Site, Ardeer Rd	ntein, 1645			عالم	rite hurbe	0	TEST NO. STACK D	24 cJ	E	Bundled	н	. ~	3	BUT WAR			at Kuntichedo	\geq				Brick	by: by cy	HEW UPI	Nugin	by:	
	FROM: : Levego Environmental Services (Pty) Ltd	Building R6, Pinelands Site, Ardeer Rd	PO Box 422, Modderfontein, 1645	Tel: +27 11 608 4148	Fax: +27 11 608 2621	Contact Person: Sin	Email Address: Sa	Purchase Order No:	SAMPLE JD	24120	0 62120	0012	071366	0 7135 5	08134 E	08133 E	Hig-min	MANNA PLAN	15 V22 9-14	- -				Sampler's Name:	Samples Relinquished by:	Samples Approved by:	Samples Received by:	Samples Relinquished by:	Samples Received by:

STATE RANK

Physical: Building R6, Pinelands Site Ardeer Rd, Modderfontein, 1645 Pastal: P O Box 422, Modderfontein 1645Tel: 011 608 4148 Fax: 011 608 2621 E-mail: harvev@levego.co.za www.levego.co.za

LEVEGO ENVIRONMENTAL SERVICES Laboratory Test Report

Laboratory Test Report Number Date of Report Client

Client Contact

Client Contact Number

Client e-mail

Client Reference Number

Analysis Required

Location of Analysis

LEV-LTR23-011 2023/01/25 Levego Environmental Services Building R6 Pinelands Site Modderfontein 1645 Hlayiseka Yingwani 073 383 8663 Hlayiseka@levego.co.za LES0913M COC09860 Particulate matter and Sulphur Dioxide

Levego Environmental Services Laboratory,

Modderfontein, South Africa

This laboratory test report relates only to the specific samples received by the laboratory, identified herein. The laboratory does not accept responsibility from any matters arising from the further use of these results.

Levego laboratory does not accept responsibility for any errors that may have arisen from the sampling and transportation of the samples by external parties.

This laboratory test report may not be reproduced, except in full, unless written approval is obtained from the laboratory manager prior to publication.

Technical Signatory

Name: Mosima Chidi

Signature :

Laboratory Manager

Name : Harvey Butcher

Sutel

Signature :

Laboratory Test Report: LEV-LTR23-011 Page 1 of 3

(<u>Sanas</u>

1. DESCRIPTION OF TEST METHODS

1.1 LEV-M-001: Determination of sulphur dioxide emissions from stationary sources.

This method is based on USEPA Method 6 and applies to the measurement of sulphur dioxide (SO_2) (CAS number 7449-09-5) emissions from stationary sources. A gas sample is extracted from the sampling point in the stack. The SO₂ and sulphur trioxide (SO_3) , including those fractions in any sulphur acid mist, are separated. The SO₂ fraction is measured, via concentration of sulphate anion (SO_4^2) , by the barium-thorin titration method.

1.2 LEV-M-002: Determination of particulate matter emissions from stationary sources.

This method is based on USEPA Method 5, USEPA Method 17, BS EN 13284-1:2002 and ISO 9096:2003(E), and applies to the determination of particulate matter (PM) (CAS number not assigned) emissions from stationary sources. Particulate matter is withdrawn iso-kinetically from the source and collected on a filter. The particulate matter, which includes particles, of any shape, structure or density, dispersed in the gas phase under the sampling conditions, is determined gravimetrically after the removal of uncombined water. This method is restricted to particulate matter collected in the sampling system, on and before a filter, under specified temperature conditions.

The particulate matter rinsing liquids were dried at 160 °C. The particulate matter filters were dried at 160 °C.

2. REMARKS

2.1 No deviations from laboratory test methods.

Table 1 - Samples

Test item description	Test item condition	Count
Acetone: water rinsing liquids	Received in polyethelene bottles at room temperature	4
Hydrogen peroxide solutions	Received in polyethelene bottles at room temperature	4
30x100mm Quartz Filter Thimbles	Received in securitainers, at room temperature	4

Table 2 - Particulate matter (rinsing liquid) results (Method LEV-M-002) - Measurement Uncertainty - ± 0.16 mg

Note: <* = Result below LOQ

Laboratory	Client	Trues		Date	D-46	Pa	rticulate Matter (rinse	*)
-		Туре	LOQ		Date of		Lev-M-002	
ldentity Number	ldentity Number		-	Received	analysis	Particulate Matter (mg)	Post-Weight Average (g)	Pre-Weight Average (g)
24192	09136E	Rinse	0.05	2023/01/19	2023/01/25	4.37	36.03916	36.03479
24193	09135E	Rinse	0.05	2023/01/19	2023/01/25	4.22	37.16368	37.15946
24194	09134E	Rinse	0.05	2023/01/19	2023/01/25	5.38	36.08422	36.07884
24195	09133E	Rinse	0.05	2023/01/19	2023/01/25	0.09	36.94551	36.94542

Table 3 - Particulate matter (Quartz filter) results (Method LEV-M-002)

Measurement Uncertainty : -30 * 100 mm Quartz Filter Thimbles \pm 0.56 mg 47 mm Quartz Filters \pm 0.28 mg 82.6 mm Quartz Filters \pm 0.39 mg

Note: <* = Result below LOQ

Laboratory	Client Identity	Туре	LOQ	Date	Date of	Par	ticulate Matter (Fil	ter)
Identity Number	Number	1100		Received	Analysis	Particulate Matter (mg)	Post-Weight Average (g)	Pre-Weight Average (g)
23587	LEV22-Q-1772	30mmx100mm	0.05	2023/01/19	2023/01/24	89.81	3.02141	2.93160
23588	LEV22-Q-1773	30mmx100mm	0.05	2023/01/19	2023/01/24	109.00	3.00761	2.89861
23597	LEV22-Q-1782	30mmx100mm	0.05	2023/01/19	2023/01/24	208.66	3.12153	2.91287
22640	LEV22-Q-1464	30mmx100mm	0.05	2023/01/19	2023/01/24	0.11	2.94662	2.94651

Table 4 - Sulphur dioxide results (Method LEV-M-001)

Measurement Uncertainty : -

 $\pm~0.10~mg\,\ell^{-1}$ (5ml burette)

 \pm 0.12 mg ℓ^{-1} (10ml burette) \pm 0.53 mg ℓ^{-1} (50ml burette)

Note: <* = Result below LOQ

Laboratory Identity Number	Client Identity Number	Туре	LOQ mgt ⁻¹	Date Received	Date of Analysis	Volume	Sulphur Dioxide LEV-M-001 Sulphate(SO ₄ 2-) (mg/l)
24188	09131E	SO2, 5 ml	1.70	2023-01-19	2023-01-25	500.00	<*
24189	09130E	SO2, 5 ml	1.70	2023-01-19	2023-01-25	500.00	<*
24190	09129E	SO2, 5 ml	1.70	2023-01-19	2023-01-25	500.00	<*
24191	09128E	SO2, 5 ml	1.70	2023-01-19	2023-01-25	500.00	<*

CHAI	CHAIN OF CUSTODY AND ANALYTICAL REQUEST	EQUEST	\mathcal{O}
FROM: : Levego Environmental Services (Pty) Ltd	LAB SENT TO:		
Building R6, Pinelands Site, Ardeer Rd	Contact Person	Maria	
PO Box 422, Modderfontein, 1645	Contact Number	011 (-08 4-1 4-8	
Tel: +27 11 608 4148	Date Sent to Lab	20/2/202	LEVEGO
Fax: +27 11 608 2621	Date Requested Back	AS AP	Environmental Services
Contact Person: Show	Page Number	17 of 12	
Email Address: 5 Durger (Purger Co - De			No:09856
der No:	Levego Job No: しこちょ アリス・	Client Name: South 3 L (Nor M 1)	
E L	IN METHOD USED & ANALYSIS REQUIRED SAMPLE CONTENT	COLLEC	DATE RESULTS RECEIVED
070975 2 A		Art.	
weght 2 jihan			
\$ 20 30 Bundle 12 - 10-10-		1 A	
	, , , ,		
VENCE 2	a (a)	444	
	A WAY BY A	×1,1,1	
	The form and the second second	1 Aco	
していたしてあってい	AN 2. all		
0-1344	AV SOU X	Art.	
1.511.5. m.19. 2. m. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1 to the for	1 March	
	101	11.2 Please us of the	
NYOPON 3 NOT	Alla D.O.V.	with some blankes	
	~	A ALAA AN	-
Correct I afrago	je de la	127 Pleus, USE tel	
OPVE 2 TW	- Land & Land &		
V V V V	U EN L KU FHU	721, A a40826 (4)	
~ 250-0	Started . 160	7,111	
2 1962/1		Jugar -	
Sampler's Name: 212 WT	Signature: '		
11 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Signature:	Time & Date: 2x24 12 UZ	20,20
Samples Approved by: 14 Level 15-CLC (1 Samples Benefixed hur	Signature:	Time & Date: Ve UL-112 - OL	ح حی ا
Samples Relinquished by:	Signature: Signature:	lime & Date: Time & Date:	
Samples Received by:	Signature:	Time & Date:	
			Thoto Complete 8 Drint 044 608 2000

			48		Environmental Services		No:09857	- (Nat 1727)	SPECIAL INSTRUCTIONS DATE RESULTS RECEIVED		The fu	حـــا			the Ath		row III'r	the who that	(a) (a)	86 (())					L 11 61 62 21	021/11/00			
CAL REQUEST	E.	Nosing	011 608 41	202/202	ASIAD -			Client Name: Chi Chi Chi	E CONTENT COLLECTION DATE	Hey Zoul11/2	and the second s	of actur	1. 2.0 2	i Brit		Nor Nor Nor		MA WE REAL	- de la						Time & Date: 2.5.2.		Time & Date:	Time & Date:	
CHAIN OF CUSTODY AND ANALYTICAL REQUEST	LAB SENT TO:	Contact Person	Contact Number	Date Sent to Lab	Date Requested Back	Page Number		Levego Job No: US OC13 W	TEST NO. STACK DESCRIPTION METHOD USED & ANALYSIS REQUIRED SAMPLE CONTENT COLLECTION DATE	(it opped) Pale with F.1		all all	and no was		v) Later	and Jon Josi	Lan IX	1 100 m	1:20 - Dr. C. C.	(Jatell) hat were !				Signature:	Signature:	Signature: P. P. C. S. C.	Signature:	Signature:	
CHAIN	FROM: : Levego Environmental Services (Pty) Ltd	Building R6, Pinelands Site, Ardeer Rd	PO Box 422, Modderfontein, 1645	Tel: +27 11 608 4148	Fax: +27 11 608 2621	Contact Person: Show of	Email Address(,		SAMPLE ID TEST NO. STACK DESCRIPTION	1-2120-1784 Jane Ded 13-12	001066 1 31	5	CUPICUE 3 Pravo	1 2010 6 1 × 1.2		Wallows 2 run	510 2 - 2093 - EV	113 Clark- 173 8 1 1 15	evergarey 3 Nev	I WIND ALEIDANO				Sampler's Name:	ished by King Control	HLAUNSE ICA	n ,	lby:	Commission Designed for the second

Date of Report

Laboratory Test Report Number

Physical: Building R6, Pinelands Site Ardeer Rd, Modderfontein, 1645 Postal: P O Box 422, Modderfontein 1645Tel: 011 608 4148 Fax: 011 608 2621 E-mail: harvey@levego.co.za พาพพ.levego.co.za

LEVEGO ENVIRONMENTAL SERVICES Laboratory Test Report

LEV-LTR22-260

2022/12/12

Client Levego Environmental Services Building R6 **Pinelands Site** Modderfontein 1645 **Client Contact Client Contact Number** Client e-mail **Client Reference Number Analysis Required Location of Analysis**

Hlayiseka Yingwani 073 383 8663 Hlayiseka@levego.co.za LES0913M COC09856/7 Particulate matter and Sulphur Dioxide Levego Environmental Services Laboratory, Modderfontein, South Africa

This laboratory test report relates only to the specific samples received by the laboratory, identified herein. The laboratory does not accept responsibility from any matters arising from the further use of these results.

Levego laboratory does not accept responsibility for any errors that may have arisen from the sampling and transportation of the samples by external parties.

This laboratory test report may not be reproduced, except in full, unless written approval is obtained from the laboratory manager prior to publication.

Technical Signatory

Name: Mosima Chidi

11.

Signature :

Laboratory Manager Name : Harvey Butcher Signature :

Iden

LEV-LTR22-260 Laboratory Test Report: Page 1 of 3

1. DESCRIPTION OF TEST METHODS

1.1 LEV-M-001: Determination of sulphur dioxide emissions from stationary sources.

This method is based on USEPA Method 6 and applies to the measurement of sulphur dioxide (SO_2) (CAS number 7449-09-5) emissions from stationary sources. A gas sample is extracted from the sampling point in the stack. The SO_2 and sulphur trioxide (SO_3) , including those fractions in any sulphur acid mist, are separated. The SO_2 fraction is measured, via concentration of sulphate anion (SO_4^{-2}) , by the barium-thorin titration method.

1.2 LEV-M-002: Determination of particulate matter emissions from stationary sources.

This method is based on USEPA Method 5, USEPA Method 17, BS EN 13284-1:2002 and ISO 9096:2003(E), and applies to the determination of particulate matter (PM) (CAS number not assigned) emissions from stationary sources. Particulate matter is withdrawn iso-kinetically from the source and collected on a filter. The particulate matter, which includes particles, of any shape, structure or density, dispersed in the gas phase under the sampling conditions, is determined gravimetrically after the removal of uncombined water. This method is restricted to particulate matter collected in the sampling system, on and before a filter, under specified temperature conditions.

The particulate matter rinsing liquids were dried at 160 °C. The particulate matter filters were dried at 160 °C.

2. REMARKS

2.1 No deviations from laboratory test methods.

Table 1 - Samples

Test item description	Test item condition	Count
Acetone: water rinsing liquids	Received in polyethelene bottles at room temperature	10
Hydrogen peroxide solutions	Received in polyethelene bottles at room temperature	10
30x100mm Quartz Filter Thimbles	Received in securitainers, at room temperature	12

Table 2 - Particulate matter (rinsing liquid) results (Method LEV-M-002) - Measurement Uncertainty - \pm 0.16 mg

Note: <* = Result below LOQ

						Pa	rticulate Matter (rinse)
Laboratory	Client	Туре	LOQ	Date	Date of		Lev-M-002	
ldentity Number	ldentity Number			Received	analysis	Particulate Matter (mg)	Post-Weight Average (g)	Pre-Weight Average (g)
23877	09089E	Rinse	0.05	2022/12/02	2022/12/08	4.63	36.24316	36.23853
23878	09088E	Rinse	0.05	2022/12/02	2022/12/08	3.51	35.95502	35.95151
23879	09087E	Rinse	0.05	2022/12/02	2022/12/08	9.27	36.95423	36,94496
23880	09086E	Rinse	0.05	2022/12/02	2022/12/08	0.05	36.02778	36.02773
23881	09097E	Rinse	0.05	2022/12/02	2022/12/08	4.22	36.03928	36.03506
23882	09096E	Rinse	0.05	2022/12/02	2022/12/08	7.07	35.64970	35.64262
23883	09095E	Rinse	0.05	2022/12/02	2022/12/08	0.47	35.76791	35.76744
23884	09103E	Rinse	0.05	2022/12/02	2022/12/08	3.60	36.11837	36.11477
23885	09102E	Rinse	0.05	2022/12/02	2022/12/08	2.85	38.29722	38,29437
23886	09101E	Rinse	0.05	2022/12/02	2022/12/08	3.56	36.02887	36.02531

Table 3 - Particulate matter (Quartz filter) results (Method LEV-M-002)

5

Measurement Uncertainty : -

30 * 100 mm Quartz Filter Thimbles ± 0.56 mg 47 mm Quartz Filters ± 0.28 mg 82.6 mm Quartz Filters ± 0.39 mg

Note: <* = Result below LOQ

Laboratory	Client Identity	Туре	LOQ	Date	Date of	Par	ticulate Matter (Fil	ter)
Identity Number	Number	(350		Received	Analysis	Particulate Matter (mg)	Post-Weight Average (g)	Pre-Weight Average (g)
23584	LEV22-Q-1769	30mmx100mm	0.05	2022/12/02	2022/12/07	162.79	3.06906	2.90627
23586	LEV22-Q-1771	30mmx100mm	0.05	2022/12/02	2022/12/07	156.16	3.07698	2.92083
23592	LEV22-Q-1777	30mmx100mm	0.05	2022/12/02	2022/12/07	149.44	3.07260	2.92316
18810	LEV22-Q-0039	30mmx100mm	0.05	2022/12/02	2022/12/07	0.08	2,91469	2.91461
23593	LEV22-Q-1778	30mmx100mm	0.05	2022/12/02	2022/12/07	52.07	2.96426	2.91219
23595	LEV22-Q-1780	30mmx100mm	0.05	2022/12/02	2022/12/07	71.25	3.00952	2.93827
23585	LEV22-Q-1770	30mmx100mm	0.05	2022/12/02	2022/12/07	70.15	2.97285	2.90270
23599	LEV22-Q-1784	30mmx100mm	0.05	2022/12/02	2022/12/07	0.08	2,93992	2.93983
18972	LEV22-Q-0099	30mmx100mm	0.05	2022/12/02	2022/12/07	17.17	2.90934	2.89217
23594	LEV22-Q-1779	30mmx100mm	0.05	2022/12/02	2022/12/07	10.46	2.98248	2.97202
23591	LEV22-Q-1776	30mmx100mm	0.05	2022/12/02	2022/12/07	9.60	2.88601	2.87641
23589	LEV22-Q-1774	30mmx100mm	0.05	2022/12/02	2022/12/07	0.10	2.89341	2.89331

Table 4 - Sulphur dioxide results (Method LEV-M-001)

Measurement Uncertainty : -

 $\pm 0.10 \text{ mg}\ell^{-1}$ (5ml burette)

 $\pm 0.12 \text{ mg}\ell^{-1}$ (10ml burette)

 $\pm 0.53 \text{ mg}\ell^{-1}$ (50ml burette)

Note: <* = Result below LOQ

Laboratory Identity	Client Identity Number	Туре	LOQ	Date Received	Date of Analysis	Volume	Sulphur Dioxide LEV-M-001
Number	Rumber		mgℓ ^{−1}	ricconou	7111019010		Sulphate(SO ₄ ²⁻) (mg/l)
23867	09093E	\$O2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	2 135.29
23868	09092E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	1 468.43
23869	09091E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	1 387.60
23870	09090E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<*
23871	09100E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<*
23872	09099E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<*
23873	09098E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<* `
23874	09106E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<*
23875	09105E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<*
23876	09104E	SO2, 5 ml	1.70	2022-12-02	2022-12-09	500.00	<*

DJN Metgauge cc P.O Box 6646 Westgate 1734 Tel: (011) 768

710-1	
Tel:	(011) 768 3325
	(011) 768 4270
Fax:	(011) 768 3653
Email:	info@metgauge.co.za

Medgate Centre, Shop No.8, Kingfisher Street, Horizon, Roodepoort

Calibration Certificate

Certificate No:	P03716		Cal. Date: Due Date:	27 July 2022 Customer Req.
Customer:	Levego Environmental	Services		
	P.O.Box 422		•	
	Modderfontein			
	1645			
Description:	0-150mm Digital Calipo	er		Page 1 of 1
Serial:	11004211			
Manufacturer:	Ultra			
Uncertainty Of Mea	isurement:	See Overleaf		
Reference Publicat		B.S 887: 2008		
Calibration Procedu	ure No:	P-010-008-02		
Environment:	Temperature	20º C ± 1º C	Humidity	40 To 60%
Traceable Standard	i Used:	Steel Reference Set	Gauge Blocks	
		Serial No. 71839	Cert, No, 2086	
Equipment Used:				
	Vernier Gauge Blocks		Serlal No, MG 10	
Error in inite Of m	-			

Error In Units Of mm Temperature 20° C ± 1°C

Calibration Points	Permissible Error	Actual Error
Parallelism		
Internal Jaw	0.010mm	0,008
External Jaw	0.008mm	0.006
External Measuring		
Scale Error 0.00	± 0.020mm	0.000
10.00	± 0.020mm	0.000
· 20.00	± 0.020mm	0.000
41.20	± 0.020mm	-0.010
51.20	± 0.020mm	-0.010
81.50	± 0.020mm	-0.010
101.20	± 0.020mm	-0.010
121.80	± 0.020mm	-0,010
150.00	± 0.020mm	-0.010
Internal Measuring		
Jaw at 20mm	± 0.020mm	-0.020
Depth Measuring	± 0.020mm	0.010

Note: Permissible error taken from B.S 887: 2008

Uncertainty of Measurementr/) ± 0.015mm

27 July 2022 Date

allbrated By P.M.Mncube

Technical Signatory D, Bruwer

Calibration Laborator DC Low Frequency , 118 Pressure , 218 Temperature , 318 Force , 818 Humidity , 1518 Conforms with ISO 17025:2017

certificate number	C29442					
calibrated for	LEVEGO ENVIRONMENTAL SERVICES PTY LTD					
	PINELANDS SITE ARD	EER ROAD				
	MODDERFONTEIN 164	5				
section / location	STORES					
instrument	DIGITAL TEMPERATU	RE AND HUMIDITY METI	ER			
serial number	090716					
model	PERCEPTION 11					
manufacturer	DAVIS					
date of calibration	2022/11/24					
date for recalibration	2023/11/24	date of issue	2022/11/30			
environment	22.0 °C and 47.0 %rh					

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for mutual recognition of technical test and calibration data by member accreditation bodies worldwide. For more information on the arrangement, please consult www.llac.org.

Calibrations performed by this laboratory are in terms of standards which are traceable to the national measuring standards and conforms to the ISO, IEC 17025 requirements. The calibration procedures are performed in terms of approved company quality standards.

This certificate is a true record of the measurements made and values reflected on this certificate are correct at the time of calibration and only applies to the readings of the UUT identified on this certificate. Subsequently the accuracy will depend on such factors as the care executed in handling and use of the device, and the frequency of use.

Recallbration should be undertaken after a period which is chosen to ensure that the instrument's accuracy remains within the desired limits, or as agreed with the customer, or as required by South African Civil Aviation Regulations.

This Certification may not be reproduced other than in full, exception with prior approval of the issuing laboratory.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor K = 2 providing level of confidence of approximately 95.45 %, the uncertainty of measurement has been estimated in accordence with the principles defined in the GUM, Guide to Uncertainty of Measurement, ISO Geneva, Switzerland, 1993.

Copyright - Calibrate@pjb

Legal liability shall be limited to the cost of the recalibration and or certification, and the applicant hereby idemnifies PJB Contracting CC against any, consequential or other loss.

Calibrate@pjb will maintain a professional standard in its performance of calibration activities. We will not be liable for any claims whatsoever airising out of the use, implementation or inability to use any of the results generated on our certificates.

A calibration sticker has been affixed to the instrument bearing calibration date, serial number, due date * and certificate number,

calibrated by Kennedy Smuts metrologist

Kennedy Smuts technical signatory

Burned

Page 1 of 3

po box 9314 edleen 1625 5 platbarg avenue van riebeeck park kempton park 1619 phone +27 11 972 3798 fax 086 674 9980 lab@pjb.co.za www.pjb.co.za pjb contracting cc t/a calibrate@pjb CK1993/11192/23 meinber pj burmeister

Calibration Certificate

DC Low Fraquency , 118 Pressure , 218 Temperature , 318 Force , 818 Humidity , 1518

Conforms with ISO 17025:2017

Certificate Number C29442

Calibrated for LEVEGO ENVIRONMENTAL SERVICES PTY LTD

Instrument DIGITAL TEMPERATURE AND HUMIDITY METER

calibrate@pjb calibration procedure	
P/1/002 (Issue 17.0)	· · ·
P/1/007 (Issue 12.0)	
P/1/008 (issue 13.0)	

calibrated@pjb standards and laboratory equipment used						
Instrument	Model	Serial No	Certificate	Calibration Due Date		
[45] THERMOMETER, CHUB-E4	1529	A56912	119531-1	2024/04/14		
[46] PLATINUM RESISTANCE THERMOMETER	18004-A-120-6-B-1	743455	1198531-1	2024/04/14		
[91] ABSOLUTE PRESSURE GAUGE	DPI705	70561580	2102P9684-1	2023/02/26		
[96] TEMPERATURE & HUMIDITY DATA LOGGER	U14-001	10237101	A108851	2023/10/04		
[159] HYGROTHERMOMETER AND PROBE	HP32-S-SET WITH HC2-A	5181494	C25926	2024/09/20		
[156] HYGROTHERMOMETER AND PROBE	HP32	'6/ PROBE 204	c22811	2023/05/20		
[170] DIGITAL HAND HELD AND PROBE	HC2A-S	20312200	C22812	2023/06/14		

Results

Standard Input	Before	UUT After Readi	ng	Remark
%rh	%rh	%rh	Corr	
36.20	÷	33	3	AT 22.09°C
53.12	**	51	2	AT 29.92°C
. 67.89	÷.	66	2 .	AT 22.75°C

Uncertainty +/- 3.0 %rh

Standard Input	Before	UUT After Readir	Ig	Remark
0°	°C	°C	Corr	
10.23	-	10.4	-0.2	
,22.75	-	22.9	-0.2	
29.92	-	29,9	0.0	

Uncertainty +/- 1.5 °C

Standard Input	Before	UUT After Readin	lg	Remark
mbar	mbar	mbar	Corr	
835,3		832.5	2.8	

Uncertainty +/- 1.0 %

Conversion Factor : 1 mbar = .1 kPa

Kennedy Smuts Calibrated Signatory Copyright - Calibrate@pjb

Kennedy Smuts Technical Signatory Copyright - Calibrate@pjb

Calibration Certificate ,

Conforms with ISO 17025:2017

Force . 818 Humidity . 1518

Certificate Number C29442

Calibrated for LEVEGO ENVIRONMENTAL SERVICES PTY LTD

Instrument DIGITAL TEMPERATURE AND HUMIDITY METER

Remarks

UNIT CLEANED AND CALIBRATED FITTED NEW BATTERY(/IES) (REPORTED VALUES MAY BE ROUNDED OFF WHERE APPLICABLE) UNIT CALIBRATED IN THE PRESSURE LABORATORY OF CALIBRATE@PJB, 5 PLATBERG AVENUE, VAN RIEBEECK PARK, KEMPTON PARK UNIT CALIBRATED IN THE TEMPERATURE LABORATORY OF CALIBRATE@PJB, 5 PLATBERG AVENUE, VAN RIEBEECK PARK, KEMPTON PARK

Kennedy Smuts Callbrated Signatory Copyright - Callbrate@pjb

* End of document *

Kennedy Smuts Technical Signatory Copyright - Calibrate@pjb

Page 3 of 3

This certificate was issued using COS V1.0

Calibration Laboratory DG Low Frequency . 118 Pressure, 218 Temperature, 318 Force, 818 Humidity, 1518 Conforms with ISO 17025:2017

certificate number	C26342			. 14
calibrated for	LEVEGO ENVIRO	1440		
	BUILDING R6			
	PINELANDS SITE			Hat
•	MODDERFONTEI	N 1645		The first
section / location	STORES		,	"the
Instrument	THERMOCOUPLE	E CALIBRATOR		
serial number	108390	1		•
model	520		~	
manufacturer	PIE			
date of calibration	2022/07/26			
date for recalibration	2023/07/26	date of issue	2022/07/27	
environment	20,7 °C and 49.0 °	%rh		
The Death Astern Motorial Accred	liation System (SANAS) is a t	nember of the Legal Hability shall be	Imited to the cost of the recalibratio	n and or certification,

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for mutual recognition of technical test and calibration date by member accreditation bodies worldwide. For more information on the arrangement, please consult www.llac.org.

Calibrations performed by this laboratory are in terms of standards which are traceable to the national measuring standards and conforms to the ISO, IEC 17025 requirements. The celibration procedures are performed in terms of approved company quality standards.

This certificate is a true record of the measurements made and values reflected on this certificate are correct at the lime of celibration and only applies to the readings reported. Subsequently the accuracy will depend on such factors as the care executed in handling and use of the device, and the (requency of use. 1.

Recalibration should be undertaken after a period which is chosen to ansure that the Instrument's accuracy remains within the desired limits, or as agreed with the customer, or as required by South African Civil Aviation Regulations.

This Certification may not be reproduced other than in full, exception with prior approval of the issuing laboratory.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor K = 2 providing level of confidence of approximately 95.45 % , the uncertainly of measurement has been estimated in accordence with the principles delined in the GUM, Guide to Uncertainty of Measurement, ISO Geneve, Switzerland, 1993.

Copyright - Callbrate@pib

and the applicant hereby idemnifies PJB Contracting CC against any, consequential or other loss.

Calibrate@pjb will maintain a professional standard in its performance of calibration activities. We will not be liable for any claims whatsoever airising out of the use, implementation or inability to use any of the results generated on our certificales,

A calibration sticker has been affixed to the instrument bearing calibration date, serial number, due date ' and certificate number.

callbrated by Kennedy Smuts metrologist

Kennedy Smuts technical signatory

helfmult

aria da isatan P

Page 1 of 2

1619 pa bax 9314 ødleøn 1625 van riebeeek park kempton park 5 platbarg avenue fax 086 674 9980 phone +27 11 972 3798 Jab(ឲ្យ)ប្រ.co.za www.p|0,co,za member pj burmelster pjb contracting cc l/a calibrate@pjb CK1993/11192/23

Calibration Certificate

Conforms with ISO 17025:2017

Certificate Number C26342

Calibrated for LEVEGO ENVIRONMENTAL SERVICES PVT LTD

Instrument THERMOGOUPLE GALIBRATOR

calibrate@pjb calibration procedure	
P/1/015 (Issue 4.0)	

calibrated@pjb standards and laboratory equipment	used			
Instrument	Model	Serial No	Certificate	Calibration Due Date
[40] FLUKE 5500A CALIBRATOR	FLUKE	8695015	114985-1	2023/03/01
[97] TEMPERATURE & HUMIDITY DATA LOGGER	Ново	10237102	A108849	2023/10/04

Results

itandard input	Before,	UUT After Rea	ding!	Remark
2. S.	C → C → C → C → C → C → C → C → C → C →	°C	Côrra-	
-19,51	-	-20	0,49	ELECTRICAL SIMULATION
-9.53	-	-10	0	TYPE K (ITS-90)
0.49	-	0	0	
10.47	н	10	0	
20,48		20	0	
50.44	-	50	0	
100.46	-	100	0	
500,52	n	500	1	
1000.65		1000	1	

Uncertainty +/- 1.0 °C

Remarks

UNIT CLEANED AND CALIBRATED

(REPORTED VALUES MAY BE ROUNDED OFF WHERE APPLICABLE) UNIT CALIBRATED IN THE AC/DC LABORATORY OF CALIBRATE@PJB, 5 PLATBERG AVENUE, VAN RIEBEECK PARK, KEMPTON PARK

IN

Kennedy Smuts Galibrated Signatory Copyright - Calibrate@pjb

* End of document *

Kennedy Smuts Technical Signatory Copyright - Calibrate@pjb

Page 2 of 2

This certificate was issued using COS V1.0

Quality Source Sampling Systems & Accessories SK25EX July 30, 2021 DGM Model: Date:

1

Customer:

. n. 19

Levego

00006673 DGM S/N:

Real Property Landstone Provide State

Reference Prover: #3050 Tape: #01131693

29.65 in Hg Pb:

HICK	W. Frue Sec.				Flick		14 Y (1) 12 Y (2) Y (2) Y	Winter	Azanauja Meter a
	PLOVES Michels Michels Michels	ne inicipitati - (III quesi) - Valente			(m H Ø) - By	CALL BALL	- ((MU)) 0		Openiletiani Mis
32,9	150,282	151.480	74.3	74,3	1.25	1.02	4.47	0.993	
32,9	150,282	151.616	74,4	74,5	1.25	1.02	4.47	0.992	,
33.0	150.282	151.614	74.1	74.5	1.25	1.02	4,47	0.993	0.992
26.8	150,282	151.198	74.1	74,6	1.25	1.08	5.50	0.995	_
26.8	150.282	151.284	74.2	74.8	1.25	1.08	5.50	0,995	· ·
26,8	150,282	151,233	74.0	74.7	1.25	1,08	5,50	0,996	0,995
21.5	150,282	150.486	74,0	74.8	1.26	1.14	6.83	1.001	
21.5	150,282	150,503	74.0	74.8	1,26	1.14	6.83	1.000	
21.5	150.282	150.538	74.0	74.9	1.26	1.14	6,83	1.000	1.000
17.3	150,282	150.136	74.1	74.9	1.26	1.17	8.52	1.003	
17.3	150,282	150.183	74.0	74.9	1.26	1.17	8.52	1.002	,,
17.3	150.282	150.142	74.0	74.9	1.26	1.17	8.52 ·	1.003	1.003
9.5	150,282	148.837	73.9	74.9	1.26	1.22	15.55	1.012	
9.5	150.282	148,860	73,9	74.9	1.26	1.22	15.55	1.012	
9.5	150.282	148.829	73.9	74,9	1.26	1.22	15.55	1.012	1.012

AVERAGE Y_{ds} 1.000 1.9420 ScF $Y_{ds} = \frac{V_w(t_{ds} + t_{std})}{V_{ds}(t_w + t_{std})} * \frac{P_{bar}}{(P_{bar} + \frac{P_m}{13.6})} \qquad Q = 17.64 \frac{P_{bar}}{(t_w + t_{std})} \frac{V_w}{\Phi}$

Dry gas meter Serial Number 6673 was calibrated in accordance with the Code of Federal Regulations, Title 40, Part 60, Appendix A, Method 5 Section 16.1.1

Signature

708 B. Club Blvd., Durham, North Carolina 27704

www.environsupply.com

919-956-9688 FAX: 919-682-0333

				TOUTTHE ACT	MAS BOOL SAM	TO METUOD F SOUTCE SAMPLING CONSOLE CALIBRATION	ALIBRATION				
							ß				
				USI	4G A SECONDARY	USING A SECONDARY REFERENCE MELEK	L L				
					5-POINT (METRIC UNITS)	TRIC UNITS)					
			I Calibaretan Mata	Collimation Motor Information (Secondary Meter)	ondary Meter)	Cali	Calibration Conditions	S		Factors	
Mett	Meter Console Information	101				Daromatric	фШ	846	Std Temp ¹	¥	293.15
Console Model Number	Imber	8000R1	Calibration Meter Serial #	SK25EX-00006673		Pressure	тт Нд	635	Std Press	mm Hg	760
Console serial number	liner					Date		03-Aug-22	ž	K/mm Hg	0.3857
DGM Model Number	ber	AF 23	Calibration Meter Gamma	unitless	1.000	Calibration Technician	lan	Stanford	¹ US EPA Metho	US EPA Method 5 uses Standard Absolute	bsolute calibration factor
DGM Serial Number	er	1900835							I emperature (∠e (M) and ∆H@ ce	remperature (253, 15 N) for N, DOIN carine and ICM. and AH@ calculations	
			WWW COMPANY COMPANY COMPANY		Calibration Data	ion Data					
1				Metering Console	And the second				Calibrat	Calibration Meter	
	DGM Orifice	Volume	6	Outlet Temp	Outlet Temp	Vacuum (for information)	um nation)	Volume	Volume Final	Outier lemp Initial	Cuulet tentp
Elapsed	AH	initial	Final	Initial	+Inal	Absolute (positve) value	sitve) value	V.	Vwr	ţ	ty.
ß	е 0.	- V ^{mi}		Im ¹	Ē	inch Hg	gH mm	litre	litre	ပ့	ပု
uin a	120 D	392 0302	392.2132	23	23	13.7	348	0,000	184.276	21	22
		302 2132	392.3946	23	23	13.6	345	184.276	366.235	53	22
0.0			307 4597	23	24	13.5	343	366.235	530.967	22	53
7.0	D'ING	0407.2040	307 7752	24	24	13.4	340	530.967	696.449	23	23
10.0	n'e7	7600-760				ļ	900	606 AAG	R75 465	23	24
15.0	13.0	392.7252	392.9052	24	25	13.3	000	000			
				Res	Results						
	Standard	Standardized Data				Dry Gas Meter	s Meter	× ************************************	<u>а</u> ц ()		
	1				Calibration Factor		Plowrate	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Variation		
םיז פ	Dry Gas Meter			Value	Variation	Variation					
V _{m(std)}	Q _{m(std)}	V _{w(stt)}	Qw(std)	Y		AT	mistal(coff)	mm H ₂ O	< ± 5.1 mm of avg	1	
Ēμ	m ³ /min	["] E	m*/min 0.024	co.1 07 62.0	-0.001	-0.1%	0.031	49.157	-0.172		
0.154	0.031	00100	5202		000 0	%U U	0.025	48.040	-1.288		
0.151	0.025	0.151	0.025	188.0	0000		0.00	40 EU3	0 275		
0.137	0.020	0.136	0.019	0.998	0.001	0.1%	ALD.D	43.000	0 625		
0.137	0.014	0.137	0.014	0.997	0.000	0.0%	0.014	40.204	0.40.0		
0.148	0.010	0.148	0.010	0.996	-0.001	-0.1%	0.010	49.889	0.560		
			Y Average	0.997	0.002	Max minus Min		49.329	AH@ Average		
The calibration fa	ctor. Y. at each of th	le flow rates, shoul	The relitivation factor Y at each of the flow rates, should not differ by more than ±2 percent from the average, as specified in 16.2.3.4 of US EPA Method 5. (Refer to sheet "References to EPA M6")	an ±2 percent from	the average, as spe	cified in 16.2.3.4 of l	US EPA Method 5.	(Refer to sheet "F	References to EPA M	6") mm) H_D	
AH@ = orifice pr	ssure differential th	at equates to 0.75	AH@ = orlifice pressure differential that equates to 0.75cfm (0.0212 m ³ /min) at standard temperature and pressure. Acceptable tolerance of individual values from the average is ±0.2 montes (±2.0 mm/) 150.	t standard temperat	ure and pressure. F	Acceptable tolerance	of individual value	is from the average	1 S 20.7 110145 (20.1		
The above Orifice	e set was calibrated	in accordance wit	The above Orifice set was calibrated in accordance with USEPA Methods, CFR 40 Part 60, Appendix A, Method 5, item 7.2.2	≓R 40 Part 60, App	endix A, Method 5, i	tem 7.2.2	-	40HT	(O) AVE)		
	Verified by:	Stentard	844 84	I			Checked by: Date:	Ela.	68/03		
	L'ate:	E C		1			Signature:	P	DIKE	1	
	Signature:			1			2				

.

R001-SEV-SSC 809061 DGM 2022-08-03.xlsx

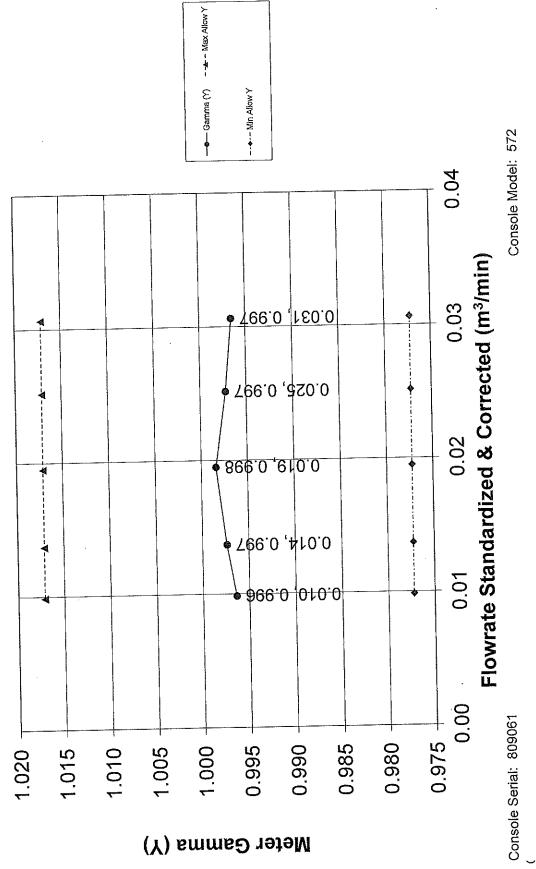
Calibration 1 - Page 1 of 3

Levego - Method 5 - SSC calibration using a seconondary reference meter

•

....

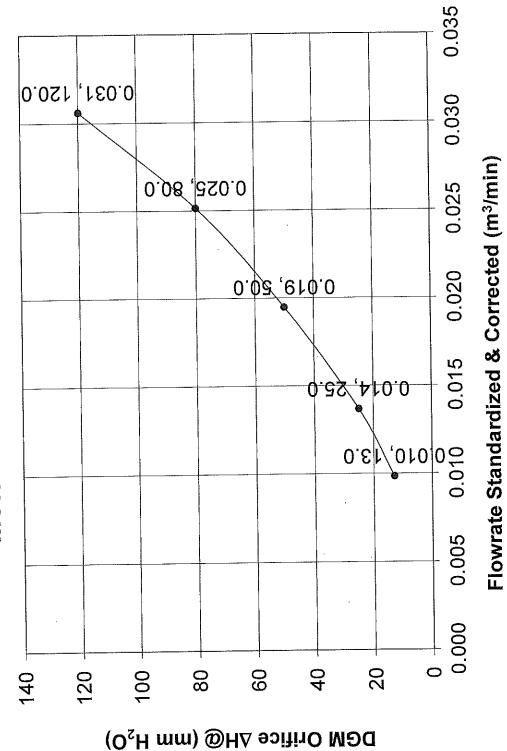
- 1


,

R001-SEV-SSC 809061 DGM 2022-08-03.xlsx

Calibration Date: 2022-8-3

Calibration Technician: Stanford


Calibration 1 - Page 2 of 3

Levego - Method 5 - SSC calibration using a seconondary reference meter

R001-SEV-SSC 809061 DGM 2022-08-03.xlsx

in the second se

Meter Pressure vs Flowrate

Console Serial: 809061

Console Model: 572

Levego - Method 5 - SSC calibration using a seconondary reference meter

1 of 1

E05

Digital Thermometer Verification Form

Name of Measurement Technician	Stanford		
Calibration Simulator Reference	Thermocouple	Calibrator. 108390	
Name and S/N			
Source Sampler Console No.	809061		
Main Thermometer S/N	19E30132		
Calibration Date:	2022-07-26	Calibration Certificate No.	C26342

*Delete the dates that were not filled in, this will ensure that the red text will not be printed.

Date	Parameters Measured	Ambient Temp °C	Reference Set Simulator Temp °C (T1)	Source Sampler Console Display Temp °C (T2)	*Absolute Temp Difference %
Bate			20	20	0
			100	100	0
2022-12-14	Aux	22	250	249	0.4
LOLL IL IT			20	20	0
			100	99	1
2022-12-14	Stack	22	250	250	0
	Blueix		20	20	0
			100	100	0
2022-12-14	Probe	22	250	249	0.4
2022-12-14	11000		20	20	0
			100	100	0
2022-12-14	Filter	22	250	250	0
2022-12-14			20	20	0
			100	99	1
2022-12-14	Exit	22	250		0.4
2022-12-14			20	n/a	n/a
			100		n/a
n/a	n/a	n/a	250		n/a

* Formula for Calculating the Absolute Temperature difference (temperatures in K).

$\%Diff = |T_1 - T_2| \div T_1 * 100$

*Notify managing member if absolute temperature difference is not within 1.5% (as per Apex Method 5)

	ATA.	
Verified by: Stanford	Sign:	Date 2022-12-14
Checked by: Harren	Sign: Hore	, Date 2020 12 14

Authorisation	Position	Name	Date
Compiled by:	Technical Manager	Harvey Butcher	2021-12-02
Reviewed by:	Equipment Technician	Stanford Kanyai	2021-12-02
Approved by:	Technical Manager	Harvey Butcher	2021-12-02

DTR: R003-SEV-THERMOMETER 2022-12-14	1 P a g e
THIS IS A CONTROLLED DOCUMENT AND THE IN	FORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO
ENVIRON	IMENTAL SERVICES (PTY) LTD

	LES-L-F-012	Page:	1 of 1
		Revision Status :	E02
LEVEGO Environmental Services	DIGITAL BAROMETER VERIFICATION	Effective date	2021-12-02

Digital Barometer Verification Form

Serial No /ID:	DB 17
Verification Technician:	Stanford
Calibration Date Hygrograph:	2022-11-24
Certificate Number:	C29442

Date	Time	Pres (m	b)	Within ±3mb Yes or No	Verified by	Checked by
		Perception II	Barometer	Yei	a on	THER L
4/12/22	10:27am	842	845	Jei	Stanford (Meric
202/23	9531 am	844	847	Yes	Stanford E	Mould
	£					
		· ·				
			· · · · · · · · · · · · · · · · · · ·			
						۰.
				<h,< td=""><td></td><td></td></h,<>		
						

Authorisation	Position	Name	Date
Compiled by:	Technical Manager	Harvey Butcher	2021-12-02
Reviewed by:	Equipment Technician	Stanford Kanyai	2021-12-02
Approved by:	Technical Manager	Harvey Butcher	2021-12-02

DTR: R002-SEV-DB 17 2022-12-15	1 P a g e			
THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO				
ENVIRONMENTAL SERVICES (PTY) LTD				

	LES-L-F-005	Page:	1 of 1
		Revision Status :	E03
LEVEGO Environmental Services	Verification Of S-Type Pitot Tube	Effective date	2021-12-02

Verification of S-Type Pitot tube

S-Type pitot tube number:	ST-A3389
Date	2022-12-14

Parameter	Value	Allowable Range
Assembly Level	Yes	Yes/No
Ports Damaged	No	Yes/No
α1	2.2	-10° < α ₁ < 10°
α2	2.0	$-10^{\circ} < \alpha_2 < 10^{\circ}$
β1	1.4	-5° < β1 < 5°
β2	0.8	$-5^{\circ} < \beta_2 < 5^{\circ}$
γ	0.4	= (90° - measured value)
PA	9.88	
PB	9.82	
θ	0.2	= (90° - measured value)
Z=A tan y round to 2 decimals	0.02	Z ≤ 0.32cm
W=A tan 0 round to 2 decimals	0.01	W ≤ 0.08cm
Dt	0.95	0.48 to 0.95cm
A	2.17	For 3/8" OD -2.00 to 2.86
A	n/a	For 1/4" OD 1.33 to 1.91

Certification:

I certify that the Pitot tube number ST-A3389 meets or exceeds all Specifications, Criteria and/or applicable design features and is hereby assigned a Pitot tube certification factor of 0.84.

*If Pitot tube does not meet the criteria above it should not be used and reported to the Quality Manager/ Managing member.

· · ·	AH	
Verified by: Samora	Sign:	Date 2022-12-14
Checked by: HARVEN	Sign:	Date 2022/12/14

Authorisation	Position	Name	Date
Compiled by:	Technical Manager	Harvey Butcher	2021-12-02
Reviewed by:	Operations Director	Deon Posthumus	2021-12-02
Approved by:	Technical Manager	Harvey Butcher	2021-12-02

DTR: R002-SEV-ST-A3389 2022-12-14		1 Page
	A REAL PROPERTY AND A VALUE AND AN AND A REAL AND A REA	NOT TO DECORPORE V
THIS IS A CONTROLLED DOCUMENT AND TH	IE INFORMATION CONTAINED WITHIN IS THE S	SOLE PROPERTY
I OF LEVEGO ENV	IRONMENTAL SERVICES (PTY) LTD	
0, 22, 20, 20, 20, 20, 20, 20, 20, 20, 2		

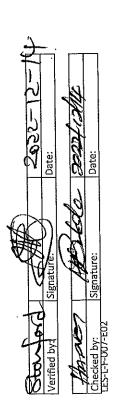
NOZZLE DIAMETER VERIFICATION RECORD

Ultra	11004211	P03716	0.015 mm
<u>Vernier name:</u>	<u>Vernier s/n:</u>	Vernier calibration certficate No:	Vernier uncertainty:

LEVEGO Environmental Services

*Measurement uncertainty calculation

0.010225


Verification uncertainty:

Measured values / mm Allowable tolerance (max) / mm Measured values / mm $\leq 0.100 \text{mm}$ diameter / mm uncertainty / mm Meas 1 Meas 2 Meas 3 Dia / mm $\geq 0.100 \text{mm}$ 0.04 2.85 2.85 2.83 2.86 0.03 Pass / Fail 0.07 4.43 4.42 4.37 0.06 Pass / Fail 0.09 0.07 4.43 4.42 4.37 0.06 Pass / Fail 0.09 0.09 6.18 6.13 0.06 Pass Pass 0.12 7.79 7.82 7.80 0.03 Pass 0.14 9.64 9.62 0.03 Pass 0.16 10.93 10.95 0.03 Pass 0.19 0.16 10.95 0.03 Pass 0.15 10.95 0.03 Pass 0.19 0.165 10.95 Pass	Veritication II.	ncertainty:	C770T0.0	ואובפצמו בנוובוור מוורבו רפווויא בפורמומיויסוי	y carcutation					
Measured values / mm $\leq 0.100 \text{ mm}$ ber Average diameter / mm uncertainty / mm Meas 1 Meas 2 $\leq 0.100 \text{ mm}$ 2.85 Average diameter / mm uncertainty / mm Meas 1 Meas 2 ≤ 0.03 $\geq 0.100 \text{ mm}$ 2.85 0.04 $\geq .2.85$ $\geq .2.83$ $\geq .86$ 0.03 $\geq .85$ 4.41 0.07 $\geq .4.37$ 0.06 $\geq .85$ $\geq .003$ $\geq .85$ 5.15 0.07 $\geq .4.37$ 0.06 $\geq .85$ $\geq .86$ ≥ 0.03 $\geq .85$ 7.80 0.02 $\in .13$ 6.13 6.13 0.05 $\geq .85$ 7.80 0.14 2.82 2.86 0.03 $\geq .85$ $\geq .780$ 0.05 $\geq .85$ 9.63 0.14 9.62 2.12 0.02 $\geq .85$ $\geq .780$ 0.03 $\geq .85$ $\geq .780$ $\geq .95$ $\geq .780$ $\geq .95$ $\geq .95$ $\geq .95$ $\geq .95$ $\geq .95$ $\geq .95$ $> .95$ $> .95$ $> .9$			0100						Allowable tolerance (max) / mm	
Nozele numberAverage diameter / mmIncertainty / mmMeas 1Hi to LoNozele numberAverage diameter / mmuncertainty / mmMeas 2Meas 2Meas 3Dia / mm12/14NS2-12.850.03 4.41 0.05Pass / Fail12/14NS2-36.150.07 4.43 4.42 4.37 0.06Pass12/14NS2-36.150.09 6.18 6.13 0.03Pass12/14NS2-47.800.127.797.797.800.03Pass12/14NS2-59.630.149.649.620.03Pass12/14NS2-610.930.1610.9210.920.03Pass12/14NS2-712.680.1912.6612.690.05Pass12/14NS2-712.680.1912.6512.7012.680.05Pass	circumferanc	e tolerance.			Measu	red values /	, mm		≤ 0.100 mm	**Visible deformation /
								4i to Lo		dama <i>e</i> e?
Nozle numberAverage diameter / mmuncertainty / mmMeas 1Meas 2Meas 3 D_{DIA} / mmPass / Fail12/14NS2-1 2.85 0.04 2.85 2.83 2.86 0.03 $Pass$ 12/14NS2-2 6.15 0.07 4.43 4.42 4.37 0.06 $Pass$ 12/14NS2-3 6.15 6.18 6.15 6.13 0.05 $Pass$ 12/14NS2-4 7.80 0.12 7.79 7.82 7.80 0.03 $Pass$ 12/14NS2-6 10.33 0.14 9.64 9.62 9.62 0.02 $Pass$ 12/14NS2-6 10.33 0.16 10.92 10.92 0.03 $Pass$ 12/14NS2-6 10.33 0.16 10.63 10.92 0.03 $Pass$ 12/14NS2-7 12.68 0.19 12.68 0.19 $Pass$ 12/14NS2-7 12.68 0.19 12.68 0.19 $Pass$, -:		
12/14 NS2-1 2.85 0.04 2.85 2.86 0.03 Pass 12/14 NS2-2 4.41 0.07 4.43 4.42 4.37 0.06 Pass 12/14 NS2-3 6.15 0.09 6.13 0.05 Pass 12/14 NS2-3 0.12 7.79 7.80 0.03 Pass 12/14 NS2-4A 7.80 0.12 7.79 7.80 0.03 Pass 12/14 NS2-4A 7.80 0.12 7.79 7.80 0.03 Pass 12/14 NS2-5 9.63 0.14 9.64 9.62 9.65 0.03 Pass 12/14 NS2-6 10.93 0.16 10.92 0.05 Pass 12/14 NS2-7 12.68 0.19 12.65 0.05 Pass 12/14 NS2-7 12.68 0.05 12.68 0.05 Pass 12/14 NS2-7 12.69 12.65 12.70	Date Date	Nozzle number	Average diameter / mm					nm / siu z		
N32-1 A.0.0 A.41 0.07 4.43 6.43 6.37 0.06 Pass NS2-2 6.15 0.09 6.18 6.13 0.05 Pass NS2-3 6.15 0.09 6.18 6.13 0.05 Pass NS2-4 7.80 0.12 7.79 7.82 7.80 0.03 Pass NS2-4 7.80 0.12 7.79 7.82 7.80 0.03 Pass NS2-5 9.63 0.14 9.64 9.62 9.62 0.03 Pass NS2-6 10.93 0.16 10.93 10.92 0.05 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass	Date 2022/12/1/) At		2.85	2.83	2.86	0.03	Pass	Fit for Use
NS2-2 4.41 0.07 6.15 6.13 0.05 Pass NS2-3 6.15 0.09 6.13 0.05 Pass NS2-4 7.80 7.80 7.79 7.82 7.80 Pass NS2-4 7.80 0.12 7.79 7.82 9.62 9.63 Pass NS2-5 9.63 0.14 9.64 9.62 9.02 Pass NS2-6 10.93 0.16 10.93 10.93 10.93 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass	50%Z/ TZ/ T4	T-75N		0.07	4.43	427	4.37	0.06	Pass	Fit for use
NS2-3 6.15 0.05 0.05 0.05 0.05 NS2-4A 7.80 7.79 7.82 7.80 0.03 Pass NS2-4A 7.80 0.12 7.79 7.82 7.80 0.03 Pass NS2-5 9.63 0.14 9.64 9.62 9.62 0.03 Pass NS2-6 10.93 0.16 10.93 10.95 0.03 Pass NS2-7 12.68 0.16 12.65 12.70 12.68 0.05 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass	2022/12/14	NS2-2	4.41	10.07	f f			10		Eit for uce
NS2-4A 7.80 0.12 7.79 7.82 7.80 0.03 Pass NS2-4A 9.63 0.14 9.64 9.62 0.02 Pass NS2-5 9.63 0.14 9.64 9.62 0.02 Pass NS2-6 10-93 0.16 10.93 10.92 10.95 0.03 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass	11/11/000	NS2.3	6.15	60.0	6.18	6.15	6.13	د ۵.0	LdS5	
N52-4M 7.00 0.14 9.64 9.62 0.02 Fass NS2-5 9.63 0.14 10.93 10.95 0.03 Pass NS2-6 10.93 0.16 10.93 10.95 0.03 Pass NS2-7 12.68 0.19 12.65 12.70 12.68 0.05 Pass				.012	7.79	7.82	7.80	0.03	Pass	Fit tor use
NS2-5 9.63 0.14 9.64 9.02 9.02 0.02 NS2-6 10.93 0.16 10.93 10.95 0.03 Pass NS2-7 12.68 0.19 12.68 0.05 Pass	2022/12/14	NS2-4A	00.1			5	C o	000	Dace	Fit for use
NS2-6 10.93 0.16 10.93 10.95 0.03 NS2-7 12.68 0.19 12.68 0.05 Pass	2022/12/14	NS2-5	9.63	0.14	4.04	7.07	2.02	7000		Eit for I ica
NS2-7 12.68 0.19 12.68 0.05 Pass	11/01/0000	NS2-6	10.93	0.16	10.93	10.92	10.95	0.03	FdSS	
	1 F/ CF/ CCVC	NC2_7	12 68	0.19	12.65	12.70	12.68	0.05	Pass	Fit for Use
	50ZZ/ TZ/ 14	1-7CN	00.77							

Where:

Meas 1, Meas 2, Meas 3 = Measure the inside diameter of the nozzle by taking three reading approxamately 45-60° appart from one another and record. H i-Lo Δ D = maximum difference between any two diameters, must be less than or equal to 0.1 mm Average Diameter = average of Meas 1, Meas 2 and Meas 3

**If nozzle is damaged or deformed report to management.

2

2

				ĺ										
7				>					Page: Revision:		L 01 J E00			
			Portable Flue Gas Analyser Verification	lue Gas Ar	ıalyser Vei	ification			Effective date:		2019/11/13			
LEVEGO favironmentul Services											Managem	Management System		
	Project No.	LES0913M							Analyser	yser				
	Company	South 32 Hota	South 32 Hotazel Manganese Mines (Pty) I	Aines (Pty) L			Name and Model	odel		Seitron				
	Site Location	0 De-dust 1 Stack	×			_	Serial Number	2		1076				
					Calib	ration Gas Co	Calibration Gas Certificate Numbers	lbers						
	CO ₂	CO ₂ (%)	CO (ppm)) (mi	O ₂ (%)	(%	$NO_2($	NO2 (ppm)	NO (ppm)	ppm)	SO ₂ (SO ₂ (ppm)	Zero/N	Zero/N2 (ppm)
Certificate	976 <u>.</u> 18	9762MM 18.05	9762MM		9762MM	MM 36			CHEM/A	M/APG-0260	***************************************			
HOTH HIGH	*						come of the							
			Pre-Measurements	rements	Post-Measurements	prements	Pre-Svet	Pre-System Rias	Post-Svetem Rias	tem Rias	l Deviati	Deviations/Drifts	Pass	
Date & Time	Con	Components	Zero	Span	Zero	Span	Zero	Span	Zero	Span	Zero	Span	EPA	EN
		1	0	18.03	0	18.02		0.17	0.00	0.22	0.00	0.06	0.06	0.06
	ç	2	0	18.03	0	18.02		0.17	0.00	0.22	0,00	0,06	0.06	0.06
		3	0	18.02	0	18.01	0.00	0.22	0.00	0.28	0.00	0.06	0.06	0.06
		4	0	18.02	0	18	0.00	0.22	0.00	0.33	00.00	0.11	0.11	0.11
			0	309	0	307	0.00	-0.03	0.00	0.62	0.00	0.65	0.65	0.65
	5	2	0	310	0	307	00.0	-0.36	0.00	0.62	00.0	0.97	0.97	0.97
))	ũ	0	307	0	306	0.00	0.62	00.0	0.94	0.00	0.32	0.32	0.32
		4	0	307	0	305	0.00	0.62	0.00	1.26	0.00	0.65	0.65	.0.65
		1	0	18.36	0	18.37		0.00	0.00	-0.05	0,00	0.05	0.05	0.05
	ć	2	0	18.36	0	18.36		0.00	0.00	00'0	0.00	0.00	0.00	0.00
		3	0	18.35	0	18.36		0.05	0.00	0.00	0.00	0.05	0.05	0.05
		4	0	18.36	0	18.35	0.00	0.00	00.00	0.05	0.00	0.05	0.05	0.05
	E	1											0.00	0.00
	, Ž	7											0.00	0.00
میں بنیان میں میں میں میں میں باری ہوئی ہے۔ ایک میں میں میں میں اور		3											00.0	0.00
		4											0.00	0.00
		1	0	499	0	500	0.00	0.20	0.00	0.00	0.00	0.20	0.20	0.20
	ON	7	0	498	0	501	0.00	0.40	00.00	-0.20	0.00	0.60	0.60	0.60
		13	0	498	0	500	00.0	0.40	0.00	0.00	0.00	0.40	0.40	0.40
		4	0	499	0	499	00.0	0.20	00.00	0.20	0.00	0.00	0.00	0.00
		1											0 00	0.00
	s0,	2				-							0.00	0.00
	1	ç											0.00	0.00
		4											0.00	0.00
		F	Project Manager (PM) to	zer (PM) to		ed immedia	tely of any	run failing	be informed immediately of any run failing any of the above checks	bove check	S			
KEV			Green					Yellow				Å	Red	
TAN	Z	lo adjustmer	No adjustment of logged data required	ata require	F		Adjust of	Adjust of logged data required	a required	113		Sampling to be repeated	be repeated	1-44
Equipment Verification Technician:	schnician:			Name:				Signature:				Date:		
ПТР -	I RSA	N-100-202101	T ESOBLATION - MALTINE 1	rlev										
TTV.	1011		TOTA NETTOR-DIA	VSIV										

LES0913M-DD1-M6-JOHN(V2).xlsx

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

C) 					Page:		1 of 1			
									Revision:		E00			
			Portable	Portable Flue Gas Analyser Verification	nalyser Ve)	rification			Effective date:		2019/11/13			
LEVEGO Énvironmental Services											Managem	Management System		
	Project No.	LES0913M							Ana Ana	Analyser				
		South 32 Hota:	South 32 Hotazel Manganese Mines (Pty)	Mines (Pty) I			Name and Model	odel		Seitron				
		0		k F		•	Serial Number	1		1076				
	Location	De-dust 2 Stack	×			•								
					Calif	Calibration Gas Certificate Numbers	ertificate Nun	ibers						
	CO ₂ (%)	(%)	CO (ppm)	(uudo	02 (%)	(%)	NO ² (NO ₂ (ppm)	ON	NO (ppm)	SO2	SO ₂ (ppm)	Zero/N ₂ (ppm)	(mdd)
Certificate	9762MIM	MM	9762MM	MM	9762MM	MM		***************	CHEM//	CHEM/APG-0260				8
Concentration	18.06	06	308.90	.90	18.	18.36			50	500.00				
						Measurements	ements							
i i c			Pre-Measurements	urements	Post-Measurements	surements	Pre-System Bias	em Bias	Post-Sv:	Post-System Bias	Deviat	Deviations/Drifts	Pass	
Date & Time		Components	Zero	Span	Zero	Span	Zero	Span	Zero	Span	Zero	Span	EPA	EN
		1	0	18.05	1	18.03	0.00	0.06	0.00	0.17	0.00	0.11	0.11	0.11
		- 6	0	18.05	0	18.03	0.00	0.06	0.00	0.17	0.00	0.11	0.11	0.11
	ςυ.	3	0	18.04	0	18.02	0.00	0.11	0.00	0.22	0.00	0.11	0.11	0.11
		4	0	18.05	0	18.01	0.00	0.06	0.00	0.28	00.0	0.22	0.22	0.22
		1	0	309	0	308	00.0	-0.03	0.00	0.29	0.00	0.32	0.32	0.32
		0	0	308	0	306	0.00	0.29	0.00	0.94	0.00	0.65	0.65	0.65
	2	3	0	307	0	306	0.00	0.62	0.00	0.94	0.00	0.32	0.32	0.32
		4	0	307	0	307	0.00	0.62	0.00	0.62	0.00	0.00	0.00	0.00
		1	0	18.36	0	I 8.35	0.00	0.00	0.00	0.05	0.00	0.05	0.05	0.05
		2	0	18.36	0	18.34	0.00	0.00	00.0	0.11	00'0	0,11	0.11	0.11
	5 5	3	0	18.35	0	18.34	0.00	0.05	00.0	0.11	0.00	0.05	0.05	0.05
		4	0	18.36	0	18.33	0.00	0.00	0.00	0.16	0.00	0.16	0.16	0.16
		1											0.00	0.00
	Ç,	2											0.00	0.00
		ñ											0.00	0.00
		4											0.00	0.00
		1	0	498	0	497	0.00	0.40	00.0	0.60	0.00	0.20	0.20	0.20
	QN	5	0	498	0	497	0.00	0.40	0.00	0.60	0.00	0.20	0.20	0.20
		3	0	499	0	496	0.00	0.20	00.00	0.80	0.00	0.60	0.60	0.60
	-	4	0	498	0	496	0.00	0.40	0.00	0.80	0.00	0.40	0.40	0.40
		1											0.00	0.00
	so ₂	7 0											0.00	0.00
		5											0.00	0.00
		4											0.00	0.00
		P	Project Manager (PM) to	iger (PM) ti		be informed immediately of any run failing any of the above checks	tely of any	run failing	any of the i	ibove check	S			
			Green					Yellow				Red	00	
KEY	Ż	No adjustment of logged data required	it of logged	data require	d		Adjust of	Adjust of logged data required	a required			Sampling to be repeated	be repeated	
Equipment Verification Technician:	chnician:			Name:				Signaturte:		\backslash		Date:		
	L DOUL	THE CONTRACT OF A CONTRACT OF	WUNDING 7						Ŕ					
				'XISA				14)					

LES0913M-DD2-M6-JOHN(V2).xlsx

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

9			:					Page:		1 0f 1 Enn			
		Portable]	Portable Flue Gas Analyser Verification	nalyser Ver	ification			Effective date:		2019/11/13			
				•						Managem	Management System		
	Project No 11 ES0913M							β₩ ₩ατου βΩλογο	A ria locar		and the second		
		South 32 Hotazel Manganese Mines (Pty)	Mines (Pty) I		1	Name and Model	del		Seitron				
					02	Serial Number			1076				
	Location Waste Gas Stack	tack			<u>t</u>								
				Calib	Calibration Gas Certificate Numbers	rtificate Num)	bers						
	CO ₂ (%)	CO (ppm)	(udi	$O_2(\%)$	(%)	NO2 (ppm)	pm)	(uudd) ON	ppm)	SO ₂ (SO ₂ (ppm)	Zero/N ₂ (ppm)	(mdd)
Certificate	9762MM	9762MM	MIM	9762MM	MM Z			CHEM/APG-	PG-0260				
CULICELLIALION	10,00	, avc		~°01				oor -	.00				
					Measurements	ements							
Date & Time	Commonents	Pre-Measurements	arements	Post-Measurements	arements	Pre-System Bias	em Bias	Post-System Bias	tem Bias	Deviati	Deviations/Drifts	Pass	
		Zero	Span	Zero	Span	Zero	Span	Zero	Span	Zero	Span	EPA	EN
	1	0	18.05	0	18.04	0.00	0.06	0.00	0.11	0.00	0.06	0.06	0.06
	C0,	0	18.05	0	18.02	0.00	0.06	0.00	0.22	0.00	0.17	0.17	0.17
		0	18.03	0	18.02	0.00	0.17	0.00	0.22	0.00	0.06	0.06	0.06
	4	0	18.01	0	18.01	0.00	0.28	0.00	0.28	0.00	0.00	0.00	0.00
An MAXAAA An Mahamada An		0	308	0	307	0.00	0.29	0.00	0.62	0.00	0.32	0.32	0.32
	CD 2	0	308	0	307	0.00	0.29	0.00	0.62	0.00	0.32	0.32	0.32
	3	0	307	0	306	0.00	0.62	0.00	0.94	0.00	0.32	0.32	0.32
	4	0	306	0	307	0.00	0.94	0.00	0.62	0.00	0.32	0.32	0.32
	1	0	18.36	0	18.37	0.00	00.0	00'0	-0.05	0,00	0.05	0.05	0.05
	0.	0	18.36	0	18.36	0.00	00'0	00.0	0.00	00'0	00.0	0.00	0.00
	3	0	18.35	0	18.36	0.00	0.05	0.00	0.00	0.00	0.05	0.05	0.05
	4	0	18.36	0	18.35	0.00	0,00	0.00	0.05	0.00	0.05	0.05	0.05
												00'0	0.00
	NO 2											00.0	0.00
	3											0.00	0.00
	4											0.00	0.00
	-	0	500	0	498	0.00	0.00	00.0	0.40	0.00	0.40	0740	0.40
	NO 2	0	501	0	498	0.00	-0.20	0.00	0.40	0.00	0.60	0.60	0.60
	3	0	501	0	499	0.00	-0.20	0.00	0.20	0.00	0.40	0.40	0.40
	4	0	500	0	499	0.00	0.00	0.00	0.20	0.00	0.20	0.20	0.20
												0.00	0.00
	S0, 2											0.00	0.00
												0.00	0.00
	4											0.00	0.00
		Project Manager (PM) to	iger (PM) to		ed immediat	ely of any r	un failing	be informed immediately of any run failing any of the above checks	bove check	S			
71071		Green					Yellow				Red	ed	
AET	No adjustme	No adjustment of logged data required	lata require	79/11		Adjust of	Adjust of logged data required	ı required	11		Sampling to be repeated	be repeated	
Equipment Verification Technician:	chnician:		Name:				Signature:	<u>I</u>			Date:		
ntto.	T LEONITAN WILL	NULLING SVC	<u> </u>										
	TEAU ASIC-DAS-MOL-MASIC-DAS-MIO-10110 (V2)7XIX	NILLOF-DINI-SPI	XSIX-(7)					$\sum_{i=1}^{n}$					

LES0913M-Waste-Gas-M6-JOHN(V2).xlsx

THIS IS A CONTROLLED DOCUMENT AND THE INFORMATION CONTAINED WITHIN IS THE SOLE PROPERTY OF LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD

REPORT 23/R2467

STACK EMISSION MEASUREMENT SURVEY (COMPLIANCE)

FOR

SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN

SAMPLING PERIOD: DECEMBER 2023 – FEBRUARY 2024

E&OE

LEVEGO ENVIRONMENTAL SERVICES (PTY) LTD Reg No 2017/188749/07. A LEVEGO affiliated company Directors: G B Woollatt, D L Posthumus, Tel: (011) 608-4148 Fax: (011) 608-2621 Web: www.levego.co.za Building R6, Pinelands Site, Ardeer Rd, Modderfontein, 1645. P O Box 422, Modderfontein 1645

Building R6, Pinelands Site, Ardeer Rd, Modderfontein, 1645. P O Box 422, Modderfontein 1645

Your Reference: Order no. 4542738978

Our Reference: LES1072M Quotation 23/QF3942/hy

Enquiries: H. M. Yingwani Cell: 083 402 4436 E-mail: <u>hlayiseka@levego.co.za</u>

Date: 27 March 2024

SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN MINE PO BOX 506 HOTAZEL SOUTH AFRICA

Attention: Ms Jo'lene Booysen

Dear Madam,

REPORT No: 23/R2467 – STACK EMISSION MEASUREMENT SURVEY, SOUTH 32 HOTAZEL MANGANESE MINES (PTY) LTD MAMATWAN

Please find attached our final report for the stack emission measurement survey performed on the various stacks described in this report at South 32 Hotazel Manganese Mines (Pty) Ltd, Mamatwan.

We thank you for this opportunity to be of service, and trust that the attached meets your approval.

If you have any queries, please do not hesitate to contact us at the number provided above.

Yours sincerely,

H. M. Yingwani Project manager On behalf of Levego Environmental Services (Pty) Ltd

Copyright of this document is reserved. Publication without written approval from Levego Environmental Services is prohibited.

TABLE OF CONTENTS

<u>1.</u>	INTRODUCTION
1.1	SCOPE OF WORK
<u>2.</u>	SUMMARY OF TEST PROGRAM: METHOD STATEMENTS AND DEVIATIONS6
2.1	VELOCITY, VOLUME, PRESSURE AND TEMPERATURE
2.2	PARTICULATE MATTER
2.3	WATER VAPOUR7
2.4	NITROGEN OXIDES
2.5	OXYGEN AND CARBON DIOXIDE7
2.6	CARBON MONOXIDE7
2.7	SULPHUR DIOXIDE (US EPA METHOD 6)
2.8	SULPHUR DIOXIDE (US EPA METHOD 6C)
2.9	KEY PERSONNEL
<u>3.</u>	MEASUREMENT AND SAMPLING LOCATIONS
3.1	GENERAL REQUIREMENTS FOR SAMPLING LOCATIONS
3.2	DE-DUST 1 STACK9
3.3	DE-DUST 2 STACK
3.4	DE-DUST 3 STACK
3.5	MAIN STACK
<u>4.</u>	QUALITY ASSURANCE AND QUALITY CONTROL
4.1	SAMPLE IDENTIFICATION12
4.2	CHAIN OF CUSTODY
4.3	FACILITY ACCREDITATION13
4.4	SAMPLING EQUIPMENT
<u>5.</u>	RESULTS AND DISCUSSION
5.1	GENERAL14
5.2	RESULTS14
5.2.	1 MEASUREMENT UNCERTAINTY 14
5.3	DISCUSSION14
5.3.	1 GASES
5.4	COMPLIANCE
-	

<u>6.</u>	APPENDICES	
<u>7.</u>	ATTACHMENTS	

	List of abbreviations, acronyms, and symbols (where applicable)
μg	microgram
ASTM	American Society for Testing and Materials
BDL	below detection limit
DCS	distributed control system
DGM	dry gas meter
ESP	electrostatic precipitator
ISO	International Organisation for Standardisation
kg/Nm ³	kilogram per normalised cubic metre (at NTP)
kPa	kilopascal
LECO	Laboratory Equipment Corporation
LOD	limit of detection
m	metre
m ²	square metre
m ³ /s cubic metre per second	
mA milliampere	
mb millibar	
mg/m ³ milligram per cubic metre	
mg/Nm ³ milligram per normalised cubic metre (at NTP)	
mm millimetre	
N/A not applicable	
N/M not measured	
ng	nanogram
NIOSH	National Institute for Occupational Safety and Health
NIST	National Institute of Standards and Technology
Nm ³	normalised cubic metre (at NTP)
NTP normalised temperature and pressure (273 K and 1013.25 mb)	
O ₂ ref % oxygen reference percentage	
PLC programmable logic controller	
PM	particulate matter
SCADA	supervisory control and data acquisition
SEM	scanning electron microscope
TOC	total organic carbon
US EPA	United States Environmental Protection Agency
VOC	volatile organic compound

SABS

1. INTRODUCTION

Levego Environmental Services was contracted to carry out a stack emission measurement survey to determine the source emissions from the stack installed at the South 32 Hotazel Manganese Mines (Pty) Ltd plant.

The following was understood prior to the commencement of the work; the South 32 Hotazel Manganese Mines (Pty) Ltd staff would ensure that all plant operations were to their satisfaction, including the correct operation of all relevant pollution abatement equipment.

1.1 Scope of work

The table below outlines the scope of work that Levego Environmental Services completed during the stack emission measurement survey.

Release point	De-dust 1 Stack	De-dust 2 Stack	De-dust 3 Stack	Main Stack
Particulate matter	✓	✓	1	√
Water vapour	✓	~	\checkmark	\checkmark
Oxygen	✓	~	\checkmark	~
Carbon dioxide	1	~	~	~
Volumetric flow rate	√	~	1	~
Nitrogen oxides	~	~	~	~
Carbon monoxide	✓	~	1	~
Sulphur dioxide	✓	~	\checkmark	1

Table 1: Scope of measurements

2. SUMMARY OF TEST PROGRAM: METHOD STATEMENTS AND DEVIATIONS

2.1 Velocity, volume, pressure and temperature

Preliminary measurements, for calculation of the required nozzle size for isokinetic sampling, were determined using sampling and testing procedures as described in ISO 9096:2017(E) "Stationary Source Emissions – Manual Determination of Mass Concentration of Particulate Matter".

Velocity measurements are performed utilising a pitot tube and an inclined manometer. Volume flows are calculated from the average velocity and duct area. Pressure and temperature are measured directly utilising a barometer / manometer combination, and thermocouple, respectively.

2.2 Particulate matter

Particulate matter measurements were determined using sampling and testing procedures as described in ISO 9096:2017(E). "Stationary Source Emissions – Manual Determination of Mass Concentration of Particulate Matter".

High-purity pre-weighed quartz thimbles (30 mm diameter \times 100 mm long) and quartz disc filters (47 mm diameter) were used to collect the particulate matter in the flue gas. The quartz filters are capable of withstanding temperatures of up to 800°C without filter media mass loss, and retain 99.9% of particles >0.3 μ m.

2.3 Water vapour

Water vapour (H₂O) measurements were determined using sampling and testing procedures as described in US EPA Method 4 "Determination of Moisture Content in Stack Gases".

A gas sample is extracted isokinetically from the stack. H₂O is removed from the sample stream and determined gravimetrically.

2.4 Nitrogen oxides

Nitrogen oxides (NO_x) measurements were determined using sampling and testing procedures as described in US EPA Method 7E "Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of NO_x , which is the sum of NO and NO_2 .

2.5 Oxygen and carbon dioxide

Oxygen (O_2) and carbon dioxide (CO_2) measurements were determined using sampling and testing procedures as described in US EPA Method 3A "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of O_2 and CO_2 .

2.6 Carbon monoxide

Carbon monoxide (CO) measurements were determined using sampling and testing procedures as described in US EPA Method 10 "Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyser Procedure)".

A sample of the effluent gas is continuously sampled and conveyed to the analyser for measuring the concentration of CO.

SABS

2.7 Sulphur dioxide (US EPA Method 6)

Sulphur dioxide (SO₂) measurements were determined using sampling and testing procedures as described in US EPA Method 6 "Determination of Sulphur Dioxide Emissions from Stationary Sources".

A gas sample is extracted from the sampling point in the stack. The SO₂ and sulphur trioxide (SO₃), including those fractions in any sulphur acid mist, are separated. The SO₂ fraction is measured, *via* concentration of sulphate anion (SO₄^{2–}), by the barium-thorin titration method.

2.8 Sulphur dioxide (US EPA Method 6C)

Sulphur dioxide (SO₂) measurements were determined using sampling and testing procedures as described in US EPA Method 6C "Determination of Sulphur Dioxide Emissions from Stationary Sources (Instrumental Analyser Procedure)".

The effluent gas is continuously sampled and then conveyed to an analyser that measures the concentration of SO₂.

2.9 Key personnel

The project manager on this project was Hlayiseka Yingwani.

Team 1 consisted of Rolphy Vuma (team leader), Tinyiko Chauke and Lesiba Masemola (sampling assistants).

3. MEASUREMENT AND SAMPLING LOCATIONS

3.1 General requirements for sampling locations

ISO 9096:2017(E) requires that the following criteria must be met:

- a) the angle of gas flow is less than 15° with regard to the duct axis;
- b) no local negative flow is present;

c) the minimum velocity is higher than the detection limit of the method used for the flow rate measurement (for pitot tubes, a differential pressure larger than 5 Pa);

d) the ratio of the highest to the lowest local gas velocities is less than 3:1.

If the above requirements are not met the uncertainty of measurement will be higher than that specified by ISO 9096:2017(E) and the sampling location will not be in compliance.

The above requirements are generally fulfilled in sections of duct with at least five hydraulic diameters of straight duct upstream of the sampling plane, and two hydraulic diameters downstream of the sampling plane (five hydraulic diameters from the top of a stack).

SABS

3.2 De-dust 1 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Table 2: De-dust 1 Stack,	Compliance with	ISO 9096:2017	general	requirements	

Height above ground level	~10 metres
Stack diameter	1.75 metres
Distance from sampling ports to downstream stack exit	~12 metres
Distance from sampling ports to upstream disturbance	~5 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	80 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c)	Yes
ISO 9096:2017(E) d)	Yes

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E).

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

3.3 De-dust 2 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Height above ground level	~10 metres
Stack diameter	1.86 metres
Distance from sampling ports to downstream stack exit	~10 metres
Distance from sampling ports to upstream disturbance	~5 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	80 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c)	Yes
ISO 9096:2017(E) d)	Yes

Table 3: De-dust 2 Stack, Compliance with ISO 9096:2017 general requirements

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E).

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

3.4 De-dust 3 Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Table 4: De-dust 3 Stack, Compl	liance with ISO 9096:20	7 general	l requirements
---------------------------------	-------------------------	-----------	----------------

Height above ground level	~12 metres
Stack diameter	1,90 metres
Distance from sampling ports to downstream stack exit	~10 metres
Distance from sampling ports to upstream disturbance	~8 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	90 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c)	Yes
ISO 9096:2017(E) d)	Yes

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E).

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

3.5 Main Stack

The sampling position was located on the vertical circular stack. The table below details the sampling port specifications.

Table 5: Main Stack, Compliance with ISO 9096:2017	general requirements
--	----------------------

Height above ground level	~12 metres
Stack diameter	3.20 metres
Distance from sampling ports to downstream stack exit	~20 metres
Distance from sampling ports to upstream disturbance	~3 metres
Number of sampling ports	2
90° angle	Yes
Sampling port size	85 mm
ISO 9096:2017(E) a)	Yes
ISO 9096:2017(E) b)	Yes
ISO 9096:2017(E) c)	Yes
ISO 9096:2017(E) d)	Yes

The sampling position does not fulfil the recommendations for the required diameters, but meets a), b), c) and d) of the general requirements. The sampling location is in compliance with the requirements of ISO 9096:2017(E).

The sampling position was deemed to be the most practical position to perform measurements within the requirements of ISO 9096:2017(E), and the limitations of the plant design.

4. QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Sample identification

All filters and solutions are labelled using pre-printed adhesive labels. Their identification codes are recorded on site observation sheets prior to the start of each measurement.

If additional samples are taken they are labelled on site at the completion of each measurement. Pre-printed adhesive labels are also used for this purpose.

4.2 Chain of custody

A chain of custody form accompanies the samples as the samples proceed from one measurement site to another.

4.3 Facility accreditation

The relevant accreditation numbers of the service provider undertaking each item of work is shown below.

Table 6: Scope of accreditation

Test parameter	Sampling	Analysis
Volumetric flow rate	ISO 17025:2017	ISO 17025:2017
volumente now fale	Levego Environmental Services	Levego Environmental Services
Particulate matter	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Water vapour	ISO 17025:2017	ISO 17025:2017
water vapour	Levego Environmental Services	Levego Environmental Services
Nitrogen oxides	ISO 17025:2017	ISO 17025:2017
Turogen oxides	Levego Environmental Services	Levego Environmental Services
Oxygen	ISO 17025:2017	ISO 17025:2017
Oxygen	Levego Environmental Services	Levego Environmental Services
Carbon dioxide	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Carbon monoxide	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services
Sulphur dioxide	ISO 17025:2017	ISO 17025:2017
	Levego Environmental Services	Levego Environmental Services

Table 7: Facility accreditation number

Facility	Accreditation number		
Levego Environmental Services	SANAS Testing Laboratory T0846		

4.4 Sampling equipment

Team 1 used the following sampling equipment:

- Apex Model XC-572 source sampling train (Console Serial Number: 91157 and 809061)
- Dry gas meter: (Serial Number: 00006429 and 1900835)
- Barometer: (Serial Number: DB18)
- Pitot tube: (Serial Number: ST-25 and ST-48)
- Nozzle(s): (Set Number (s): NS10-2 / NS10-3 / NS10-4 / NSE1-2)
- Flue-gas analyser: Seitron Chemist 902 (Serial Number: 1088)

Calibration records are included in the attachment section of this report.

5. RESULTS AND DISCUSSION

5.1 General

Testing only commenced after confirmation was received from the South 32 Hotazel Manganese Mines (Pty) Ltd staff that the plant was stable and operating under normal conditions.

In this report:

- An analyte concentration that was measured to be below the limit of detection for a particular laboratory test method is reported at the limit of detection, unless otherwise indicated. For calculation of a pollutant concentration, the analyte amount is calculated and is then divided by the gas volume sampled.
- Where averages are reported, these are the arithmetic mean, without any other statistical analyses applied.

$$A = \frac{1}{n} \sum_{i=1}^{n} a_i$$

Where:

A = average (arithmetic mean) n = number of data sets (generally three for this report) $a_i = data$ set values

5.2 Results

The result summaries are attached as Appendix A to Appendix D.

5.2.1 Measurement Uncertainty

The measurement uncertainties are shown in Appendices E to H. The tables show the averages over three tests of the measured results, the uncertainties in measurement units, and uncertainties as a proportion (%) of the measured values.

5.3 Discussion

5.3.1 Gases

For the gases analysed with an instrumental analyser and not detected (NO_x, CO and SO₂), the results are reported at the detection limit of the instrument.

5.4 Compliance

As set out in the Atmospheric Emission Licence (AEL), supplied by South 32 Mamatwan Hotazel Manganese Mines, license number: NC/AEL/JTG/MAM01/2012, the emission limits are set as presented in the following table and compared with measured values.

Table	o: Compnane	e table						
Substance or mixture of substances		Date to be achieved by:	Emission limit	De-dust 1 Stack test average	De-dust 2 Stack test average	De-dust 3 Stack test average	Main Stack test average	
Common name	Chemical symbol		mg/Nm ³ , 273 K, dry, 101.3 kPa					
Particulate matter	N/A	01/04/2020	50	30.95	11.22	N/A	117.13*	
T difficulate matter	10/11	01/04/2020	135	N/A	N/A	45.34	N/A	
Sulphur dioxide	SO ₂	01/04/2020	500	<u>28.58</u>	<u>28.58</u>	<u>28.58</u>	307.10	
Nitrogen oxides	NOx	01/04/2020	700	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>	262.73	

Table 8: Compliance table

Note: Italic underlined values are below the LOD of the method of analysis.

*Average concentration exceeds the permissible emission limit.

6. APPENDICES

Appendix A.1 - Test Results: De-dust 1 Stack - PM, O₂, CO₂, and Test Parameters Appendix A.2 - Test Results: De-dust 1 Stack - CO, NO_x and SO₂

Appendix B.1 - Test Results: De-dust 2 Stack - PM, O₂, CO₂, and Test Parameters Appendix B.2 - Test Results: De-dust 2 Stack - CO, NO_x and SO₂

Appendix C.1 - Test Results: De-dust 3 Stack - PM, O₂, CO₂, and Test Parameters Appendix C.2 - Test Results: De-dust 3 Stack - CO, NO_x and SO₂

Appendix D.1 - Test Results: Main Stack - PM, O₂, CO₂, and Test Parameters Appendix D.2 - Test Results: Main Stack - CO, NO_x and SO₂

Appendix E - Uncertainties Reporting Summaries - De-dust 1 Stack

Appendix F - Uncertainties Reporting Summaries - De-dust 2 Stack

Appendix G - Uncertainties Reporting Summaries - De-dust 3 Stack

Appendix H - Uncertainties Reporting Summaries - Main Stack

SABS

7. ATTACHMENTS

- Proof of delivery
- Test sheets
- Chain of custody sheets and laboratory analysis sheets
- Calibration and verification certificates

We would like to take this opportunity to thank the South 32 Hotazel Manganese Mines (Pty) Ltd personnel that assisted us in the survey. We consider the measurement survey to be successful, and an accurate reflection of the plant conditions at the time of measurement.

Yours sincerely,

Report Writer Levego Environmental Services

H. M. Yingwani

Approved by (Technical Signatory) Levego Environmental Services

LES-SR-001-007 (E01) LES1072M Report 23/R2467

Page 16 of 28

APPENDICES

SOUTH 32 I	TEST RE HOTAZEL MANGANESE DE-DUST	MINES (PTY 1 STACK) LTD MAM	ATWAN	
	LES10	17-Nov-23	17-Nov-23	17-Nov-23	
		12:05	13:21	14:40	
	TEST START TEST STOP	12:03	13:21	15:45	
	TEST	13.14	2	3	
		STABLE	STABLE	STABLE	Averages
PARAMETER	PLANT CONDITIONS	20.44	20.47	20.47	20.46
D2	% (dry)			20.47	20.40
20	ppm (dry)	2.00	<u>2.00</u> 0.70	<u><u>2.00</u> <u>0.70</u></u>	0.70
202	% (dry)	<u>0.70</u>	1.29	1.29	1.29
Dry Gas Density	kg/Nm³	1.29	887.20	887.20	887.20
Barometric Pressure	mb	887.20	0.59	0.59	0.59
Static Pressure	mb	0.59		887.79	887.79
Absolute Pressure	mb	887.79	887.79	1.71	1.55
Moisture Concentration	%	1.36	1.57		60.53
Gas Temperature	°C	60.00	60.58	61.00	1.28
Wet Gas Density	kg/Nm³	1.29	1.28	1.28	1.28
Duct Size	m	1.75	1.75	1.75	
Duct Area	m ²	2.41	2.41	2.41	0.02
Gas Density	kg/m³	0.92	0.92	0.92	0.92
Dynamic Pressure	mb	0.29	0.29	0,28	0.29
Sample Time	sec	3,600	3,600	3,600	
Gas Velocity	m/s	7.87	7.89	7.87	7.88
Gas Volume Flow (actual)	m³/s (actual)	18.93	18.99	18.93	18.95
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	13.60	13.62	13.56	13.59
Gas Volume Flow NTP (dry)	Nm³/s (dry)	13.41	13,40	13.33	13.38
Gas Volume Flow (actual)	m³/h (actual)	68,138	68,359	68,149	68,215
Gas Volume Flow NTP (wet)	Nm³/h (wet)	48,949	49,022	48,810	48,927
Gas Volume Flow NTP (dry)	Nm³/h (dry)	48,284	48,250	47,977	48,170
Nozzle Diameter	mm	7.63	7.63	7.63	
Sampled Volume (dry)	m³	1.29	1.28	1.29	
Sampled Volume NTP (dry)	Nm³	0.93	0.92	0.92	
PM Collected	mg	23.78	34.83	27.13	
PM Concentration (dry)	mg/m³ (dry)	18.37	27.20	21.01	22.19
PM Concentration NTP (dry)	mg/Nm³ (dry)	25.57	37.93	29.34	30.95
Sampled Volume (wet)	m ³ (wet)	1.31	1.30	1.31	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.94	0.93	0.94	
PM Concentration (wet)	mg/m ³ (wet)	18.12	26.78	20.66	21.85
PM Concentration NTP (wet)	mg/Nm ³ (wet)	25.22	37.34	28.84	30.47
PM Emission Rate	mg/s	342.91	508.43	391.02	414.12
PM Emission Rate	kg/h	1.23	1.83	1.41	1.49
Isokinetic Rate	%	101	100	101]

Appendix A.1 - Test Results: De-dust 1 Stack – PM, O2, CO2, and Test Parameters

Appendi	ix A.2 - Test Results: De-	dust 1 Stack –	CO, NO _x an	d SO ₂	
	TEST RI	ESULTS			
SOUTH 32 H	IOTAZEL MANGANESI	E MINES (PTY) LTD MAN	IATWAN	
	DE-DUST	1 STACK			
	LES1	072M			
	DATE	17-Nov-23	17-Nov-23	17-Nov-23	
	TEST START	12:05	13:21	14:40	
	TEST STOP	13:14	14:27	15:45	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	STABLE	STABLE	STABLE	Averages
SO2 Instrumental Analyser Results				Λ	
SO2 Concentration NTP (dry)	mg/Nm³ (dry)	<u>28.58</u>	<u>28.58</u>	<u>28.58</u>	28.58
SO2 Emission Rate	mg/s	<u>383.33</u>	<u>383.06</u>	<u>380.90</u>	<u>382.43</u>
SO2 Emission Rate	kg/h	<u>1.38</u>	<u>1.38</u>	<u>1.37</u>	<u>1.38</u>
NOx Concentration NTP (dry)	mg/Nm³ (dry)	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>
NOx Emission Rate	mg/s	<u>82.59</u>	<u>82.53</u>	<u>82.06</u>	82.39
NOx Emission Rate	kg/h	<u>0.30</u>	<u>0.30</u>	<u>0.30</u>	<u>0.30</u>
CO Concentration NTP (dry)	mg/Nm³ (dry)	<u>2.50</u>	<u>2.50</u>	2.50	<u>2.50</u>
CO Emission Rate	mg/s	<u>33.52</u>	<u>33.50</u>	<u>33.31</u>	33.44
CO Emission Rate	kg/h	<u>0.12</u>	<u>0.12</u>	<u>0.12</u>	<u>0.12</u>
			0.7024		
sokinetic Rate	%	101	100	101	

Italic, underlined values are below the detection limit.

SOUTH 32	TEST RE HOTAZEL MANGANESE DE-DUST LES10	MINES (PTY 2 STACK	') LTD MAM	ATWAN	
	DATE	08-Dec-23	08-Dec-23	08-Dec-23	
	TEST START	12:49	14:31	15:50	
	TEST STOP	13:55	15:36	16:55	
	TEST	1	2	3	
ARAMETER	PLANT CONDITIONS	Stable	Stable	Stable	Averages
)2	% (dry)	20.55	20.49	20.49	20.51
20	ppm (dry)	2.00	<u>2.00</u>	<u>2.00</u>	2.00
202	% (dry)	0.70	0.70	<u>0.70</u>	0.70
Dry Gas Density	kg/Nm ³	1.29	1.29	1.29	1.29
Barometric Pressure	mb	887.40	887.40	887.40	887.40
Static Pressure	mb	0.59	0.59	0.59	0,59
Absolute Pressure	mb	887.99	887.99	887.99	887.99
Moisture Concentration	%	1.79	1.68	1.85	1.78
Gas Temperature	°C	70.08	70.33	69.75	70.06
Wet Gas Density	kg/Nm³	1.28	1.28	1.28	1.28
Duct Size	m	1.86	1.86	1.86	
Duct Area	m ²	2.72	2.72	2.72	
Gas Density	kg/m³	0.90	0.89	0.90	0.90
Dynamic Pressure	mb	0.47	0.46	0.46	0.46
Sample Time	sec	3,600	3,600	3,600	
Gas Velocity	m/s	10.23	10.18	10,15	10.18
Gas Volume Flow (actual)	m ³ /s (actual)	27.79	27.65	27.57	27.67
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	19.38	19.27	19.25	19.30
Gas Volume Flow NTP (dry)	Nm ³ /s (dry)	19.03	18.95	18.89	18.96
Gas Volume Flow (actual)	m ³ /h (actual)	100,033	99,539	99,254	99,608
Gas Volume Flow NTP (wet)	Nm ³ /h (wet)	69,766	69,371	69,290	69,476
Gas Volume Flow NTP (dry)	Nm³/h (dry)	68,517	68,203	68,007	68,242
Nozzle Diameter	mm	6.48	6.48	6.48	
Sampled Volume (dry)	m ³	1.20	1.20	1.18	1
Sampled Volume NTP (dry)	Nm ³	0.84	0.84	0.82	
PM Collected	mg	8.89	11.92	7.25	
PM Concentration (dry)	mg/m³ (dry)	7.39	9.95	6.14	7.83
PM Concentration NTP (dry)	mg/Nm³ (dry)	10.59	14.28	8.79	11.22
Sampled Volume (wet)	m ³ (wet)	1.23	1.22	1.20	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.85	0.85	0.84	
PM Concentration (wet)	mg/m ³ (wet)	7.26	9.78	6.03	7.69
PM Concentration NTP (wet)	mg/Nm ³ (wet)	10.40	14.03	8.63	11.02
PM Emission Rate	mg/s	201.64	270.45	166.11	212.73
PM Emission Rate	kg/h	0.73	0.97	0.60	0.77
Isokinetic Rate	%	101	101	100	1

Appendix B.1 - Test Results: De-dust 2 Stack - PM, O2, CO2, and Test Parameters

Append	dix B.2 - Test Results: De-	dust 2 Stack –	CO, NO _x an	d SO ₂	
SOUTH 32	TEST RI HOTAZEL MANGANESI DE-DUST	E MINES (PTY	() LTD MAN	IATWAN	
	LESI	072M			
	DATE	08-Dec-23	08-Dec-23	08-Dec-23	
	TEST START	12:49	14:31	15:50	1
	TEST STOP	13:55	15:36	16:55	1
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	Stable	Stable	Stable	Averages
SO2 Instrumental Analyser Results				A	
SO2 Concentration NTP (dry)	mg/Nm³ (dry)	<u>28.58</u>	<u>28.58</u>	<u>28.58</u>	<u>28.58</u>
SO2 Emission Rate	mg/s	<u>543.96</u>	<u>541.47</u>	<u>539.92</u>	<u>541.78</u>
SO2 Emission Rate	kg/h	<u>1.96</u>	<u>1.95</u>	<u>1.94</u>	<u>1.95</u>
NOx Concentration NTP (dry)	mg/Nm³ (dry)	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>
NOx Emission Rate	mg/s	<u>117.19</u>	<u>116.66</u>	<u>116.32</u>	<u>116.72</u>
NOx Emission Rate	kg/h	<u>0.42</u>	<u>0.42</u>	<u>0.42</u>	<u>0.42</u>
CO Concentration NTP (dry)	mg/Nm³ (dry)	<u>2.50</u>	<u>2.50</u>	<u>2.50</u>	<u>2.50</u>
CO Emission Rate	mg/s	<u>47.57</u>	<u>47.35</u>	<u>47.21</u>	<u>47.38</u>
CO Emission Rate	kg/h	<u>0.17</u>	<u>0.17</u>	<u>0.17</u>	<u>0.17</u>
Isokinetic Rate	%	101	101	100	

Italic, underlined values are below the detection limit.

SOUTH 32	TEST RE HOTAZEL MANGANESE DE-DUST LES10	MINES (PTY 3 STACK) LTD MAM	ATWAN	
	DATE	20-Feb-24	20-Feb-24	20-Feb-24	
	TEST START	12:20	13:40	15:00	
	TEST STOP	13:23	14:42	16:03	
	TEST	1	2	3	
ARAMETER	PLANT CONDITIONS	STABLE	STABLE	STABLE	Averages
)2	% (dry)	20.72	20.74	20.72	20.73
20	ppm (dry)	2.00	2.00	2.00	2.00
202	% (dry)	<u>0.70</u>	<u>0.70</u>	<u>0.70</u>	<u>0.70</u>
Dry Gas Density	kg/Nm ³	1.29	1.29	1.29	1.29
Barometric Pressure	mb	899.00	899.00	899.00	899.00
Static Pressure	mb	-1.08	-1.08	-1.08	-1.08
Absolute Pressure	mb	897.92	897.92	897.92	897.92
Moisture Concentration	%	2.05	1,89	2.23	2.06
Gas Temperature	°C	49.83	49.33	50.92	50.03
Wet Gas Density	kg/Nm³	1.28	1.28	1.28	1.28
Duct Size	m	1.90	1.90	1.90	
Duct Area	m ²	2.84	2.84	2.84	
Gas Density	kg/m³	0.96	0.96	0.96	0.96
Dynamic Pressure	mb	1.74	1.70	1.72	1.72
Sample Time	sec	3,600	3,600	3,600	
Gas Velocity	m/s	19.00	18.81	18.97	18.93
Gas Volume Flow (actual)	m ³ /s (actual)	53.87	53.34	53.80	53.67
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	40.38	40.04	40.18	40.20
Gas Volume Flow NTP (dry)	Nm³/s (dry)	39.55	39.28	39.29	39.37
Gas Volume Flow (actual)	m ³ /h (actual)	193,948	192,018	193,667	193,211
Gas Volume Flow NTP (wet)	Nm³/h (wet)	145,354	144,131	144,658	144,715
Gas Volume Flow NTP (dry)	Nm³/h (dry)	142,370	141,400	141,440	141,736
Nozzle Diameter	mm	4.52	4.52	4.52	
Sampled Volume (dry)	m ³	1.07	1.06	1.07	
Sampled Volume NTP (dry)	Nm³	0.80	0.79	0.80	
PM Collected	mg	39.61	36.79	32.05	
PM Concentration (dry)	mg/m³ (dry)	37.05	34.86	29.99	33.97
PM Concentration NTP (dry)	mg/Nm³ (dry)	49.44	46.44	40.15	45.34
Sampled Volume (wet)	m ³ (wet)	1.09	1.08	1.09	
Sampled Volume NTP (wet)	Nm ³ (wet)	0.82	0.81	0.82	
PM Concentration (wet)	mg/m ³ (wet)	36.29	34.19	29.32	33.27
PM Concentration NTP (wet)	mg/Nm ³ (wet)	48.42	45.56	39.26	44.41
PM Emission Rate	mg/s	1,955.22	1,823.88	1,577.52	1,785.54
PM Emission Rate	kg/h	7.04	6.57	5.68	6.43
Isokinetic Rate	%	99	99	100]

Appendix C.1 - Test Results: De-dust 3 Stack - PM, O2, CO2, and Test Parameters

Append	lix C.2 - Test Results: De-	dust 3 Stack –	CO, NO _x an	d SO ₂	
	TEST RI	ESULTS	Why Parts		
SOUTH 32	HOTAZEL MANGANESI	E MINES (PTY) LTD MAN	IATWAN	
	DE-DUST				
	LES1)72M			
	DATE	20-Feb-24	20-Feb-24	20-Feb-24	
	TEST START	12:20	13:40	15:00	1
	TEST STOP	13:23	14:42	16:03	1
	TEST	1	2	3	1
PARAMETER	PLANT CONDITIONS	STABLE	STABLE	STABLE	Averages
SO2 Instrumental Analyser Results				Λ	
SO ₂ Concentration NTP (dry)	mg/Nm³ (dry)	<u>28.58</u>	<u>28.58</u>	28.58	28.58
SO2 Emission Rate	mg/s	<u>1,130.28</u>	<u>1,122.59</u>	<u>1,122.90</u>	1,125.26
SO2 Emission Rate	kg/h	<u>4.07</u>	<u>4.04</u>	<u>4.04</u>	4.05
NOx Concentration NTP (dry)	mg/Nm³ (dry)	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>	<u>6.16</u>
NOx Emission Rate	mg/s	<u>243.51</u>	<u>241.85</u>	241.92	242.43
NOx Emission Rate	kg/h	<u>0.88</u>	<u>0.87</u>	<u>0.87</u>	<u>0.87</u>
CO Concentration NTP (dry)	mg/Nm³ (dry)	<u>2.50</u>	<u>2.50</u>	<u>2.50</u>	2.50
CO Emission Rate	mg/s	<u>98.84</u>	<u>98.17</u>	<u>98.20</u>	98.40
CO Emission Rate	kg/h	<u>0.36</u>	<u>0.35</u>	<u>0.35</u>	<u>0.35</u>
sokinetic Rate	%	99	99	100	

Italic, underlined values are below the detection limit.

SOUTH 32 J	TEST RE HOTAZEL MANGANESE MAIN S LESIO	C MINES (PTY STACK) LTD MAM	ATWAN	
	DATE	05-Dec-23	05-Dec-23	05-Dec-23	
	TEST START	15:01	16:30	17:51	
	TEST STOP	16:05	17:34	18:55	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	STABLE	STABLE	STABLE	Averages
) ₂	% (dry)	18.85	18.82	19.04	18.90
20	ppm (dry)	48,641.33	43,556.31	18,448.63	36,882.09
CO2	% (dry)	3.32	3.20	2.92	3.14
Dry Gas Density	kg/Nm ³	1.31	1.31	1.31	1.31
Barometric Pressure	mb	887.20	887.20	887.20	887.20
Static Pressure	mb	-1.37	-1.37	-1.37	-1.37
Absolute Pressure	mb	885.83	885.83	885.83	885,83
Moisture Concentration	%	2.25	2.33	2.03	2.20
Gas Temperature	°C	139.83	138,11	138.61	138.85
Wet Gas Density	kg/Nm³	1.30	1.30	1.30	1.30
Duct Size	m	3.20	3.20	3.20	
Duct Area	m ²	8.04	8.04	8.04	
Gas Density	kg/m³	0.75	0.75	0.75	0.75
Dynamic Pressure	mb	3.13	3.05	3.07	3.08
Sample Time	sec	3,780	3,780	3,780	
Gas Velocity	m/s	28.88	28.46	28.60	28.65
Gas Volume Flow (actual)	m ³ /s (actual)	232.30	228.93	230.01	230.41
Gas Volume Flow NTP (wet)	Nm ³ /s (wet)	134.32	132.93	133.39	133,55
Gas Volume Flow NTP (dry)	Nm³/s (dry)	131.30	129.83	130.68	130.60
Gas Volume Flow (actual)	m ³ /h (actual)	836,287	824,142	828,031	829,487
Gas Volume Flow NTP (wet)	Nm³/h (wet)	483,567	478,540	480,214	480,774
Gas Volume Flow NTP (dry)	Nm³/h (dry)	472,670	467,394	470,461	470,175
Nozzle Diameter	mm	4.50	4.50	4.50	
Sampled Volume (dry)	m ³	1.69	1.68	1.71	
Sampled Volume NTP (dry)	Nm³	0.98	0.98	0.99	
PM Collected	mg	167.07	89.01	88.30	
PM Concentration (dry)	mg/m³ (dry)	98.81	52.97	51.78	67.85
PM Concentration NTP (dry)	mg/Nm³ (dry)	170.89	91.22	89.29	117.13
Sampled Volume (wet)	m ³ (wet)	1.73	1.72	1.74	
Sampled Volume NTP (wet)	Nm ³ (wet)	1.00	1.00	1.01	
PM Concentration (wet)	mg/m ³ (wet)	96.59	51.73	50.73	66.35
PM Concentration NTP (wet)	mg/Nm ³ (wet)	167.04	89.09	87.47	114.54
PM Emission Rate	mg/s	22,437.53	11,843.05	11,668.40	15,316.33
PM Emission Rate	kg/h	80.78	42.63	42.01	55.14
Isokinetic Rate	%	100	101	101]

Appendix D.1 - Test Results: Main Stack - PM, O2, CO2, and Test Parameters

11	entity D.2 - Test Results.	Ann State C	o, nor and	502	
		ESULTS			34.15
SOUTH 32	HOTAZEL MANGANES	E MINES (PT	Y) LTD MAN	IATWAN	
	MAIN	STACK			
	LES1	072M			
	DATE	05-Dec-23	05-Dec-23	05-Dec-23	
	TEST START	15:01	16:30	17:51]
	TEST STOP	16:05	17:34	18:55	
	TEST	1	2	3	
PARAMETER	PLANT CONDITIONS	STABLE	STABLE	STABLE	Averages
SO ₂ Collected	mg	285.25	296.93	321.63	
SO2 Concentration (dry)	mg/m³ (dry)	168.71	176.69	188.61	178.00
SO2 Concentration NTP (dry)	mg/Nm³ (dry)	291.77	304.29	325.23	307.10
SO ₂ Concentration (wet)	mg/m ³ (wet)	164.91	172.57	184.78	174.09
SO ₂ Concentration NTP (wet)	mg/Nm ³ (wet)	285.19	297.21	318.62	300.34
SO2 Emission Rate	mg/s	38,308.49	39,506.89	42,501.85	40,105.75
SO2 Emission Rate	kg/h	137.911	142.225	153.007	144.381
NOx Concentration NTP (dry)	mg/Nm³ (dry)	279.69	251.43	257.08	262.73
NOx Emission Rate	mg/s	36,722.46	32,643.95	33,595.81	34,320.74
NOx Emission Rate	kg/h	132.20	117.52	120.94	123.55
CO Concentration NTP (dry)	mg/Nm³ (dry)	60,785.49	54,430.91	23,054.65	46,090.35
CO Emission Rate	mg/s	7,980,969.64	7,066,849.23	3,012,863.87	6,020,227.58
CO Emission Rate	kg/h	28,731.49	25,440.66	10,846.31	21,672.82
Isokinetic Rate	%	100	101	101	

Appendix D.2 - Test Results: Main Stack - CO, NOx and SO2

	Appendix E: Uncertainti	ies Reportin	ng Summar	ies – De-	dust 1 Stac	k		
	SOUTH 32 HOTAZEL	AEL Reporting MANGANESE M DE-DUST 1 S LES1072	IINES (PTY) LT STACK	D MAMATV	VAN			
	Concentrations			Emission rate (flux)				
Substance or mixture of substances		Average	Uncertainty (95% confidence, k=2)		Augenno		Uncertainty confidence, k=2)	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm3 (dry)	%	mg/s	mg/s	%	
Particulate matter	N/A	30.95	± 1.10	± 3.5	414.12	± 16.34	± 3.9	
Carbon dioxide	CO2	13,744	± 261	± 1.9	183,908	± 4165	± 2.3	
Carbon monoxide	CO	2.50	± 0.05	± 2.0	<u>33</u>	<u>± 0.88</u>	± 2.6	
Nitrogen oxides	NOx expressed as NO2	6.16	± 0.13	± 2.0	<u>82</u>	<u>± 2.21</u>	<u>± 2.7</u>	

Limit of Quantification (LOQ):

Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

Appendix F.: Uncertainties Reporting Summaries - De-dust 2 Stack

	SOUTH 32 HOTAZEL	AEL Reporting MANGANESE M DE-DUST 2 S LES1072	MINES (PTY) LT STACK	D MAMAT V	VAN		
			Concentrations		Er	mission rate (flu	x)
Substance or mixture of substances		Average	Uncertainty (95% confidence, k=2)		Average	Uncertainty (95% confidence, k=2)	
Common name	Chemical symbol	mg/Nm³ (dry)	mg/Nm³ (dry)	%	mg/s	mg/s	%
Particulate matter	N/A	11.22	± 0.54	± 4.8	212.73	± 10.86	± 5,1
Carbon dioxide	CO2	13,744	± 261	± 1.9	260,538	± 5901	± 2.3
Carbon monoxide	CO	<u>2.50</u>	<u>± 0.05</u>	<u>± 2.0</u>	<u>47</u>	<u>± 1.24</u>	± 2.6
Sulphur dioxide (instrumental analyser)	SO ₂	28.58	± 0.07	<u>± 0.3</u>	<u>542</u>	<u>± 11.81</u>	± 2.2
Nitrogen oxides	NOx expressed as NO2	<u>6.16</u>	<u>± 0.13</u>	<u>± 2.0</u>	<u>117</u>	<u>± 3.12</u>	<u>± 2.7</u>

Limit of Quantification (LOQ):

Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

Append	dix G: Uncertaint	ies Reporti	ng Summar	ies – De	dust 3 Sta	ek	
	SOUTH 32 HOTAZEL	AEL Reporting MANGANESE M DE-DUST 3 LES107	MINES (PTY) L'I STACK	D MAMATY	VAN	ale ste	
	1	Concentrations		Emission rate (flux)			
Substance or mixture of substances		Average	Average Uncertainty (95% confidence, k=2)		Average	Uncertainty (95% confidence, k=2)	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm3 (dry)	%	mg/s	mg/s	%
Particulate matter	N/A	45.34	± 1.56	± 3.4	1,785.54	± 68.86	± 3,9
Carbon dioxide	CO2	13,744	± 261	± 1.9	541,127	± 12255	± 2.3
Carbon monoxide	CO	2.50	± 0.05	± 2.0	<u>98</u>	± 2.58	± 2.6
Sulphur dioxide (instrumental analyser)	SO ₂	28.58	± 0.07	± 0.3	1,125	± 24.54	± 2.2
Nitrogen oxides	NOx expressed as NO2	6.16	± 0.13	± 2.0	242	± 6.49	± 2.7

Limit of Quantification (LOQ):

· Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

Appendix H: Uncertainties Reporting Summaries - Main Stack

	SOUTH 32 HOTAZEL	AEL Reporting MANGANESE M MAIN ST LES1072	MINES (PTY) L'I ACK	ГД МАМАТ	WAN		
Substance or mixture of substances		Concentrations			Emission rate (flux)		
		Average	Uncertainty (95% confidence, k=2)		Average	Uncertainty (95% confidence, k=2)	
Common name	Chemical symbol	mg/Nm3 (dry)	mg/Nm³ (dry)	%	mg/s	mg/s	%
Particulate matter	N/A	117.13	± 3.96	± 3.4	15,316.33	± 581.61	± 3.8
Carbon dioxide	CO2	61,730	± 3483	± 5.6	8,062,563	± 182600	± 2,3
Carbon monoxide	CO	46,090.35	± 3449.31	± 7.5	6,020,228	± 157939.61	± 2.6
Nitrogen oxides	NOx expressed as NO2	262.73	± 5.37	± 2.0	34,321	± 918.61	± 2.7
Sulphur dioxide (wet chemical)	SO ₂	307.10	± 10.41	± 3.4	40,105.75	± 1525.42	± 3.8

Limit of Quantification (LOQ):

• Where the results are below the laboratory test method's LOQ, they are calculated and reported at the LOQ

• Where the average includes a result from a value below the LOQ, it is shown as *italics*.

• Where the average is of all the results from values below the LOQ, it is shown as <u>underlined italics</u>.

ATTACHMENTS

LES-SR-001-007 (E01) LES1072M Report 23/R2467

Page 28 of 28

visp

vsp

Building 1, Maxwell Office Park Magwa Crescent West, Waterfall City Midrand, 1685 South Africa

wsp.com

CONFIDENTIAL