STRANDFOAM GROUP (PTY) LTD

ATMOSPHERIC IMPACT REPORT GAUTENG OPERATIONS - ROSSLYN FACILITY

19 FEBRUARY 2025

wsp

ATMOSPHERIC IMPACT REPORT GAUTENG OPERATIONS -ROSSLYN FACILITY

STRANDFOAM GROUP (PTY) LTD

REPORT (VERSION 01)

PROJECT NO.: 41107272 DATE:

WSP BUILDING 1 MAGWA CRESENT WEST, WATERFALL CITY MIDRAND, 1685 SOUTH AFRICA

TEL.: +27 11 3006116 FAX: +27 11 361 1301 WSP.COM

QUALITY MANAGEMENT

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Report	Report	Report	
Date	30 January 2025	12 February 2025	19 February 2025	
Prepared by	Y. Kowlas	Y. Kowlas	Y. Kowlas	
Signature			Yakeen Kowlas 2025.02.19 15:02:27 +02'00'	
Checked by	K. Collett	K. Collett	K. Collett	
Signature			Collett, Kirsten (ZAKC02294) 2025.02.19 14:38:31 +02'00'	
Authorised by	K. Collett	K. Collett	K. Collett	
Signature			Kollett, Kirsten (ZAKC02294) 2025.02.19 14:38:48 +02'00'	
Project number	41107272	41107272	41107272	
Report number	1 of 1	1 of 1	1 of 1	
File reference	\\corp.pbwan.net\za\Central_Data\Projects\41100xxx\41107272 - STRANDFOAM GP AIR & AEL UPDATES\41 AQL\01-Reports\02-Final			

ABBREVIATIONS

AEL	Atmospheric Emissions Licence
AIR	Atmospheric Impact Report
API	American Petroleum Industry
C_6H_6	Benzene
CaCO ₃	Calcium carbonate
СО	Carbon monoxide
DEA	Department of Environmental Affairs
ESL	Effects Screening Level
g/s	Grams per second
mg/Nm³	Milligrams per cubic meter (under normal conditions of 273 Kelvin and 101.3 kPa)
MEC	Methylene chloride
MES	Minimum Emission Standards
MSDS	Material Safety Data Sheets
MW	Megawatt
NAAQS	National ambient air quality standards
NASA	National Aeronautics and Space Administration
NAEIS	National Atmospheric Emission Inventory System
NEM:AQA	National Environmental Management: Air Quality Act 39 of 2004
NO_2	Nitrogen dioxide
NO _x	Oxides of nitrogen
O ₃	Ozone
OEHHA	Office of Environmental Health Hazard Assessment
P100	100 th percentile
P99	99 th percentile
PM	Particulate matter
PM_{10}	Particulate matter less than 10 μ m in diameter
PM _{2.5}	Particulate matter less than $2.5 \ \mu m$ in diameter
REL	Reference Exposure Level
Rosslyn	Strandfoam Gauteng Operations – Rosslyn Facility
SANAS	South African National Accreditation System

SO_2	Sulphur dioxide
SRTM	Shuttle Radar Topography Mission
Strandfoam	Strandfoam Group (Pty) Ltd
TCEQ	Texas Commission on Environmental Quality
TDI	Toluene di-isocyanate
TVOC	Total volatile organic compounds
USEPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
VOC	Volatile Organic Compound
WHO	World Health Organisation
WSP	WSP Group Africa (Pty) Ltd

EXECUTIVE SUMMARY

Strandfoam (Pty) Ltd (Strandfoam) currently operate a polyurethane foam production facility in Rosslyn, within the City of Tshwane, Gauteng. Primary operations at the Rosslyn facility resulting in atmospheric emissions include bulk storage of liquid raw materials in storage tanks; polyurethane foam production using toluene diisocyanate (TDI); chipfoam production requiring steam and heat generated by a diesel-fired boiler; and bulk storage of diesel.

The Rosslyn facility manufactures foam using toluene di-isocyanate (TDI) in excess of 100 tons per annum, therefore triggering listed activity Category 6: Organic Chemicals Industry as per Government Notice Regulation 893 of 2013, promulgated in line with Section 21 of the National Environmental Management: Air Quality Act (Act 39 of 2004) (NEM:AQA). The facility is currently not licensed for the applicable Section 21 listed activity. As such, an Atmospheric Emissions License (AEL) rectification process is required in terms of Section 22A (S22A) of NEM:AQA. Section 22A addresses the conduct of a listed activity without a valid AEL.

WSP Group Africa (Pty) Ltd (WSP) has been appointed by Strandfoam to undertake the Atmospheric Impact Report (AIR) (this report) to assess the potential air quality impacts of the Rosslyn Facility on the surrounding environment.

The study assessed the potential impacts on the ambient air quality associated with site activities using a Level 2 (AERMOD) dispersion modelling assessment. Impacts on the ambient air quality for criteria pollutants regulated by the National Ambient Air Quality Standards (NAAQS), namely sulphur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), particulate matter (PM₁₀ and PM_{2.5}) and benzene were simulated. Process relevant speciated volatile organic compounds were also assessed including toluene, xylene, propylene oxide, methylene chloride (MEC), TDI, and total volatile organic compounds (TVOC).

An emissions inventory was developed using emission rate calculators (TANKS 4.0.9d – for tank sources), emission factors, and stack emission test results for input into the dispersion model. Quantified sources include bulk raw material and fuel storage tanks, the diesel-fired chipfoam boilers and the foam production extrusion vents. Simulated pollutant dispersion outputs were compared to the NAAQS or international guidelines (in the absence of local standards) to assess the degree of impact. Key findings are as follows:

- No off-site exceedances of the NAAQS or relevant international guidelines were found across the array of
 pollutants assessed.
- Peak concentrations occur either within the operational boundary or along the facility's current fenceline. The only exceedance predicted on the fenceline is for the TDI 8-hour concentrations. Concentrations on Strandfoam Rosslyn's eastern fenceline exceed the 8-hour (0.015 µg/m³) OEHHA guideline. Concentrations across the fenceline are, however, compliant.
- It is highlighted that the eastern fenceline on which all pollutant peak concentrations occur, is immediately
 adjacent to the indoor raw material storage and polyurethane foam production building.
- A cumulative assessment using regional background ambient air quality monitoring data has not been offered, as inclusion of any baseline data would essentially double account for emissions from the Strandfoam facility (in the background measurements and the inputted emission rates), as the facility is currently operational.

Based on the findings of this this environmentally conservative AIR, ground-level impacts associated with atmospheric emissions from the facility are assessed to be low and therefore WSP recommends that Strandfoam be awarded their AEL.

wsp

TABLE OF CONTENTS

1	INTRODUCTION1
2	ENTERPRISE DETAILS1
2.1	Enterprise Details1
2.2	Location and Extent of Plant2
2.3	Atmospheric Emission License
3	NATURE OF THE PROCESS
3.1	Listed Activities7
3.2	Process Description7
3.3	Unit Processes
4	TECHNICAL INFORMATION9
4.1	Raw Material Used
4.2	Appliances and Abatement Technology
5	ATMOSPHERIC EMISSIONS10
5.1	Storage Tanks10
5.2	Extrusion Vents16
5.3	Chipfoam Boiler17
5.4	Emergency Incidents18
6	IMPACT OF ENTERPRISE ON THE
6.1	Analysis of Emissions on Human Health
6.2	Analysis of Emissions' Impact on the Environment
6.3	Assumptions and Limitations 51
0.0	, local provide and Enhilation of the second s

7	COMPLAINTS
8	CURRENT OR PLANNED AIR QUALITY MANAGEMENT INTERVENTIONS
9	COMPLIANCE AND ENFORCEMENT 53
10	ADDITIONAL INFORMATION53
<mark>11</mark> 11.1	FORMAL DECLARATIONS
11.2	Annexure B: Declaration of Independence of Practitioner 55
12	REFERENCES

wsp

TABLES

TABLE 2-1: TABLE 2-2: TABLE 2-3:	FACILITY INFORMATION1 CONTACT DETAILS
TABLE 2-3.	PLANT2 SENSITIVE RECEPTORS WITHIN
	A 5KM RADIUS OF THE ROSSLYN FACILITY
TABLE 3-1:	LISTED ACTIVITY APPLICABLE TO THE ROSSLYN FACILITY7
TABLE 3-2:	UNIT PROCESS AND OPERATIONAL TIMES FOR THE
TABLE 4-1:	ROSSLYN FACILITY
TABLE 5-1:	METEOROLOGICAL DATA INPUT FOR TANKS MODEL
TABLE 5-2:	CALCULATIONS11 CHEMICAL CHARACTERISTICS AND SUBSTITUTES (WHERE APPLICABLE) FOR TANKS
TABLE 5-3:	RAW MATERIAL TANK STORAGE AND SPECIFICATIONS AND CALCULATED EMISSION RATES
TABLE 5-4:	FUEL STORAGE TANK SPECIFICATIONS AND CALCULATED EMISSION RATES
TABLE 5-5:	AND EMISSION RATES FOR
TABLE 5-6:	NAEIS EMISSION FACTORS FOR SMALL COMBUSTION SOURCES
TABLE 5-7:	CHIPFOAM BOILER PARAMETERS AND EMISSION
TABLE 6-1:	ARTES
TABLE 6-2:	NATIONAL AMBIENT AIR
TABLE 6-3:	INTERNATIONAL GUIDELINES FOR PROCESS RELEVANT VOCS

TABLE 6-4:	NAAQS REGULATED AIR POLLUTANTS AND ASSOCIATED
	HUMAN HEALTH IMPACTS23
TABLE 6-5:	
	DECEMBER 2022 MONITORING
	PERIOD25
TABLE 6-6:	COORDINATES AND DATA
	RECOVERY OF THE ROSSLYN
	MONITORING STATION
TABLE 6-7:	KEY MODEL INPUTS USED IN
	THE ASSESSMENT
TABLE 6-8:	SUMMARY OF RECOMMENDED
	PROCEDURES FOR ASSESSING
	COMPLIANCE WITH NAAQS36
TABLE 6-9:	SIMULATED POLLUTANT
	CONCENTRATIONS AT
	SENSITIVE RECEPTORS37

FIGURES

FIGURE 2-1	LOCATION OF THE ROSSI VN
	FACILITY 4
FIGURE 2-2:	SITE LAYOUT OF THE ROSSLYN
	FACILITY5
FIGURE 2-3:	SENSITIVE RECEPTORS WITHIN
	A 5 KM RADIUS OF THE
	ROSSLYN FACILITY6
FIGURE 3-1:	PROCESS FLOW FOR
	POLYURETHANE FOAM BLOCK
	AND CHIPFOAM BLOCK
	MANUFACTURING8
FIGURE 6-1:	TEMPERATURE RANGE,
	AVERAGE MONTHLY
	TEMPERATURE AND AVERAGE
	RELATIVE HUMIDITY FROM THE
	ROSSLYN NAQI STATION AND
	AVERAGE RAINFALL FROM THE
FIGURE 0-2.	
	DECEMBER 2022 27
FIGURE 6-3	SEASONAL WIND ROSE PLOTS
	FOR THE PERIOD JANUARY
	2020 TO DECEMBER 2022
FIGURE 6-4:	24-HOUR AVERAGE SO2
	CONCENTRATIONS MONITORED

	AT THE ROSSLYN NAQI
	STATION FOR THE JANUARY
	2018 TO DECEMBER 2022
	PERIOD
FIGURE 6-5:	24-HOUR AVERAGE PM10
	CONCENTRATIONS MONITORED
	AT THE ROSSLYN NAQI
	STATION FOR THE JANUARY
	2020 TO DECEMBER 2022
	PERIOD
FIGURE 6-6	24-HOUR AVERAGE PM2 5
1100112 0 0.	CONCENTRATIONS MONITORED
	AT THE ROSSI YN NAOI
	STATION FOR THE JANUARY
	2020 TO DECEMBER 2022
	PERIOD 32
FIGURE 6-7	
FIGURE 6-8	P99 24-HOUR AVERAGE SO230
FIGURE 0-10.	
FIGURE 0-11.	
	P99 24-HOUR AVERAGE PM10.41
FIGURE 0-15:	
	P99 24-HOUR AVERAGE PM2.542
FIGURE 6-18:	PIUU I-HOUR AVERAGE
FIGURE 6-19:	PERIOD AVERAGE BENZENE44
FIGURE 6-20:	P100 1-HOUR AVERAGE
FIGURE 6-21:	PERIOD AVERAGE TOLUENE45
FIGURE 6-22:	P100 1-HOUR AVERAGE XYLENE
FIGURE 6-23:	PERIOD AVERAGE XYLENE46
FIGURE 6-24:	P100 1-HOUR AVERAGE MEC 46
FIGURE 6-25:	PERIOD AVERAGE MEC47
FIGURE 6-26:	P100 1-HOUR AVERAGE IDI47
FIGURE 6-27:	PERIOD AVERAGE TDI48
FIGURE 6-28:	P100 1-HOUR AVERAGE
	PROPYLENE OXIDE48
FIGURE 6-29:	PERIOD AVERAGE PROPYLENE
	OXIDE49
FIGURE 6-30:	P100 1-HOUR AVERAGE TVOC 49
FIGURE 6-31:	PERIOD AVERAGE TVOC50

APPENDICES

- A TANKS MODEL OUTPUTS
- B STACK TEST REPORT

1 INTRODUCTION

Strandfoam Group (Pty) Ltd (hereafter referred to as Strandfoam) is a polyurethane foam manufacturer that have three manufacturing facilities located in Rosslyn, Gauteng (Strandfoam Bulk); Strand, Western Cape (Strandfoam Cape) and Queensburgh, KwaZulu-Natal (Strandfoam KZN). This report considers the Strandfoam Rosslyn facility (hereafter referred to as Rosslyn) operations only.

The Rosslyn facility manufactures foam using toluene di-isocyanate (TDI) more than 100 tons per annum, therefore triggering listed activity *Category 6: Organic Chemicals Industry* as per Government Notice Regulation 893 of 2013, promulgated in line with Section 21 of the National Environmental Management: Air Quality Act (Act 39 of 2004) (NEM:AQA). The facility is currently not licensed for the applicable Section 21 listed activity.

The Rosslyn facility manufactures foam using toluene di-isocyanate (TDI) in excess of 100 tons per annum, therefore triggering listed activity Category 6: Organic Chemicals Industry as per Government Notice Regulation 893 of 2013, promulgated in line with Section 21 of the National Environmental Management: Air Quality Act (Act 39 of 2004) (NEM:AQA). The facility is currently not licensed for the applicable Section 21 listed activity. As such, an Atmospheric Emissions License (AEL) rectification process is required in terms of Section 22A (S22A) of NEM:AQA. Section 22A addresses the conduct of a listed activity without a valid AEL.

WSP Group Africa (Pty) Ltd (WSP) has been appointed by Strandfoam to undertake the AIR update (this report) to assess the potential air quality impacts of the Rosslyn Facility on the surrounding environment.

2 ENTERPRISE DETAILS

2.1 ENTERPRISE DETAILS

Table 2-1 provides the enterprise information for Strandfoam with the details of the responsible contact personnel presented in Table 2-2.

Table 2-1: Facility Information

Enterprise Name	Strandfoam Group (Pty) Ltd
Trading As	Strandfoam Bulk
Type of Enterprise, e.g. Company/Close Corporation/Trust	Company
Company/Close Corporation/Trust Registration Number (Registration Numbers if Joint Venture)	1997/007963/07
Registered Address	221 Broadlands Road, Strand, Western Cape, 7139
Postal Address	PO Box 13, Strand, 7139
Telephone Number (General)	021 850 7777
Fax Number (General)	021 853 7777
Industry Type/Nature of Trade	Polyurethane foam production
Land Use Zoning as per Town Planning Scheme	Industrial
Land Use Rights if outside Town Planning Scheme	N/A
Designated Priority area (If applicable)	N/A

AEL Reference Number	Pending submission
Air Quality Consultant	WSP Group Africa (Pty) Ltd

Table 2-2: Contact details

Responsible Person	Willem van der Westhuizen
Emission Control Officer	Oostewald Eksteen
Telephone Number	021 850 7777
Cell Dhana Number	084 558 9746 (Willem van der Westhuizen)
	081 015 4009 (Oostewald Eksteen)
Fax Number	021 853 7711
E-mail Address	willem@strandfoam.co.za oostewald.eksteen@strandfoam.co.za
After Hours Contact Details	084 558 9746 (Willem van der Westhuizen)

2.2 LOCATION AND EXTENT OF PLANT

The Rosslyn Facility is in the Rosslyn industrial zone within the City of Tshwane, Gauteng. The site occupies 4.43 km² (Latitude: 25°37'58"S, Longitude: 28°05'21"E) at an elevation of approximately 1,270 m above mean sea level (**Table 2-3**). A locality map and site layout are presented in **Figure 2-1** and **Figure 2-2** respectively.

Table 2-3: Location and extent of plant

Physical Address of the Plant	Corner of Frans Du Toit and Cor Delfos Street, Rosslyn
Description of Site (Where No Street Address)	N/A
Coordinates of Approximate Centre of Operations	Latitude: 25°37'58"S, Longitude: 28°05'21" E
Extent (hectares)	4.43
Elevation Above Mean Sea Level (m)	1,270
Province	Gauteng
District Municipality	City of Tshwane, Rosslyn
Local Municipality	N/A
Designated Priority Area (If Applicable)	N/A

2.2.1 DESCRIPTION OF SURROUNDING LAND USE

The land use surrounding the Rosslyn facility includes (Figure 2-1):

- Various small and large-scale industries within the immediate vicinity of the site, that range from bulk storage facilities, automotive manufacturers to fuel stations.
- Landfill and waste management sites, other industries and shopping centres within the surrounding industrial area.
- Various residential communities located within a 5 km radius (Hartebeeshoek (~430 m southwest of the site), The Orchards (~320 m south of the site), Chantelle (~2,500 m south of the site), Klerksoord AH (~2,570 m east of the site), Clarina (~2,780 m southeast of the site), Karenpark (~2,780 m southeast of the site), Shoshanguve (~2,870 m north of the site), Heatherdale (~3,690 m southeast of the site),

Klipfontein (~3,830 m northwest of the site), Hartebeeshoek 303-JR (~3,945 m south of the site) and Fundus AH (~4,200 m southwest of the site)).

 Other amenities (places of worship, shopping centres, schools, educational and recreational facilities) are also located within these surrounding residential areas.

2.2.2 SENSITIVE RECEPTORS

Sensitive receptors, as defined by the United States Environmental Protection Agency (USEPA) include, but are not limited to, hospitals, schools, day-care facilities, elderly housing and convalescent facilities (USEPA, 2023). These are areas where the occupants are more susceptible to the adverse effects of exposure to toxic chemicals, pesticides and other pollutants. Extra care must be considered when dealing with pollutants in proximity to areas recognised as sensitive receptors. In line with this definition the residential, educational, and recreational land in the surrounding area are considered sensitive receptors.

For this study, sensitive receptors were sourced from 1:6,300 digital raster graphic maps and verified during a site visit as well as using Google Earth ProTM. Identified sensitive receptors are displayed in **Table 2-4** and **Figure 2-3**.

ID	Description	Latitude (°S)	Longitude (°E)	Distance from Site Boundary (km)	Direction from Site
SR1	Fountain of life Church	25.637465	28.084248	0.61	Southwest
SR2	Orchards Residential Area 1	25.640296	28.102841	1.49	East-southeast
SR3	Orchards Primary	25.648043	28.096885	1.64	Southeast
SR4	Orchards Residential Area 2	25.636305	28.088391	0.29	South
SR5	Hartebeeshoek Residential Area 1	25.635367	28.084667	0.42	Southwest
SR6	Hartebeeshoek Residential Area 2	25.632445	28.073157	1.52	West
SR7	Rosslyn Gardens Residential Area	25.621221	28.067081	2.48	Northwest
SR8	Rosslyn Primary	25.625977	28.055987	3.35	West
SR9	Klerksoord AH	25.639951	28.114825	2.59	East
SR10	Klipfontein Residential Area	25.604446	28.059646	4.22	Northwest
SR11	Soshanguve Residential Area 1	25.603104	28.076298	3.39	North-northwest
SR12	Soshanguve Residential Area 2	25.604589	28.088255	2.93	North
SR13	Pele Primary School	25.601676	28.105410	3.57	North-northeast
SR14	Soshanguve Residential Area 3	25.606149	28.097263	2.85	North-northeast

Table 2-4: Sensitive receptors within a 5km radius of the Rosslyn facility

2.3 ATMOSPHERIC EMISSION LICENSE

To continue operating, Strandfoam must compile and submit an AEL application for the Rosslyn Facility in terms of Section 22A of NEM:AQA. The facility manufactures foam using TDI more than 100 tons per annum (922.11 tons per annum), therefore triggers listed activity Category 6: Organic Chemicals Industry of Government Notice 893 of 2013, promulgated in line with Section 21 of NEM:AQA.

Figure 2-1: Location of the Rosslyn Facility

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

Figure 2-2: Site layout of the Rosslyn Facility

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

Figure 2-3:

Sensitive receptors within a 5 km radius of the Rosslyn Facility

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

3 NATURE OF THE PROCESS

3.1 LISTED ACTIVITIES

Listed activities and associated minimum emission standards (MES) were published in Government Notice 248, Government Gazette 33064 of 2010, in line with Section 21 of NEM:AQA. An amended list of activities was published in Government Notice 893 of Government Gazette 37054 in 2013, Government Notice 551 of Government Gazette 38863 in 2015 and further in Government Notice 1207 of Government Gazette 42013 in 2018. **Table 3-1** presents the listed activity triggered by the Rosslyn Facility.

Table 3-1: Listed activity applicable to the Rosslyn Facility

Category Of Listed Activity	Subcategory Of Listed Activity	Description of the Listed Activity
6: Organic chemicals industry	N/A	The production or use in production of organic chemicals not specified elsewhere including acetylene, acetic, maleic or phthalic anhydride or their acids, carbon disulphide, pyridine, formaldehyde, acetaldehyde, acrolein and its derivatives, acrylonitrile, amines and synthetic rubber. The production of organometallic compounds, organic dyes and pigments, surface-active agents. The polymerisation or co-polymerisation of any unsaturated hydrocarbons substituted hydrocarbon (including vinyl chloride). The manufacture, recovery or purification of acrylic acid or any ester of acrylic acid. The use of toluene di-isocyanate or other di-isocyanate of comparable volatility; or recovery of pyridine.

3.2 PROCESS DESCRIPTION

A process flow diagram for the Rosslyn Facility is presented in Figure 3-1. Process activities are described below:

- Raw materials are received at site in drums, intermediate bulk containers, flexi bags and bulk containers or bags and transferred into bulk storage tanks or enclosed storage areas.
- Materials are blended through metering pumps at pressures of up to 3.5 kPa (depending on the specific blend mixture).
- The blended mixture chemically reacts causing the liquid mixture to expand and solidify into foam, releasing carbon dioxide (CO₂) in the process.
- The foam is cut into blocks that are 1 m high and 1.91 m wide with lengths ranging between 1.37 m and 3.1 m.
- Foam blocks are placed outside for curing for approximately 24 hours before being transferred to storage.
 The foam blocks are covered in a plastic film to protect them from the elements during curing and storage.
- Foam blocks are dispatched to customers and offcuts are repurposed to form chipfoam blocks.

The Rosslyn facility currently operates a single diesel boiler (0.39 MW)) which generates steam during chipfoam production. Strandfoam plans to install an additional boiler of <10 MW in 2025. Atmospheric emissions expected from site activities include total volatile organic compounds (TVOC), (as regulated by the MES) from chemical storage and foam block production, as well as criteria pollutants, namely sulphur dioxide (SO₂), nitrogen dioxide

 (NO_2) , particulate matter less than 10 microns (PM_{10}) , particulate matter less than 2.5 microns $(PM_{2.5})$, carbon monoxide (CO) and TVOC from fuel combustion in the boilers.

Figure 3-1: Process flow for polyurethane foam block and chipfoam block manufacturing

3.3 UNIT PROCESSES

A summary of the unit processes, function and operational hours at the Rosslyn Facility is provided in Table 3-2.

Table 3-2: Unit	process and o	operational times	for the Rossl	yn Facility

Unit process	Function	Operational hours	Batch/ Continuous
Bulk chemical storage	Bulk storage of various chemicals in above ground tanks	24 hours/ 365 days	Continuous
Polyurethane foam block manufacturing	Manufacturing of polyurethane foam blocks	1 hour/ 153 days	Batch
Chipfoam block production	Chipping and bonding of polyurethane foam offcuts	9.5 hours/ 224 days	Batch
Boilers	Heat / steam generation	9.5 hours/ 224 days	Batch

4 TECHNICAL INFORMATION

4.1 RAW MATERIAL USED

Table 4-1 below provides details on the raw material, products and energy sources used at the facility.

Category	Item	Consumption / Production Rate	Unit
	Polyol	134,877.41	kg/month
Dow motoriala	Toluene diisocyanate (TDI)	76,842.50	kg/month
Raw materials	Calcium carbonate (CaCO ₃)	15,112.13	kg/month
	Methylene chloride (MEC)	4886.97	kg/month
Products	Polyurethane blocks (foam blocks)	191	tonnes/month
i loudoto	Chipfoam blocks	133	tonnes/month
	Diesel - Boiler	6,529.00	litres/month
	Diesel - Vehicles	5,425.17	litres/month
Energy	Petrol – Vehicles	1,864.58	litres/month
	Electricity – Eskom	27.1	MWh/month
	Electricity - Solar	12.9	MWh/month

 Table 4-1:
 Raw materials, products and energy sources

4.2 APPLIANCES AND ABATEMENT TECHNOLOGY

There are currently no abatement appliances or technology installed at the Rosslyn Facility.

5 ATMOSPHERIC EMISSIONS

An emissions inventory is a list of pollution sources, their physical and chemical parameters, as well as the quantification of emissions. Emissions are calculated using emission factors or mass balance approaches, requiring chemical and activity data inputs. Emissions for the Rosslyn Facility are discussed in detail below. One modelling scenario was conducted for the Rosslyn Facility, where impacts arising from their operational activities were assessed.

5.1 STORAGE TANKS

Volatile Organic Compound (VOC) emissions from storage tanks that contain organic liquids, especially highly volatile liquids, occur because of evaporative losses of the liquid during its storage and because of changes in the liquid level. The emission rates are dependent on the tank design. The two significant types of emissions from tanks are breathing and working losses. Breathing loss is the expulsion of vapour from tanks through vapour expansion and contraction, which is the result of changes in temperature and barometric pressure. This loss occurs without any change in liquid level in the tank. The loss from filling and emptying the tank is called working loss. Emissions during filling operations are due to an increase in the liquid level in the tank. As the liquid level increases, the pressure inside the tank exceeds the relief pressure and vapours are expelled from the tank.

The NEM:AQA Regulations Regarding Air Dispersion Modelling (hereafter referred to as the *Modelling Regulations*) recommends the use of the USEPA and American Petroleum Industry (API) TANKS 4.0.9d model (TANKS) for estimating emissions from bulk liquid storage tanks. TANKS is windows-based software based on the emission estimation procedures from the USEPA's compilation of air pollutant emissions factors (AP-42). TANKS uses chemical, meteorological, roof fitting, rim seal data, tank dimensions and physical parameters (i.e. colour and condition of the shell and roof) to generate breathing and working loss estimates for various types of storage tanks.

The USEPA TANKS 4.0.9d model requires local meteorological input at an annual and monthly resolution. Weather Research and Forecasting Model (WRF) Pre-processed Meteorological data (ambient temperature and wind speed) was sourced from Lakes Environmental Consultants Inc. and the Atmospheric Science Data Centre: NASA GEOS-4 model (solar energy) (NASA, 2023). This data was utilised as it represented the most complete dataset for all required variables. Annual and monthly meteorological variables (in imperial units as required for TANKS input) are presented in **Table 5-1**.

Month	Daily Average Ambient Temperature (F)	68.56	Atmospheric Pressure (PSIA)	12.70
Month	Daily Maximum Ambient Temperature (F)	Daily Minimum Ambient Temperature (F)	Solar Insulation Factor (Btu/(ft*ft*day))	Average Wind Speed (mph)
January	95.09	56.39	2,020.63	7.10
February	93.11	57.83	2,017.46	6.29
March	90.95	55.67	1,821.85	5.76
April	87.71	52.43	1,518.38	5.68
Мау	78.71	42.35	1,487.72	4.75
June	75.83	39.83	1,320.65	5.17
July	74.75	37.49	1,425.33	4.91
August	82.85	38.03	1,628.35	6.40
September	90.59	47.57	1,958.25	6.82
October	94.73	51.35	2,034.38	7.68
November	96.89	54.95	1,995.25	7.77
December	94.73	55.67	1,968.82	7.09
Annual Average	88.00	49.13	1,766.42	6.28

Table 5-1: Meteorological data input for TANKS model calculations

There is a broad spectrum of chemicals preloaded into TANKS. In the case of Strandfoam, where raw materials or fuel-based products were not standard to TANKS, Material Safety Data Sheets (MSDS) and online chemical databases were used to determine the chemical composition and chemical properties of each storage component. When there was insufficient information to calculate mixture properties, one of the chemicals preloaded to TANKS (that had similar characteristics to the mixtures) was used as a substitute to imitate the material's emission potential. Chemical mixtures and substitutes input into TANKS for liquid raw materials that would result in VOC emissions are listed in **Table 5-2**. Raw material storage tank specifications and calculated emission rates are provided in **Table 5-3**. Fuel storage tank specifications and calculated emission rates are provided in **Table 5-4**. **Appendix A** presents the simulated tank results.

Table 5-2: Chemical characteristics and substitutes (where applicable) for TANKS model

Source ID	Chemical Name	Chemical Type	Modelled in TANKS as	Chemical properties
EU001 – EU010 and EU012 – EU013 and EU018 – EU019 and EU022 – EU025 and EU033	Polyol	Polymer	Polyol ¹ emitted as propylene oxide	Vapour pressure (psia) for each temperature (°F): 40 = 0.116 50 = 0.116 70 = 0.116 80 = 0.290 90 = 0.290 100 = 0.290 Molecular weight = 3000 g/mol; Vapour molecular weight = 58.0419 g/mol; Vapour pressure at 20°C = 0.8 kPa
EU014 – EU017	TDI	Organic solvent	Toluene diisocyanate ²	Vapour pressure (psia) for each temperature (°F): 40 = 0.00005 50 = 0.00008 60 = 0.00015 70 = 0.00024 80 = 0.00041 90 = 0.00068 100 = 0.00102 Molecular weight = 174.16 g/mol; Vapour pressure at 20°C = 1.64 kPa
EU020 – EU021	Methylene Chloride (MEC)	Organochloride	Methylene chloride ³	Antoine's equation constants (using °C): A: 7.409 B: 1325.9 C: 252.6 Molecular weight = 84.94 g/mol; Vapour pressure at 20°C = 47 kPa
EU026 – EU028	Diesel	Fuel oil	Distillate fuel oil no. 24	Preloaded to TANKS
EU036	Petrol	Fuel Oil	Gasoline RVP 9	Preloaded to TANKS

¹ DOW - Voranol 8322 Polyol MSDS (URL: https://www.dow.com/en-us/pdp.voranol-8322-polyol.401185z.html). Vapour molecular weight for propylene oxide used. ² URL: https://dii.americanchemistry.com/TDIMDI-Basics/Nomenclature-and-PhysicalChemical-Properties/PDF-TDI-Mixed-Isomers-Vapor-Pressure-Chart.pdf ³ URL: https://webbok.nits/gov/go/tobok.cg/17bC=750928Mask=4817pp=AhTOINEAPIot=on ⁴ USEPA AP-42 - Fuel Oil (URL: https://www3.epa.gov/ttn/chiet/ap42/ch03/final/c03s03.pdf)

_

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

Table 5-3: Raw material tank storage and specifications and calculated emission rates

Source ID	GP_01	GP_02	GP_03	GP_04	GP_05	GP_06	GP_07	GP_08	GP_11	GP_12	GP_13	GP_15
Tank EU ID	EU001 - EU006	EU007	EU008 - EU010	EU012 - EU013 & EU029 - EU032	EU014 - EU017	EU018 - EU019	EU020 - EU021	EU022 - EU025	EU011	EU033	EU034	EU037
Chemical Name	Polyol	CaCO₃ & Polyol	Polyol	Polyol	TDI	Polyol	MEC	Polyol	Polyol	Melafine & Polyol	Polyol	CaCO₃ & Polyol
Number of duplicate tanks	6	1	3	10	4	2	2	4	1	1	1	1
Latitude (°S)	25.632780	25.632780	25.632463	25.632423	25.632732	25.632517	25.632676	25.632696	25.632787	25.632723	25.632748	25.632459
Longitude (°E)	28.089884	28.089884	28.089977	28.090022	28.089758	28.089959	28.089615	28.089848	28.089840	28.089888	28.089883	28.089953
Situation (indoor, underground, etc.)	Indoor	Indoor	Indoor	Outdoor	Indoor	Indoor	Indoor	Indoor	Indoor	Indoor	Indoor	Indoor
Horizontal / Vertical	Horizontal	Horizontal	Vertical	Vertical	Horizontal	Horizontal	Vertical	Vertical	Horizontal	Horizontal	Vertical	Vertical
Floating or fixed roof	N/A	N/A	Fixed roof	Fixed roof	N/A	N/A	Fixed roof	Fixed roof	N/A	N/A	Fixed	N/A
Height / Length (m)	5.43	5.50	4.20	6.00	5.65	5.53	2.40	3.80	3.02	1.90	1.57	1.80
Diameter (m)	2.32	2.32	3.90	3.26	2.24	1.78	1.17	3.00	1.80	1.79	1.54	1.76
Maximum liquid height (m)	2.09	2.09	3.78	5.40	2.02	1.60	2.16	3.42	1.62	1.61	1.41	1.62
Average liquid height (m)	1.04	1.04	1.89	2.70	1.01	0.80	1.08	1.71	0.81	0.81	0.71	0.81
Working volume (m ³)	21.76	22.04	45.16	45.07	25.75	13.04	2.17	24.17	7.29	4.53	2.63	3.94
Turnovers per tank per year	3.00	16.50	3.00	3.00	8.95	3.00	13.50	3.00	N/A ⁽¹⁾	1.00	TBC ⁽²⁾	N/A ⁽¹⁾
Net throughput per tank (m ³ /yr)	65.33	362.69	135.60	135.30	230.53	39.15	29.32	72.60	N/A ⁽¹⁾	4.53	TBC ⁽²⁾	N/A ⁽¹⁾
Heated?	No	No	No	No	No	No	No	No	No	No	No	No
Colour of tank	Silver	Silver	Grey steel	Silver	Silver	Silver	Grey steel	Silver	Silver	Blue	Blue	Blue
Pressure setting (psig)	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	0.3	Ambient	Ambient	Ambient	Ambient	Ambient
Source type for modelling	Volume	Volume	Volume	Area	Volume	Volume	Volume	Volume	N/A ⁽¹⁾	Volume	TBC ⁽²⁾	N/A ⁽¹⁾
Calculated emission rate per tank						kg/a	nnum					
Total volatile organic compounds (TVOC)	18.27	28.29	49.76	34.56	0.11	11.04	504.85	19.50	-	6.24	-	-
Propylene oxide (C ₃ H ₆ O)	18.27	28.29	49.76	34.56	-	11.04	-	19.50	-	6.24	-	-

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

Source ID	GP_01	GP_02	GP_03	GP_04	GP_05	GP_06	GP_07	GP_08	GP_11	GP_12	GP_13	GP_15
Toluene diisocyanate $(C_9H_6N_2O_2)$	-	-	-	-	0.11	-	-	-	-	-	-	-
Methylene chloride (CH ₂ Cl ₂)	-	-	-	-	-	-	504.85	-	-	-	-	-
Calculated emission rate per group						kg/aı	nnum					
Total volatile organic compounds (TVOC)	109.60	28.29	149.29	345.64	0.45	22.09	1,009.70	78.02	-	6.24	-	-
Propylene oxide (C ₃ H ₆ O)	109.60	28.29	149.29	345.64	-	22.09	-	78.02	-	6.24	-	-
Toluene diisocyanate $(C_9H_6N_2O_2)$	-	-	-	-	0.45	-	-	-	-	-	-	-
Methylene chloride (CH ₂ Cl ₂)	-	-	-	-	-	-	1009.70	-	-	-	-	-
Calculated emission rate per group -for model						g	/s					
Total volatile organic compounds (TVOC)	3.48E-03	8.97E-04	4.73E-03	1.10E-02	1.44E-05	7.00E-04	3.20E-02	2.47E-03	-	1.98E-04	-	-
Propylene oxide (C ₃ H ₆ O)	3.48E-03	8.97E-04	4.73E-03	1.10E-02	-	7.00E-04	-	2.47E-03	-	1.98E-04	-	-
Toluene diisocyanate $(C_9H_6N_2O_2)$	-	-	-	-	1.44E-05	-	-	-	-	-	-	-
Methylene chloride (CH ₂ Cl ₂)	-	-	-	-	-	-	3.20E-02	-	-	-	-	-
Notes:	⁽¹⁾ EU011 and EU037 are process tanks used solely for decanting drums or intermediate bulk containers. Emissions from such are therefore accounted for in the related storage tanks. ⁽²⁾ EU034 is not yet operational, so there is currently no throughput. Additionally, due to the tank's relatively small size compared to other tanks, any potential emissions are expected to be minimal.											

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

Source ID	GP_09	GP_10	GP_14
Tank EU ID	EU026 – EU027	EU028 & EU035	EU036
Chemical Name	Diesel	Diesel	Petrol
Number of duplicate tanks	2	2	1
Latitude (°S)	25.632807	25.632495	25.632249
Longitude (°E)	28.090117	28.089628	28.089701
Situation (indoor, outdoor, underground)	Underground	Indoor	Outdoor
Horizontal / Vertical	Horizontal	Horizontal	Vertical
Floating or fixed roof	N/A	N/A	N/A
Height / Length (m)	4.46	2.15	2.15
Diameter (m)	2.00	1.15	1.15
Maximum liquid height (m)	N/A	1.04	1.94
Average liquid height (m)	N/A	0.52	0.97
Working volume (m ³)	14.00	2.12	2.01
Turnovers per tank per year	2.30	36.96	11.14
Net throughput per tank (m³/yr)	32.60	78.35	22.38
Heated?	No	No	No
Colour of tank	N/A	Grey	Grey
Pressure setting	Ambient	Ambient	Ambient
Source type for modelling	Point	Point	Point
Calculated emission rate per tank		kg/annum	
Total volatile organic compounds (TVOC)	0.10	0.52	171.44
Benzene (C ₆ H ₆)	0.00	0.00	1.23
Toluene (C ₇ H ₈)	0.00	0.01	1.43
Xylene (C ₈ H ₁₀)	0.00	0.03	0.42
Calculated emission rate per group		kg/annum	
Total volatile organic compounds (TVOC)	0.21	1.04	171.44
Benzene (C ₆ H ₆)	0.00	0.00	1.23
Toluene (C ₇ H ₈)	0.01	0.03	1.43
Xylene (C ₈ H ₁₀)	0.01	0.06	0.42
Calculated emission rate per group – for model		g/s	
Total volatile organic compounds (TVOC)	6.62E-06	3.31E-05	5.44E-03
Benzene (C ₆ H ₆)	0.00E+00	0.00E+00	3.90E-05
Toluene (C ₇ H ₈)	2.88E-07	8.63E-07	4.53E-05
Xylene (C ₈ H ₁₀)	2.88E-07	2.01E-06	1.32E-05

Table 5-4: Fuel storage tank specifications and calculated emission rates

5.2 EXTRUSION VENTS

Emissions resulting from the production of foam are exhausted through extrusion vents located on the rooftop of the building in which the process occurs. Emission rates were calculated using the latest stack emission test results, conducted by Skyside between 06 and 20 September 2022, refer to **Appendix B** for the full stack test report. Compounds detected in the flue gas streams which include benzene, toluene and xylene have been quantified. Trace amounts of other compounds detected are accounted for as TVOC and not individually quantified. Point source specifications, measured concentrations and calculated emission rates are provided in **Table 5-5**.

Source ID	Extrusion Vent – Front	Extrusion Vent – Back					
Latitude (°S)	25.632630	25.632659					
Longitude (°S)	28.089370	28.089476					
Stack height (m)	7.80	7.80					
Stack diameter (m)	0.72	0.72					
Gas exit velocity (m/s)	7.20	8.90					
Gas exit temperature (°C)	23.00	23.00					
Flow rate (Nm ³ /s)	2.92	3.25					
Operating period (hr/year)	153	153					
Emission rate (mg/Nm ³)							
тиос	7.00E-02	1.00E-01					
Benzene	6.50E-03	8.50E-03					
Toluene	3.70E-02	6.34E-02					
Xylene	9.20E-03	1.52E-02					
	Emission rates (g/s)						
TVOCs	1.62E-04	2.58E-04					
Benzene	1.51E-05	2.19E-05					
Toluene	8.57E-05	1.64E-04					
Xylene	2.13E-05	3.92E-05					

 Table 5-5:
 Point source parameters and emission rates for extrusion vents

5.3 CHIPFOAM BOILER

The Rosslyn facility currently operates a single chipfoam boiler (0.39 MW heat input) which is used for the generation of steam during chipfoam production. Strandfoam plans to install an additional boiler of <10 MW in 2025. With the addition of the new boiler (Boiler 2 – Chipfoam 3) the cumulative heat input of all boilers will be <10MW. As such, both boilers are included in this assessment in order to obtain the most conservative emissions profile for the facility. It is, however, also noted that the additional boiler will not be used to increase the production throughput at the facility, but to reduce the load on the existing boiler. As such, the current diesel usage will remain the same and be split equally between the two boiler units.

The National Atmospheric Emissions Inventory System (NAEIS) guidelines provides a methodology for calculating atmospheric emissions in the absence of emission monitoring data. **Table 5-6** provides emission factors used for small combustion sources with a design capacity less than 10 MW.

	Table 5-6:	NAEIS	emission	factors	for small	combustion	sources
--	------------	-------	----------	---------	-----------	------------	---------

Pollutant	Emission Factor (kg/t)
Oxides of nitrogen (NO _x)	4.3
Sulphur dioxide (SO ₂)	6.02
Particulate matter (PM ₁₀)	0.9245
Particulate matter (PM _{2.5})	0.7095
Total volatile organic compounds (TVOCs)	0.43
Carbon monoxide (CO)	1.72

Table 5-7 provides the parameters and calculated emission rates for the Chipfoam boiler.

Table 5-7: Chipfoam boiler parameters and emission rates

Source ID	Boiler 1 – Chipfoam 1& 2	Boiler 2 – Chipfoam 3		
Latitude (°S)	25.632489	25.632489		
Longitude (°E)	28.089664	28.089664		
Stack height (m)	8.6	7.8		
Stack diameter (m)	0.25	0.25		
Gas exit velocity (m/s)	8.05	8.05		
Gas exit temperature (°C)	225	250		
Consumption rate (litres/year)	39174	39174		
Operating period (hr/year)	2,125	2,125		
Pollutant	Calculated Emission rates (g/s)			
TVOCs	1.85E-03	1.85E-03		
NOx	2.59E-02	2.59E-02		
SO ₂	1.85E-02	1.85E-02		
PM ₁₀	7.40E-03	7.40E-03		
PM _{2.5}	3.98E-03	3.98E-03		
СО	3.05E-03	3.05E-03		

5.4 EMERGENCY INCIDENTS

As confirmed by Strandfoam, there were fires at the facility on 10 August 2024 (lasting two hours) and 24 January 2025 (lasting 1.5 hours).

The fire on 10 August 2024 resulted from a veld fire that ignited waste products along the northwestern boundary of Strandfoam's fence. Four storage containers containing polyurethane foam offcuts caught fire due to the wind direction. This led to a section of a building burning down; however, the internal fire wall limited the damage to a single compartment of the building.

The fire on 24 January 2025 destroyed the canopy and sections of adjacent buildings up to the fire walls.

According to Strandfoam, both incidents were reported to the licensing authority.

6 IMPACT OF ENTERPRISE ON THE RECEIVING ENVIRONMENT

6.1 ANALYSIS OF EMISSIONS ON HUMAN HEALTH

6.1.1 REGULATORY FRAMEWORK FOR AIR QUALITY

Until 2004, South Africa's approach to air pollution control was driven by the Atmospheric Pollution Prevention Act 45 of 1965 (APPA) which was repealed with the promulgation of NEM:AQA. NEM:AQA represents a shift in South Africa's approach to air quality management, from source-based control to integrated effects-based management. The objectives of NEM:AQA are to:

- Protect the environment by providing reasonable measures for:

- The protection and enhancement of air quality.
- The prevention of air pollution and ecological degradation.
- Securing ecologically sustainable development while promoting justifiable economic and social development.
- o Give effect to everyone's right "to an environment that is not harmful to their health and well-being".

Significant functions detailed in NEM:AQA include:

- The National Framework for Air Quality Management (DEA, 2018).
- Institutional planning matters, including:
 - The establishment of a National Air Quality Advisory Committee.
 - The appointment of Air Quality Officers (AQOs) at each level of government.
 - The development, implementation and reporting of Air Quality Management Plans (AQMP) at national, provincial and municipal levels.
- Air quality management measures including:
 - The declaration of Priority Areas where ambient air quality standards are being, or may be, exceeded;
 - The listing of activities that result in atmospheric emissions and which have the potential to impact negatively on the environment and the licensing thereof through an Atmospheric Emissions License (AEL).
 - The declaration of Controlled Emitters.

- The declaration of Controlled Fuels.
- Procedures to enforce Pollution Prevention Plans or Atmospheric Impact Reporting for the control and inventory of atmospheric pollutants of concern.
- Requirements for addressing dust and offensive odours.

LISTED ACTIVITIES AND MINIMUM EMISSIONS STANDARDS

The Rosslyn facility manufactures flexible foam using toluene TDI more than 100 tons per annum, triggering listed activity *Category 6: Organic Chemicals Industry* of Government Notice Regulation 893 of 2013 with associated MES presented in **Table 6-1**.

Table 6-1:Minimum Emission Standards and special arrangements for Category 6 - OrganicChemicals Industry

Applications All installations producing or using more than 100 tons per annum of any of the listed compounds. Substance or mixture of substances Plant status mg/Nm³ under normal conditions of 10% O₂, 273 Kelvin and 101.3 kPa Common name So3 New 30 Sulphur trioxide (from sulphonation processes) SO3 Existing 100 Acrylonitrile (from processes producing ard/or using acrylonitrile) CH₂CHCN New 5 Methylamines (from nitrogen - containing organic chemicals) CH₅N New 10 Total volatile organic compounds N/A New 150 Total volatile organic compounds N/A New 40,000	Description	The production, or use in production, of organic chemicals not specified elsewhere, including acetylene, acetic, maleic or phthalic anhydride or their acids, carbon disulphide, pyridine, formaldehyde, acetaldehyde, acrolein and its derivatives, acrylonitrile, amines and synthetic rubber. The production of organometallic compounds, organic dyes and pigments, surface active agents. The polymerisation or co-polymerisation of any unsaturated hydrocarbons, substituted hydrocarbon (including vinyl chloride). The manufacture, recovery or purification of acrylic acid or any ester of acrylic acid. The use of toluene di-isocyanate or other di-isocyanate of comparable volatility; or recovery of pyridine.				
Substance or mixture of substancesPlant statusmg/Nm³ under normal conditions of 10% O2, 273 Kelvin and 101.3 kPaCommon nameChemical symbolPlant statusmg/Nm³ under normal conditions of 10% O2, 273 Kelvin and 101.3 kPaSulphur trioxide (from sulphonation processes)SO3New30Sulphur trioxide (from processes producing and/or using acrylonitrileCH2CHCNNew30Acrylonitrile (from processes producing and/or using acrylonitrile)CH2CHCNNew5Methylamines (from nitrogen - containing organic chemicals)CH5NNew10Total volatile organic compounds (thermal)N/ANew150Total volatile organic compoundsN/ANew40,000	Applications		s producing or	using more than 100 t	ons per annum of any of the listed compounds.	
$ \begin{array}{ c c c } Sulphur trioxide (from sulphonation processes) \\ SO_3 \\ \hline SO_$	Substance or mixture of substances		s Chemical symbol	Plant status	mg/Nm ³ under normal conditions of 10% O ₂ , 273 Kelvin and 101.3 kPa	
processes) 303 Existing100Acrylonitrile (from processes producing and/or using acrylonitrile) CH_2CHCN New5Methylamines (from nitrogen - containing organic chemicals) CH_5N New10Total volatile organic compounds (thermal)N/ANew150Total volatile organic compounds (thermal)N/ANew150Total volatile organic compounds (thermal)N/ANew40,000	Sulphur trioxide (from sulphonation		50.	New	30	
$\begin{array}{ c c c } \mbox{Acrylonitrile} & (from processes producing and/or using acrylonitrile) \\ \mbox{Producing and/or using acrylonitrile) } \\ \mbox{Methylamines} & (from nitrogen - \\ \mbox{containing organic chemicals)} \\ \mbox{Total volatile organic compounds} & \mbox{H}_5 \\ \mbox{N/A} & \box{New} & \box{10} \\ \mbox{Total volatile organic compounds} \\ \mbox{Total volatile organic compounds} \\ \mbox{N/A} & \box{New} & \box{Mew} \\ \mbox{New} & \box{Mew} \\ \mbox{Mew} \\ \mbox{Mew} \\ \mbox{Mew} \\ \box{Mew} \\ \mbox{Mew} \\ \box{Mew} \\ \$	processes)		503	Existing	100	
producing and/or using acrylonitrile)CH2CHONExisting5Methylamines (from nitrogen - containing organic chemicals)CH5NNew10Total volatile organic compounds (thermal)N/ANew150Total volatile organic compounds (thermal)N/ANew150Total volatile organic compounds (thermal)N/ANew40,000	Acrylonitrile (from	processes	CH₂CHCN	New	5	
$\begin{array}{ c c c c }\hline \mbox{Methylamines (from nitrogen} & $P_{H_5}N$ & New & 10 \\ \hline \mbox{CH_5}N$ & $Existing$ & 10 \\ \hline \mbox{Existing} & 10 \\ \hline \mbox{Total volatile organic compounds} & N/A & New & 150 \\ \hline \mbox{Existing} & 150 \\ \hline \mbox{Total volatile organic compounds} & N/A & New & $40,000$ \\ \hline \mbox{Methylamines} & N/A & New & $40,000$ \\ \hline \mbox{Methylamines} & N/A & New & 150 \\ \hline \mbox{Methylamines} & N/A & New & $40,000$ \\ \hline \mbox{Methylamines} & N/A & New & 150 \\ \hline \mbox{Methylamines} & N/A & New & $40,000$ \\ \hline \end{tabular}$	producing and/or using	g acrylonitrile)		Existing	5	
containing organic chemicals)CHINNExisting10Total volatile organic compounds (thermal)N/ANew150Total volatile organic compoundsN/AExisting150Total volatile organic compoundsN/ANew40,000	Methylamines (from nitrogen – containing organic chemicals)		CH₅N	New	10	
Total volatile organic compounds (thermal) N/A New 150 Total volatile organic compounds N/A New 40,000				Existing	10	
(thermal)N/AExisting150Total volatile organic compoundsN/ANew40,000	Total volatile organic compounds (thermal)		N1/A	New	150	
Total volatile organic compounds N/A New 40,000			IN/A	Existing	150	
	Total volatile organi	c compounds	N/A	New	40,000	
(non-thermal) Existing 40,000	(non-thermal)		11/ <i>1</i> 7	Existing	40,000	

(a) The following transitional arrangement shall apply for the storage and handling of raw materials, intermediate and final products with a vapour pressure greater than 14 kPa at operating temperature: -Leak detection and repair (LDAR) program approved by licensing authority to be instituted, by 01 January 2014.

(b) The following special arrangements shall apply for control of TVOCs from the storage of raw materials, intermediate and final products with a vapour pressure of up to 14 kPa at operating temperature, except during loading and offloading. (Alternative control measures that can achieve the same or better results may be used) –

 (i) Storage vessels for liquids shall be of the following type:

Application	All permanent immobile liquid storage facilities at a single site with a combined storage capacity of greater than 1000 cubic metres.
True vapour pressure of contents at product storage temperature	Type of tank or vessel
Type 1: Up to 14 kPa	Fixed-roof tank vented to atmosphere, or as Type 2 and 3
Type 2: Above 14 kPa	Fixed-roof tank with Pressure Vacuum Vents fitted as a minimum, to prevent "breathing" losses, or as Type 3
Type 3: Above 14 kPa and up to 91 kPa with a throughput greater than 50 000 m ³ per annum	external floating-roof tank with primary rim seal and secondary rim seal for tank with a diameter greater than 20 m or

		fixed-roof tank with internal floating deck/roof fitted with primary seal, or			
		fixed-roof tank with v	fixed-roof tank with vapour recovery system.		
Type 4:	Above 91 kPa			Pressure vessel	
 (ii) The roof le floating roo (iii) Relief valvacoustic me LDAR propinte (c) The following sp materials, interme measures that can (i) All installa 14 kPa, mu 	egs, slotted pipes of tanks) shall hav es on pressurised onitors or if ventin gramme. ecial arrangement ediate and final pro- achieve the same tions with a thro- ust be fitted with v	and/or dipping re sleeves fitted storage should u ng to atmospher ts shall apply for oducts with a var e or better result ughput of great apour recovery	ng well on floating roof tanks (except for domed floating roof tanks or internal ed to minimise emissions. Id undergo periodic checks for internal leaks. This can be carried out using portable here with an accessible open end, tested with a hydrocarbon analyser as part of an / for control of TVOCs from the loading and unloading (excluding ships) of raw vapour pressure of greater than 14 kPa at handling temperature. Alternative control sults may be used: reater than 50 000m ³ per annum of products with a vapour pressure greater than ery destruction units. Emission limits are set out in the table below -		
Description	Vapour Recov	ery Units			
Application	All loading/offle	oading facilitie	s with a throughput gre	eater than 50 000 m ³	
Substance or mixture	e of substances	5		mg/Nm ³ under normal conditions of 273	
Common name		Chemical symbol	Plant status	Kelvin and 101.3 kPa.	
Total volatile organic c	compounds	NI/A	New	150	
units using thermal treatment.		N/A	Existing	150	
Total volatile organic compounds		N/A	New	40 000	
units using non therma	al treatment	11/7	Existing	40 000	

(ii) For road tanker and rail car loading/offloading facilities where the throughput is less than 50 000 m³ per annum, and where ambient air quality is, or is likely to be impacted, all liquid products shall be located using bottom loading, or equivalent, with the venting pipe connected to a vapour balancing system. Where vapour balancing and/or bottom loading is not possible, a recovery system utilizing adsorption, condensation or incineration of the remaining VOCs, with a collection efficiency of at least 95%, shall be fitted.

SOUTH AFRICAN AMBIENT AIR QUALITY STANDARDS

Ambient air quality standards are defined as "*targets for air quality management which establish the permissible concentration of a particular substance in, or property of, discharges to air, based on what a particular receiving environment can tolerate without significant deterioration*" (DEA, 2000). The aim of these standards is to provide a benchmark for air quality management and governance. South Africa's National Ambient Air Quality Standards (NAAQS) are based primarily on guidance offered by two standards set by the South African National Standards (SANS):

- SANS 69:2004 Framework for implementing National ambient air quality standards.
- SANS 1929:2005 Ambient air quality Limits for common pollutants.

SANS 69:2004 makes provision for the establishment of air quality objectives for the protection of human health and the environment as a whole. Such air quality objectives include limit values, alert thresholds and target values.

SANS 1929:2005 uses the provisions in SANS 69:2004 to establish air quality objectives for the protection of human health and the environment and stipulates that limit values are initially set to protect human health. The setting of such limit values represents the first step in a process to manage air quality and initiate a process to ultimately achieve acceptable air quality nationally.

The priority pollutants as defined by the NEM:AQA are SO₂, NO₂, PM₁₀, PM_{2.5}, benzene, CO, Ozone (O₃) and Lead (Pb). Pollutants assessed in this study are TVOCs, SO₂, NO₂, PM₁₀, PM_{2.5} and CO. The NAAQS presented in **Table 6-2** were promulgated in 2009 and 2012. The NAAQS generally have specific averaging periods, compliance timeframes, permissible frequencies of exceedance and measurement reference methods.

Pollutant	Averaging Period	Concentration (µg/m³)	Frequency of Exceedance	Compliance Date
	24 hour	120	4	Immediate – 31 Dec 2014
DM	24-110ui	75	4	01 Jan 2015
	1.voor	50	0	Immediate - 31 Dec 2014
	i year	40	0	01 Jan 2015
		65	4	Immediate – 31 Dec 2015
	24-hour	40	4	01 Jan 2016 - 31 Dec 2029
DM		25	4	01 Jan 2030
F IVI _{2.5}		25	0	Immediate – 31 Dec 2015
	1 year	20	0	01 Jan 2016 – 31 Dec 2029
		15	0	01 Jan 2030
	10 minutes	500	526	Immediate
80	1-hour	350	88	Immediate
302	24-hour	125	4	Immediate
	1 year	50	0	Immediate
NO	1-hour	200	88	Immediate
NO_2	1 year	40	0	Immediate
	1-hour	30,000	88	Immediate
0	8-hour	10,000	11	Immediate
O ₃	8-hour	120	11	Immediate
Pb	1 year	0.5	0	Immediate

Table 6-2: National Ambient Air Quality Standards

CRITERIA FOR HYDROCARBON EXPOSURE

TVOCs is the term used for a class of several hundred carbon-based chemical compounds that evaporate easily into air. Some VOCs have no known human health effects while the toxicity and carcinogenicity of others is well established. Little is known about how VOCs combine in the atmosphere or what the potential cumulative impacts might be on the human body, making analysis, risk assessment and guideline setting difficult.

No local standards or international guidelines have been set for the assessment of cumulative ambient TVOCs concentrations. Benzene is the only VOC with an established NAAQS in South Africa. Given this, only the benzene portion of TVOCs have been assessed.

INTERNATIONAL GUIDELINES

In the absence of local standards for specific compounds, international guidance is provided. A summary of the guidelines for health impact from exposure to process relevant pollutants (not regulated by NAAQS) is provided in **Table 6-3**.

WORLD HEALTH ORGANISATION

The World Health Organisation (WHO) provide guidelines for protecting public health from the adverse effects of air pollutants and to eliminate or reduce exposure to those pollutants that are known or likely to be hazardous to human health or well-being. The guidelines are based on expert evaluation of current scientific evidence and are intended to inform policy makers and to provide targets for air quality management. In establishing pollutant levels below which exposure does not constitute a significant public health risk over a specified period of time, the guidelines provide a basis for setting standards or limit values for air pollutants. In general, the guidelines address single pollutants (identified to be of special environmental and health significance to countries of the

European Region) whereas in reality, exposure to mixtures of chemicals occurs, with potentially additive, synergistic or antagonistic effects. In dealing with practical situations or standard-setting procedures, therefore, consideration should be given to the interrelationships between the various air pollutants. In setting legally binding standards, considerations such as prevailing exposure levels, technical feasibility, source control measures, abatement strategies, and social, economic and cultural conditions also should be taken into account (WHO, 2000, 2005, 2021).

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

The Texas Commission on Environmental Quality (TCEQ) is the environmental agency for the state of Texas in the United States. TCEQ have developed Effects Screening Levels (ESLs) to evaluate impacts from pollutant concentrations predicted by dispersion modelling simulations. ESLs, which include both short- (1-hour) and long-term (annual) limit values, are chemical-specific concentration limits set to protect human health and welfare. They are not ambient air quality standards but rather a guideline as to whether airborne contaminants present adverse risk. Short-term ESLs are based on data concerning acute health effects, the potential for nuisance odour and effects on vegetation, while long-term ESLs are based on data concerning chronic health and vegetation effects. Welfare ESLs (i.e. odour and vegetation effects) are based on effect thresholds while health ESLs are based on toxicity factors and dose responses relevant to humans (TCEQ, 2006).

CALIFORNIA OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT

The California Office of Environmental Health Hazard Assessment (OEHHA) is the lead agency for the assessment of health risks posed by environmental contaminants in the state of California, United States. OEHHA have developed risk assessment guidelines with defined reference exposure levels (RELs) for airborne contaminants. An REL is the concentration level at or below which no adverse non-cancer health effects are anticipated for the specified exposure duration (i.e. acute 1-hour and chronic annual exposure). RELs are designed to protect the most sensitive individuals in the population by the inclusion of factors that account for uncertainties as well as individual differences in human susceptibility to chemical exposures. The factors used err on the side of public health protection to avoid underestimation of non-cancer hazards and as such, exceeding the REL does not automatically indicate an adverse health impact. Increasing concentrations above the REL value increases the likelihood that the health effect will occur (OEHHA, 2015).

Pollutant	Averaging	WHO	TCEQ ESL	OEHHA REL
Foliulani	Period		μg/m³	
	1-hour	-	170	27
Benzene	8-hour	-	-	3
	1-year	0*	4.5	3**
	1-hour	-	4,500	5,000
Taluana	8-hour	-	-	830
roluene	1-week	260	-	-
	1-year	-	1,200	420
Yulana	1-hour	-	2,200	22,000
Aylene	1-year	-	180	700
Mathulana ablarida	1-hour	-	3,600	14,000
	1-year	-	350	400
Toluene diisocyanate	1-hour	-	0.7	2

Table 6-3: International guidelines for process relevant VOCs

Dellutent	Averaging	WHO	TCEQ ESL	OEHHA REL
Pollutant	Period		μg/m³	
	8-hour	-	-	0.015
	1-year	-	0.1	0.008
Dronylana ovida	1-hour	-	1,000	3,100
Propylene oxide	1 year	-	100	30

Notes:

* Benzene is carcinogenic to humans and no safe levels of exposure can be recommended by the World Health Organisation. The continuous exposure concentrations of airborne benzene associated with an excess lifetime risk of 1:10 000 for leukaemia is 11.165 µg/m³

The most stringent of the guideline values (red) recommended by the international bodies referenced above, are used in this study to assess impact (with the exception of the WHO benzene threshold **, since benzene is regulated by the NAAQS).

6.1.2 HEALTH IMPACTS ASSOCIATED WITH NATIONALLY REGULATED AIR POLLUTANTS

The composition of air pollutant mixtures, pollutant concentrations, duration of exposure and other susceptibility factors (e.g. age, nutritional status and predisposing conditions) can lead to diverse impacts on human health. Health effects can range from nausea and skin irritation to cancer and mortality (Kampa and Castanas, 2007) (**Table 6-4**). High risk individuals include the elderly, people with pre-existing heart or lung disease, pregnant women, asthmatics and children.

Pollutant	Description	Health effects
Sulphur dioxide (SO ₂)	SO_2 originates from the combustion of sulphur-rich fuels (principally coal and heavy oils) and the smelting of sulphur-containing ores (Kampa and Castanas, 2007). Health effects associated with exposure to SO_2 are associated with the respiratory system (Maroni <i>et al.</i> , 1995).	 Nose and throat irritation Bronchoconstriction and dyspnoea Reduced lung function in sensitive individuals
Nitrogen dioxide (NO ₂)	Nitric Oxide (NO) is a primary pollutant emitted from combustion processes including stationary sources (e.g. heating, power generation, etc.) and from motor vehicles. Nitrogen dioxide (NO ₂) is formed through the oxidation of nitric oxide. Oxidation of NO by O ₃ occurs rapidly, even at low levels of reactants present in the atmosphere. NO _x contributes to the formation of tropospheric ozone, an important atmospheric oxidant, a respiratory irritant and a greenhouse gas (WHO, 2000).	 Nose and throat irritation Bronchoconstriction and dyspnoea Asthma Bronchitis Reduced lung function and tissue damage in sensitive individuals Emphysema Premature death
Ozone (O ₃)	O_3 in the atmosphere is a secondary pollutant formed through a complex series of photochemical reactions between NO_2 and VOCs in the presence of sunlight. Sources of these precursor pollutants include motor vehicles and industries. Atmospheric background concentrations are derived from both natural and anthropogenic sources. Natural concentrations of O_3 vary with altitude and seasonal variations (i.e. summer conditions favour O_3 formation due to increased insolation). Ozone is a powerful oxidant and can react with a wide range of cellular components and biological materials (WHO, 2000).	 Reduced lung function Inflammation of the lungs Pulmonary function decrements Asthma Exacerbated pre-existing lung conditions
Particulate matter (PM ₁₀ & PM _{2.5})	Particles can be classified by their aerodynamic properties into coarse particles, PM_{10} (particulate matter with an aerodynamic diameter of less than 10 µm) and fine particles, $PM_{2.5}$ (particulate matter with an aerodynamic diameter of less than 2.5 µm) (Harrison and Grieken, 1998). Particulate air pollution affects the respiratory system (WHO, 2000). Particle size is important for health because it controls how far into the respiratory system particles are able to permeate. Fine particles have been found to be more damaging to human health than coarse particles as larger particles are less respirable in that they do not pass from the lungs into the bloodstream (Manahan, 1991).	 Increase in lower respiratory symptoms Reduced lung function Inflammation of the lungs Angina Myocardial infraction Bronchitis Mortality

Table 6-4: NAAQS regulated air pollutants and associated human health impacts

Pollutant	Description	Health effects
Carbon monoxide (CO)	CO is one of the most common and widely distributed air pollutants. It is a tasteless, odourless and colourless gas which has a low solubility in water. In the human body, after reaching the lungs it diffuses rapidly across the alveolar and capillary membranes and binds reversibly with haemoglobin, reducing the oxygen carrying capacity of the blood leading to hypoxia as vital organs (particularly the brain and heart) are starved of oxygen. High risk individuals include persons with pre-existing cardiovascular diseases, pregnant women and infants (Kampa and Castanas, 2007). Anthropogenic emissions of CO originate from the incomplete combustion of carbonaceous materials. The largest proportion of these emissions is produced from exhausts of internal combustion engines, in particular petrol vehicles. Other sources include industrial processes, coal power plants and waste incinerators. Ambient CO concentrations in urban areas depend on the density of vehicles and are influenced by topography and weather conditions (Rudolph, 1994).	 Headaches Nausea and vomiting Muscle weakness Shortness of breath Impaired cognitive ability Impaired coordination and reflex responses Haematological problems Unconsciousness Mortality
Lead (Pb)	Lead is a naturally occurring heavy metal that is found in the earth's crust. Lead can be released into the atmosphere through volcanic eruptions, sea spray and bushfires. Ore mining and metal processing are the largest anthropogenic sources of lead emissions (Australian Government, 2021). Leaded petrol was once a significant source of lead in urban areas, however, as a result of national legislation, lead has been phased out of petrol and significant reductions in airborne lead have been achieved.	 Muscle pain Abdominal pain Headaches Nausea and Vomiting Seizures Coma Learning disabilities Impaired coordination Increased blood pressure Anaemia Neuropathies: Memory disturbances Sleep disorders Anger Fatigue Tremors Blurred vision Miscarriage Premature delivery or ctillbirth
Benzene (C ₆ H ₆)	Benzene is a colourless liquid with an aromatic odour. Crude oil is the largest natural source of benzene. Benzene is used in many products, including plastics, synthetic rubber, glues, paints, furniture wax, lubricants, dyes, detergents, pesticides and some pharmaceuticals. Benzene is emitted from motor engines, wood combustion and stationary fossil fuel combustion. The major source is exhaust emissions and evaporation losses from motor vehicles, and evaporation losses during the handling, distribution and storage of petrol (USEPA, 2012).	 stillbirth Drowsiness Dizziness Headaches Irritation of the eyes, skin and respiratory tract Visual disorders Fatigue Impaired coordination Haematological problems Adverse foetal development Cancer Mortality
Total Volatile Organic Compounds (TVOC)	TVOC refers to a class of several hundred carbon based chemical compounds that easily vaporize from the solid or liquid phase into a gas. Some VOCs have little to no known human health effects while others are extremely toxic and potentially carcinogenic. Little is known about how VOCs combine in the atmosphere or what the potential cumulative impacts might be on the human body, making analysis, risk assessment and guideline setting for these collective compounds exceptionally difficult.	 Eye, nose and throat irritation Headaches Nausea Dizziness Fatigue Dermal irritation Damage to the kidneys, liver and central nervous system Loss of coordination Cancer Mortality
6.1.3 METEOROLOGICAL OVERVIEW

Since meteorological conditions affect how pollutants emitted into the air are directed, diluted and dispersed within the atmosphere, the incorporation of reliable data into an air quality assessment is of the utmost importance. Dispersion comprises vertical and horizontal components of motion. The stability of the atmosphere and the depth of the atmospheric mixing layer control the vertical component. The horizontal dispersion of pollution in the boundary layer is primarily a function of the wind field. The wind speed determines both the distance of downwind transport and the rate of dilution as the plume 'stretches'. Mechanical turbulence is influenced by wind speed in combination with surface roughness.

Parameters that need to be considered in the characterisation of dispersion potential include wind speed, wind direction, atmospheric stability, ambient air temperature and mixing depth. To accurately represent meteorological conditions occurring at Rosslyn, WRF Pre-processed Meteorological data was purchased from Lakes Environmental Consultants Inc. for the January 2020 – December 2022 monitoring period. The data coverage is centred over the Rosslyn facility (25.0632325°S, 28.089556°E) with a grid cell dimension of 12 km x 12 km resolution over a 50 km x 50 km domain and at an elevation of 1,289 m.

Additionally, temperature and rainfall data for the January 2020 to December 2022 period was sourced from the South African Air Quality Information System (SAAQIS) Rosslyn NAQI (National Air Quality Indicator) station (25.625126°S, 28.09474°E), owned and operated by the City of Tshwane Metropolitan Municipality. Given the proximity of the NAQI station to the Rosslyn Facility (~0.79 km northeast), measured meteorological conditions are considered representative of conditions experienced at the Rosslyn Facility.

The closest South African Weather Services station with respectable data recovery (>90%) is located approximately 40 km from the site. Due to the distance from the Rosslyn facility, the data is considered non-representative of conditions experienced on site and has been excluded from this study.

The percentage data recovery for each meteorological variable is provided in **Table 6-5**. It must be noted that the South African National Accreditation System (SANAS, 2012) TR 07-03 standards stipulate a minimum data recovery of 90% for the dataset to be deemed representative of conditions during a specific reporting period. The percentage recovery for parameters recorded exceeded 90% and is thus considered reliable for use in this assessment.

Data Sauraa		Lengitude (°E)	Data Recovery					
Data Source	Latitude (S)	Longitude (E)	Temperature	Rainfall	Wind			
WRF	25.063232	28.08955	100%	100%	100%			
SAAQIS Rosslyn NAQI	25.625126	28.09474	97.0%	0%	94.7%			

Table 6-5: Percentage data recovery for the January 2020 – December 2022 monitoring period

TEMPERATURE AND RAINFALL

Ambient air temperature influences plume buoyancy as the higher the plume temperature is above the ambient air temperature, the higher the plume will rise. Further, the rate of change of atmospheric temperature with height influences vertical stability (i.e. mixing or inversion layers). Rainfall is an effective removal mechanism of atmospheric pollutants.

Figure 6-1 illustrates the average monthly relative humidity, temperature, temperature range (maximum and minimum) from the Rosslyn NAQI station for the period of 2020 to 2022. Given that rainfall data was not available

from the Rosslyn NAQI Station, rainfall data from the WRF dataset has been included in the figure. Strandfoam Rosslyn receives on average 226.30 mm of rainfall per year, with high rainfall occurring during the spring and summer months (September to February) with drier conditions during the winter months (June to August). The highest recorded temperature was 36.87°C (November 2020) while the lowest recorded temperature was 1.83°C (June 2020). Summer temperatures average at 23.04°C while winter temperatures average at 13.80°C.

Figure 6-1: Temperature range, average monthly temperature and average relative humidity from the Rosslyn NAQI Station and average rainfall from the WRF meteorological data for the January 2020 to December 2022 period

WIND FIELD

Wind roses are useful for illustrating the prevailing meteorological conditions of an area, indicating wind speeds and directional frequency distributions. In the following wind roses, the colour of the bar indicates the wind speed while the length of the bar represents the frequency of winds *blowing from* a certain direction (as a percentage).

Period wind rose plots (2020-2022) from the Rosslyn NAQI station and WRF modelled data are presented in **Figure 6-2**. The data plots for both datasets exhibit similar conditions. In the case of the WRF data, prevailing winds are from the northeast and east-northeast, with calm wind conditions occurring 6.93% of the time. In the Rosslyn NAQI dataset, the dominant wind directions are from the east-northeast and east, with a much higher occurrence of calm conditions (32.48%). Wind speeds in the WRF dataset are a lot stronger than those recorded by the Rosslyn NAQI station. Average recorded wind speeds are, however, similar for both datasets with an average speed of 2.76 m/s for the WRF model data and 2.06 m/s for the Rosslyn NAQI data.

Figure 6-2: Wind rose plots for WRF and Rosslyn NAQI meteorological data for the period January 2020 to December 2022

Seasonal variations in wind are depicted in **Figure 6-3**. During summer (December to February), winds originate predominantly from the northeast, east-northeast and east. The strongest winds are recorded during this time. During autumn (March to May), the north-easterly, east-north-easterly and easterly winds continue to dominate in both datasets, however, wind speeds from these directions occur with a higher frequency and strength in the WRF dataset. At this time, a westerly and south-westerly wind component is also introduced. During winter (June to August) the north-easterly, east-north-easterly and easterly winds continue to dominate, once again with a higher frequency and speed in the WRF dataset. The winds from the westerly and south-westerly quadrants remain and increase slightly in frequency and strength. During spring, the winds from the south-west diminish and winds from the northeast and east-northeast dominate once again.

Figure 6-3: Seasonal wind rose plots for the period January 2020 to December 2022

6.1.4 AMBIENT AIR QUALITY REVIEW

EXISTING SOURCES OF EMISSIONS

A qualitative discussion of identified emission sources in the vicinity of the study site is provided below. Key emission sources in the region are industrial activities and vehicle tailpipe emissions. These emission sources contribute towards the air quality status quo within the region, with particulates being of particular concern in this regard.

INDUSTRIAL EMISSIONS

The Project area is home to many heavy industries including, but not limited to, an automotive manufacturer, steel and rubber manufacturing and production of recycled packing materials. Industrial activities release gaseous and particulate emissions into the atmosphere. The main pollutants released from combustion processes include SO_2 , CO, carbon dioxide (CO₂), VOCs, NO_x and particulates.

VEHICLE TAILPIPE EMISSIONS

Vehicle tailpipe emissions within the area are considered moderate (DEA, 2019) with vehicles operating on the R566 main road and local roads that accommodate traffic between the surrounding areas. Atmospheric pollutants emitted from vehicles include hydrocarbons, CO, CO₂, NO_x, SO₂ and particulates. These pollutants are emitted from the tailpipe, from the engine and fuel supply system, and from brake linings, clutch plates and tyres. Hydrocarbon emissions, such as C_6H_6 , result from the incomplete combustion of fuel molecules in the engine. CO is a product of incomplete combustion and occurs when carbon in the fuel is only partially oxidized to CO₂. NO_x is formed by the reaction of nitrogen and oxygen under high pressure and temperature conditions in the engine. SO₂ is emitted due to the high sulphur content of the fuel. Particulates such as lead originate from the combustion process as well as from brake and clutch linings wear (Samaras and Sorensen, 1999).

LOCAL AIR QUALITY

As part of the National Framework in managing air quality, Government has initiated the National Air Quality Indicator (NAQI) for South Africa. The NAQI has been developed to weigh, balance and present data in such a way as to provide a verifiable and reportable measure of air quality at the national scale. The City of Tshwane currently operates three monitoring stations namely, Rosslyn, Olievenhoutbosch and Soshanguve. This section presents data from the Rosslyn monitoring station which is located 0.79 km northeast of the Rosslyn Facility.

Ambient air quality monitoring undertaken at Rosslyn includes the measurement of SO₂, PM_{10} , $PM_{2.5}$ and NO_x . Monitoring dates to 2008, but data from more recent years (January 2018 to December 2022), as required in the *Modelling Regulations*, have been presented in this assessment. Data recovery for NO_x was less than 60% and has thus been excluded from this assessment. Station coordinates and data recovery for each of the assessed pollutants is provided in **Table 6-6** below.

Monitoring location	Monitoring Latitude location (°S)		Distance from Facility	Pollutant	Data Recovery (%)						
			(km)		2018	2019	2020	2021	2022		
Rosslyn		28.09474	0.79	SO ₂	96	96	98	92	87		
	25.625126			PM ₁₀	0 (1)	45 ⁽¹⁾	99	70	78		
				PM _{2.5}	0 (1)	45 ⁽¹⁾	99	87	81		
Note:	⁽¹⁾ Data excluded	due to poor data re	covery.								

Table 6-6: Coordinates and data recovery of the Rosslyn monitoring station

SULPHUR DIOXIDE

Ambient monitoring data for SO₂ was obtained for the January 2018 to December 2022 from the Rosslyn NAQI monitoring station. **Figure 6-4** illustrates the 24-hour average SO₂ concentrations for the January 2018 to December 2022 monitoring period for the area under review. No exceedances of the 24-hour average SO₂ standard (125 μ g/m³) were recorded during the 2018 to 2022 monitoring period. Sources of SO₂ emissions surrounding this station include heavy industries and vehicle tailpipe emissions.

Figure 6-4: 24-Hour average SO₂ concentrations monitored at the Rosslyn NAQI station for the January 2018 to December 2022 period

PARTICULATE MATTER (PM10)

Ambient monitoring data for PM_{10} was obtained for the January 2020 to December 2022 from the Rosslyn NAQI monitoring station. **Figure 6-5** illustrates the 24-hour average PM_{10} concentrations for the January 2020 to December 2022 monitoring period for the area under review. The 2020 monitoring period recorded 26 exceedances of the 24-hour PM_{10} standard of 75 µg/m³, while the 2022 monitoring period recorded ten exceedances. No exceedances were recorded during the 2021 monitoring period. Concentrations recorded at the

Rosslyn NAQI monitoring station during 2020 and 2022 are therefore non-compliant with the NAAQS as only four exceedances of the standard are permitted per calendar year. Annual average PM_{10} concentrations (2020 – 39.7 µg/m³; 2021 – 25.1 µg/m³; 2022 – 34.9 µg/m³) are, however, compliant with the annual average standard of 40 µg/m³. Potential sources of PM_{10} emissions surrounding this station includes heavy industries and vehicle tailpipe emissions.

Figure 6-5: 24-Hour average PM₁₀ concentrations monitored at the Rosslyn NAQI station for the January 2020 to December 2022 period

PARTICULATE MATTER (PM2.5)

Ambient monitoring data for $PM_{2.5}$ was obtained for the January 2020 to December 2022 from the Rosslyn NAQI monitoring station. Figure 6-6 illustrates the 24-hour average $PM_{2.5}$ concentrations for the January 2020 to December 2022 monitoring period for the area under review. The 2020 monitoring period recorded 40 exceedances of the 24-hour $PM_{2.5}$ standard of $40\mu g/m^3$, while the 2021 and 2022 monitoring period recorded 33 exceedances and 74 exceedances, respectively. Concentrations recorded at the Rosslyn NAQI monitoring station are therefore non-compliant with the NAAQS as only four exceedances of the standard are permitted per calendar year. Annual average $PM_{2.5}$ concentrations ($2020 - 24.2 \mu g/m^3$; $2021 - 21.1 \mu g/m^3$; $2022 - 25.6 \mu g/m^3$) are also non-compliant with the annual average standard of 20 $\mu g/m^3$. Potential sources of $PM_{2.5}$ emissions surrounding this station includes heavy industries and vehicle tailpipe emissions.

Figure 6-6: 24-Hour average PM_{2.5} concentrations monitored at the Rosslyn NAQI station for the January 2020 to December 2022 period

6.1.5 DISPERSION MODEL METHODOLOGY

Atmospheric dispersion modelling mathematically simulates the transport and fate of pollutants emitted from a source into the atmosphere. Sophisticated software with algorithms that incorporate source quantification, surface contours and topography, as well as meteorology can reliably predict the downwind concentrations of these pollutants.

As per the *Modelling Regulations*, the level of assessment is dependent on technical factors such as geophysical and meteorological context and the complexity of the emissions inventory. The temporal and spatial resolution and accuracy required from a model must also be considered. As such, this assessment is a Level 2 assessment.

Level 2 assessments should be used for air quality impact assessment in standard/generic licence or amendment processes where:

- The distribution of pollutant concentrations and depositions are required in time and space.
- Pollutant dispersion can be reasonable treated by a straight-line, steady-state, Gaussian plume model with first order chemical transformation. Although more complicated processes may be occurring, a more complicated model that explicitly treats these processes may not be necessary depending on the purposes of the modelling and the zone of interest.
- Emissions are from sources where the greatest impacts are in the order of a few kilometres (less than 50 km), downwind.

For this assessment, the AERMOD dispersion modelling software was utilised. AERMOD is a new generation air dispersion model designed for short-range dispersion of airborne pollutants in steady state plumes that uses hourly sequential meteorological files with pre-processors to generate flow and stability regimes for each hour, that

produces output maps of plume spread with key isopleths for visual interpretation and enables, through its statistical output, direct comparisons with the latest National and International ambient air quality standards for compliance testing. AERMOD is the recommended level 2 model prescribed in the Modelling Regulations.

The AERMOD atmospheric dispersion modelling system is an integrated system that includes three modules:

- A steady-state dispersion model designed for short-range (up to 50 km) dispersion of air pollutant emissions from stationary industrial sources.
- A meteorological data pre-processor (AERMET) that accepts surface meteorological data, upper air soundings, and optionally, data from on-site instrument towers. It then calculates atmospheric parameters needed by the dispersion model, such as atmospheric turbulence characteristics, mixing heights, friction velocity, Obukhov length (often referred to as Monin-Obukhov length) and surface heat flux.
- A terrain pre-processor (AERMAP) with the main purpose of providing a physical relationship between terrain features and the behaviour of air pollution plumes. It generates location and height data for each receptor location. It also provides information that allows the dispersion model to simulate the effects of air flowing over hills or splitting to flow around hills.

MODELLING SCENARIOS

For this study, one dispersion modelling simulation was undertaken (Proposaed Operating Conditions).

METEOROLOGICAL INPUT

The meteorological data that was used in the dispersion model was obtained from Lakes Environmental Consultants Inc., in the form of WRF Pre-processed meteorological data, for the period January 2020 – December 2022. This is the most complete and representative dataset for the site.

TERRAIN INPUT

Terrain influences dispersion of pollutants, especially during periods of stable conditions. The National Aeronautics and Space Administration (NASA) Shuttle Radar Topographic Mission (SRTM) digital elevation model 1-arc data (resolution 30 m x 30 m) was extracted for input into the model to account for terrain influences on dispersion. For the land use categorization, the Global Land Cover Characterization Global Coverage – Version 3 (1 km x 1 km resolution) was used.

GRID RESOLUTION

According to the *Modelling Regulations*, the selected size and extent of the model domain is influenced by factors such as source buoyancy, terrain features (i.e. mountains) and the location of contributing sources. Larger domains are recommended for elevated, buoyant sources (e.g. stacks) while smaller domains are considered sufficient for lower release heights, particularly if emissions are at or near ambient temperature. The modelling domain for this study was defined as 30 km x 30 km, centred over the Strandfoam Rosslyn operations. The *Modelling Regulations* specify the use of a multi-tier grid and recommend specific tier resolutions. In line with these requirements, the receptor grid resolution was 50 m x 50 m along the property boundary; 100 m x 100 m up to 5,000 m from the centre of the site; 250 m x 250 m up to 10,000 m from the centre of the site; and 1,000 m x 1,000 m thereafter.

MODEL INPUT PARAMETERS

 Table 6-7 lists the key parameters used in the level 2 dispersion model for the Rosslyn Facility.

Parame	ter	Model Input				
Model						
Assessment Level		Level 2				
Dispersion Model		AERMOD View 12.0.0				
Supporting Models		AERMET and AERMAP				
Emissions						
Pollutants modelled		TVOCs, benzene, toluene, xylene, PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , CO, MEC, TDI and propylene oxide				
Scenarios		Operational				
Chemical transformation		Total conversion method				
Exponential decay		A half-life of 4 hours				
Settings						
Terrain setting		Elevated				
Terrain data		SRTM1				
Terrain data resolution (m)		Global ~ 30				
Land characteristics		Urban				
Bowen ratio		0.93				
Surface albedo		0.29				
Surface roughness		0.04				
Grid Receptors						
Modelling domain (km)		30 x 30				
	Tier I	100 m				
Grid resolution	Tier II	250 m				
	Tier III	1,000 m				

Table 6-7: Key model inputs used in the assessment

MODEL OUTPUTS

The model outputs that follow (**Section 6.1.6**) show simulated pollutant concentrations experienced at ground level for the Rosslyn operations. Where applicable, ambient concentrations are compared with the NAAQS or relevant international guidelines (in the absence of local standards) to assess impact. For the purposes of this investigation, the following statistical outputs were generated:

- The long-term scenario refers to the period average concentration, which is calculated by averaging all hourly
 concentrations for the three-year assessment period. The calculation is conducted for each grid point within
 the modelling domain.
- 99th percentile (P99) concentrations are calculated for comparison with short-term NAAQS as specified in the *Modelling Regulations*.
- 100th percentile (P100) concentrations are calculated for comparison with international health guidelines if a lower percentile threshold is not specified by the guidance documentation. This is considered environmentally conservative.

As defined in the *Modelling Regulations*, ambient air quality standards and guidelines are applied to areas outside the facility fenceline (i.e. beyond the facility boundary). Within the facility boundary, environmental conditions are prescribed by occupational health and safety criteria. As such, tabular model outputs in this assessment are presented for each sensitive receptor, the maximum concentration on the facility boundary and the maximum concentration off-site (i.e. beyond the facility boundary).

6.1.6 DISPERSION MODEL RESULTS

Simulated pollutant concentrations for 1-hour, 8-hour, 24-hour (where applicable) and assessment period (i.e. representing the annual average) averaging periods at each discrete receptor are presented in **Table 6-9**. Isopleth maps showing pollutant dispersion across the study area are presented in **Figure 6-7** to **Figure 6-31**. Where applicable, simulated concentrations have been evaluated against their respective NAAQS or international guidelines. Key findings are as follows:

- SO_2 emissions do not result in exceedances of the ambient SO_2 1-hour (350 µg/m³), 24-hour (125 µg/m³) or annual (50 µg/m³) NAAQS.
- NO₂ emissions do not result in exceedances of the ambient NO₂ 1-hour (200 μ g/m³) or annual (40 μ g/m³) NAAQS.
- CO emissions do not result in exceedances of the ambient CO 1-hour (30,000 $\mu g/m^3)$ or 8-hour (10,000 $\mu g/m^3)$ NAAQS.
- PM_{10} emissions do not result in exceedances of the ambient PM_{10} 24-hour (75 μ g/m³) or annual (40 μ g/m³) NAAQS.
- $PM_{2.5}$ emissions do not result in exceedances of the ambient $PM_{2.5}$ 24-hour (40 μ g/m³) or annual (20 μ g/m³) NAAQS.
- Benzene emissions do not result in exceedances of the ambient benzene 1-hour $(27 \,\mu\text{g/m}^3)$ or 8-hour $(3 \,\mu\text{g/m}^3)$ OEHHA guideline nor the annual $(5 \,\mu\text{g/m}^3)$ NAAQS.
- Toluene emissions do not result in exceedances of the ambient toluene 1-hour (4,500 μg/m³) TCEQ guideline nor the 8-hour (830 μg/m³) or annual (420 μg/m³) OEHHA guidelines.
- Xylene emissions do not result in exceedances of the ambient xylene 1-hour (2,200 μ g/m³) or annual (180 μ g/m³) TCEQ guidelines:
- MEC emissions do not result in exceedances of the ambient MEC 1-hour (3,600 µg/m³) or annual (350 µg/m³) TCEQ guidelines.
- TDI emissions do not result in exceedances of the ambient TDI 1-hour (0.7 µg/m³) TCEQ guideline nor the annual (0.008 µg/m³) OEHHA guideline. TDI emissions do not result in exceedances of the 8-hour (0.015 µg/m³) OEHHA guideline outside of Strandfoam's property boundary. Exceedance of the TDI 8-hour OEHHA guideline only occurs on Strandfoam's property boundary.
- Propylene oxide emissions do not result in exceedances of the ambient propylene oxide 1-hour (1,000 μg/m³) TCEQ guideline nor the annual (30 μg/m³) OEHHA guideline.
- TVOC emissions do not exceed the annual benzene (5 μ g/m³) NAAQS at any of the sensitive receptors. Exceedance of the NAAQS only extends ~78 m across the eastern fenceline.
 - It must be noted, however, that comparison of TVOC against the benzene NAAQS is considered conservative, as TVOCs comprise a vast array of compounds and the NAAQS is only applicable to the benzene proportion. As such, the benzene NAAQS cannot be used in this instance to demonstrate compliance, however, has been used here as a conservative impact reference threshold.
- Peak concentrations across all pollutants occur either within the operational boundary or along the facility's fenceline. It is highlighted that the eastern fenceline on which these peak concentrations occur is immediately adjacent to the indoor raw material storage and polyurethane foam production building.

CUMULATIVE ASSESSMENT

The National Framework for Air Quality Management in South Africa calls for air quality assessment in terms of cumulative impacts rather than the contributions from an individual facility. Compliance with the National Ambient Air Quality Standard (NAAQS) is to be determined by considering all local and regional contributions to background concentrations. For each averaging time, the sum of the model predicted concentration (C_P) and the background concentration (C_B) must be compared with the NAAQS. The background concentrations C_B must be the sum of contributions from non-modelled local sources and regional background air quality. If the sum of background and predicted concentrations ($C_B + C_P$) is more than the NAAQS, the design of the facility must be

reviewed (including pollution control equipment) to ensure compliance with NAAQS. Compliance assessments must provide room for future permits to new emissions sources, while maintaining overall compliance with NAAQS. For the different facility locations and averaging times, the comparisons with NAAQS must be based on recommendations in **Table 6-8**.

Facility Location	Annual NAAQS	Short-term NAAQS (24 hours or less)		
Isolated facility not influenced by other sources; C_B insignificant*.	Highest C_P must be less than the NAAQS, no exceedances allowed.	99th percentile concentrations must be less than the NAAQS. Wherever one year is modelled, the highest concentrations shall be considered.		
Facilities influenced by background sources e.g. in urban areas and priority areas.	Sum of the highest C _P and background concentrations must be less that the NAAQS, no exceedances allowed.	Sum of the 99th percentile concentrations and background CB must be less than the NAAQS. Wherever one year is modelled, the highest concentrations shall be considered.		

Table 6-8: Summary of recommended procedures for assessing compliance with NAAQS

Since the Rosslyn facility is operational, existing background concentrations were not used to assess the cumulative impact of the Rosslyn facility as inclusion of any baseline data would essentially double account for emissions from the facility (in the background measurements and the inputted emission rates).

Table 6-9: Simulated pollutant concentrations at sensitive receptors

	b p	d/ be	e	Predicted concentrations (µg/m³)															
Pollutant	erio	ndaı ideli ig/m	eren	Off-site	Boundary							Sensitive	receptor						
	Av	Gu Gu	Ref	peak	peak	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8	SR9	SR10	SR11	SR12	SR13	SR14
	1-hour	350	NAAQS	5.58E+00	1.49E+01	8.86E-02	1.41E-02	9.41E-03	1.55E-01	1.69E-01	2.58E-02	8.39E-03	6.71E-03	6.24E-03	3.12E-03	3.84E-03	4.70E-03	3.48E-03	4.97E-03
SO ₂	24-hour	125	NAAQS	1.67E+00	4.16E+00	2.87E-02	5.43E-03	3.53E-03	5.51E-02	5.29E-02	1.84E-02	6.15E-03	4.39E-03	2.93E-03	1.75E-03	1.80E-03	3.00E-03	1.78E-03	2.48E-03
	Period	50	NAAQS	3.46E-01	9.66E-01	6.80E-04	1.49E-02	1.24E-02	1.62E-03	5.40E-04	4.10E-04	4.30E-04	2.10E-04	2.50E-04	3.00E-04	2.30E-04	3.40E-04	6.93E-03	9.90E-04
NO	1-hour	200	NAAQS	4.00E+00	1.06E+01	6.41E-02	1.05E-02	7.20E-03	1.11E-01	1.22E-01	2.00E-02	6.82E-03	5.69E-03	5.01E-03	2.88E-03	3.33E-03	4.04E-03	3.04E-03	4.25E-03
NO2	Period	40	NAAQS	2.48E-01	6.91E-01	5.04E-03	7.50E-04	5.20E-04	1.08E-02	8.96E-03	1.23E-03	4.40E-04	3.40E-04	3.40E-04	1.90E-04	2.10E-04	2.50E-04	2.00E-04	2.80E-04
<u> </u>	1-hour	30,000	NAAQS	1.60E+00	4.26E+00	2.57E-02	4.19E-03	2.88E-03	4.45E-02	4.86E-02	8.01E-03	2.73E-03	2.28E-03	2.00E-03	1.15E-03	1.33E-03	1.61E-03	1.22E-03	1.70E-03
	8-hour	10,000	NAAQS	8.13E-01	2.85E+00	1.50E-02	3.06E-03	1.94E-03	3.41E-02	2.61E-02	6.55E-03	2.24E-03	1.80E-03	1.67E-03	9.71E-04	1.07E-03	1.41E-03	1.06E-03	1.42E-03
DM.	24-hour	75	NAAQS	2.58E-01	6.40E-01	4.43E-03	9.21E-04	6.59E-04	8.52E-03	8.31E-03	3.02E-03	1.13E-03	7.82E-04	5.42E-04	3.91E-04	3.70E-04	5.30E-04	3.86E-04	5.02E-04
L. MIJO	Period	40	NAAQS	5.33E-02	1.49E-01	1.08E-03	1.60E-04	1.10E-04	2.31E-03	1.93E-03	2.60E-04	9E-005	7E-005	7E-005	4E-005	5E-005	5E-005	4E-005	6E-005
DM	24-hour	40	NAAQS	0.19777	0.49031	3.39E-03	7.05E-04	5.05E-04	6.53E-03	6.37E-03	2.31E-03	8.69E-04	5.99E-04	4.15E-04	2.99E-04	2.84E-04	4.06E-04	2.96E-04	3.84E-04
F W12.5	Period	20	NAAQS	4.09E-02	1.14E-01	8.30E-04	1.20E-04	9E-005	1.77E-03	1.48E-03	2.00E-04	7E-005	6E-005	6E-005	3E-005	3E-005	4E-005	3E-005	5E-005
	1-hour	27	OEHHA	7.09E-02	1.40E-01	2.98E-04	7.32E-05	7.05E-05	6.25E-04	3.69E-04	1.30E-04	3.33E-05	2.06E-05	3.15E-05	1.41E-05	1.98E-05	2.47E-05	1.78E-05	2.57E-05
Benzene	8-hour	3	OEHHA	3.63E-02	7.68E-02	3.87E-04	6.57E-05	1.04E-04	6.88E-04	4.47E-04	1.73E-04	2.35E-05	1.44E-05	2.22E-05	1.01E-05	1.37E-05	1.76E-05	1.25E-05	1.83E-05
	Period	5	NAAQS	5.36E-03	8.02E-02	4.00E-05	1.00E-05	1.00E-05	9.00E-05	7.00E-05	1.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1-hour	4,500	TCEQ	8.38E-02	1.65E-01	4.00E-04	9.20E-05	9.25E-05	8.30E-04	5.29E-04	1.56E-04	4.07E-05	2.55E-05	3.87E-05	1.75E-05	2.42E-05	3.03E-05	2.19E-05	3.16E-05
Toluene	8-hour	830	OEHHA	4.28E-02	9.10E-02	4.60E-04	7.75E-05	1.24E-04	8.13E-04	5.29E-04	2.07E-04	2.80E-05	1.73E-05	2.65E-05	1.21E-05	1.63E-05	2.09E-05	1.50E-05	2.18E-05
	Period	420	OEHHA	6.57E-03	1.32E-02	5E-005	1E-005	1E-005	1.10E-04	9E-005	2E-005	1E-005	0.00E+00	1E-005	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Vulana	1-hour	2,200	TCEQ	7.44E-02	1.45E-01	3.15E-04	7.74E-05	7.46E-05	6.61E-04	3.91E-04	1.37E-04	3.52E-05	2.18E-05	3.34E-05	1.50E-05	2.09E-05	2.62E-05	1.88E-05	2.72E-05
xyiene	Period	180	TCEQ	5.78E-03	1.16E-02	5.00E-05	1.00E-05	1.00E-05	1.00E-04	7.00E-05	1.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MEC	1-hour	3,600	TCEQ	9.00E+00	4.99E+01	2.64E-01	6.34E-02	6.40E-02	5.63E-01	3.18E-01	9.95E-02	2.66E-02	1.67E-02	2.64E-02	1.14E-02	1.58E-02	1.97E-02	1.43E-02	2.06E-02
MEC	Period	350	TCEQ	1.84E+00	1.23E+01	3.83E-02	8.26E-03	5.24E-03	8.61E-02	5.57E-02	9.87E-03	3.24E-03	2.05E-03	3.34E-03	1.38E-03	1.89E-03	2.38E-03	1.74E-03	2.49E-03
	1-hour	0.7	TCEQ	4.05E-03	2.25E-02	1.19E-04	2.85E-05	2.88E-05	2.54E-04	1.43E-04	4.48E-05	1.20E-05	7.51E-06	1.19E-05	5.13E-06	7.11E-06	8.88E-06	6.44E-06	9.25E-06
TDI	8-hour	0.015	OEHHA	2.98E-03	1.64E-02	1.28E-04	2.02E-05	3.90E-05	2.36E-04	1.54E-04	6.29E-05	8.54E-06	5.28E-06	8.41E-06	3.66E-06	4.94E-06	6.30E-06	4.56E-06	6.55E-06
	Period	0.008	OEHHA	8.30E-04	5.55E-03	2.00E-05	0.00E+00	0.00E+00	4.00E-05	3.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Bronylana Ovida	1-hour	1,000	TCEQ	8.08E+01	1.78E+02	7.93E-01	2.23E-01	1.64E-01	1.85E+00	1.25E+00	3.42E-01	1.24E-01	9.56E-02	1.01E-01	3.83E-02	4.46E-02	7.03E-02	6.81E-02	8.84E-02
Fropyletie Oxide	Period	30	OEHHA	6.15E+00	1.95E+01	7.86E-02	1.36E-02	9.45E-03	1.51E-01	1.37E-01	2.21E-02	7.12E-03	5.39E-03	5.87E-03	2.33E-03	2.90E-03	4.00E-03	3.36E-03	4.76E-03
TVOC	1-hour	NA	-	8.72E+01	1.86E+02	1.06E+00	2.54E-01	2.23E-01	2.32E+00	1.49E+00	4.43E-01	1.39E-01	1.06E-01	1.13E-01	4.38E-02	5.29E-02	7.67E-02	7.34E-02	9.82E-02
1000	Period	NA	-	8.02E+00	3.19E+01	1.18E-01	2.20E-02	1.48E-02	2.38E-01	1.93E-01	3.21E-02	1.04E-02	7.48E-03	9.26E-03	3.73E-03	4.82E-03	6.42E-03	5.13E-03	7.29E-03

Red: exceeds applicable reference threshold

ATMOSPHERIC IMPACT REPORT Project No. 41107272 STRANDFOAM GROUP (PTY) LTD

WSP

Page 37

Figure 6-7: P99 1-hour average SO₂

Figure 6-8: P99 24-hour average SO₂

Figure 6-9: Period average SO₂

Figure 6-10: P99 1-hour average NO₂

Figure 6-11: Period average NO₂

Figure 6-12: P99 1-hour average CO

Figure 6-13: P99 8-hour average CO

Figure 6-14: P99 24-hour average PM₁₀

Figure 6-15: Period average PM₁₀

Figure 6-16: P99 24-hour average PM_{2.5}

Figure 6-17: Period average PM_{2.5}

Figure 6-18: P100 1-hour average benzene

Figure 6-19: Period average benzene

Figure 6-20: P100 1-hour average toluene

Figure 6-21: Period average toluene

Figure 6-22: P100 1-hour average xylene

Figure 6-24: P100 1-hour average MEC

Figure 6-25: Period average MEC

Figure 6-26: P100 1-hour average TDI

Figure 6-27: Period average TDI

Figure 6-28: P100 1-hour average propylene oxide

Figure 6-29: Period average propylene oxide

Figure 6-30: P100 1-hour average TVOC

Figure 6-31: Period average TVOC

6.2 ANALYSIS OF EMISSIONS' IMPACT ON THE ENVIRONMENT

The following sections analyse the potential impacts associated with air pollution on the surrounding environment.

6.2.1 EFFECTS ON VEGETATION

Air pollution in South Africa was first identified as a potential threat to vegetation in 1988 (Tyson *et al.*, 1988). The commercial forests of the eastern escarpment were highlighted as a threatened resource due to their proximity to the heavily industrialised Highveld. Marshal *et al.* (1998) also identified concerns around the potential impacts on crop yields on the Highveld. Air pollutants that could impact on vegetation include PM, SO₂, O₃, NO_x and hydrogen fluoride (HF).

The effects of pollution on plants include mottled foliage, 'burning' at leaf tips or margins, twig dieback, stunted growth, premature leaf drop, delayed maturity, abortion or early drop of blossoms, and reduced yield or quality. In general, the visible injury to plants is of three types: (1) collapse of leaf tissue with the development of necrotic patterns, (2) yellowing or other colour changes, and (3) alterations in growth or premature loss of foliage (Sikora and Chappelka, 2004). Factors that govern the extent of damage and the region where air pollution is a problem are (1) type and concentration of pollutants, (2) distance from the source, (3) length of exposure, and (4) meteorological conditions. Other important factors are city size and location, land topography, soil moisture and nutrient supply, maturity of plant tissues, time of year, and species and variety of plants. A soil moisture deficit

or extremes of temperature, humidity, and light often alter a plant's response to an air pollutant (Sikora and Chappelka, 2004).

6.2.2 EFFECTS ON ANIMALS

Air pollution is a recognized health hazard to domestic animals and wildlife. Industrial air pollutants effect both wild birds and mammals, causing notable decreases in local populations (Newman, 1979). The major effects include direct mortality, debilitating injury and disease, stress, anaemia, and bioaccumulation (Newman, 1979). Certain air pollutants are also known to cause variation in the distribution of certain wildlife species (Schreiber, and Newman, 1988). Animals are typically exposed to air pollution through a) inhalation of gases or small particles, b) ingestion of particles suspended in food or water, or c) absorption of gases through the skin (Burdo, 2018). Soft-bodied invertebrates (such as earthworms), or animals with thin, moist skin (such as amphibians) are the most susceptible to absorption of pollutants. Individual responses to pollutants are dependent on the type of pollutant involved, the duration and time of exposure, and the concentration taken up by the animal (Wong and Candolin, 2015). The individual's age, sex, health, and reproductive condition also determines its response. There is much variability observed between animal classes, species, and even genotypes, in terms of the level of tolerance to a specific pollutant (Wong and Candolin, 2015).

6.3 ASSUMPTIONS AND LIMITATIONS

Various assumptions were made in the compilation of this AIR. When possible, an environmentally conservative approach was taken to ensure emission rate calculations and model predictions represent a worst-case scenario. The assumptions and limitations underlying the study methodology are as follows:

GENERAL

- Unless otherwise stated, operational information for the Rosslyn facility was provided by Strandfoam. Any
 errors, limitations or assumptions inherent in these datasets extend to this study.
- Emission source IDs used in this assessment have been independently assigned by WSP to assist with the interpretation of data and findings presented by this AIR.

EMISSIONS INVENTORY

BOILERS

- The Rosslyn facility currently operates a single boiler (Boiler 1 Chipfoam 1 & 2) of 0.392 MW capacity, which generates steam during chipfoam production. Strandfoam plans to install an additional boiler of <10 MW in 2025. With the addition of the new boiler (Boiler 2 Chipfoam 3) the cumulative heat input of all boilers will be < 10 MW.</p>
- Emission rates for the Boiler 1 Chipfoam 1 & 2 and Boiler 2 Chipfoam 3 were based on a diesel consumption rate of 78,343 litres per year.
- In the absence of emission rates for the Chipfoam boiler, use was made of the NAEIS guidelines emission factor for small boilers with a design capacity of less than 10 MW.

STORAGE TANKS

 Emission rates for bulk storage tanks were simulated using the USEPA TANKS 4.0.d emissions estimation model as recommended by the *Modelling Regulations*.

- The TANKS model requires local meteorological input at an annual and monthly resolution. WRF preprocessed data was sourced from Lakes Environmental for use in the TANKS model. This data was utilised as it represented the most complete dataset for all required variables.
- When required, conflicting or missing parameters for storage tanks have been calculated using Client
 provided tank height and diameter dimensions as follows:
 - Tank working volumes have been calculated based on an assumed maximum liquid height of 90%.
 - Average liquid heights were assumed to be 50% of the maximum liquid height.
 - Net throughput of each tank was based on total product consumption rates, the number of duplicate tanks (applicable to the polyol, TDI and diesel tanks only) and proportional to each tank's calculated working volume.
- Gas exit velocity for diesel (EU026 -EU028 and EU 035) and petrol (EU036) tank vents was assumed to be 0.001 m/s in line with the *Modelling Regulations*.
- EU011 and EU037 are process tanks used solely for decanting drums or intermediate bulk containers.
 Emissions from such are therefore accounted for in the related storage tanks.
- Tank EU034 is not yet operational, so there is currently no throughput. Additionally, due to the tank's
 relatively small size compared to other tanks, any potential emissions are expected to be minimal. This tank
 was not simulated in the dispersion model.
- Tank EU035 turn overs and net throughput was assumed to the same as Tank EU028, based on the same tank design specifications.
- The turnover for Tank EU036 was calculated from the USEPA TANKS 4.0d model.
- Where actual storage tank shell colours are not available in TANKS 4.0d, colour substitutes where applied.
- Where possible, speciated VOCs were modelled for petroleum distillate products (diesel and petrol) using the default speciation profiles preloaded to TANKS.
- No vapour recovery units or emissions control equipment are assumed to be used.
- Melafine was assumed to have the same chemical properties as melamine (Ref. https://thechemco.com/chemical/melamine/)
 - Additionally, where a tank stored melafine or CaCO₃, and polyol, the chemical with the higher vapour pressure was simulated in the TANKS 4.0d model, which in both cases is polyol.

REBOND MACHINES

- Rebond dust extrusion machines as indicated by Strandfoam are planned to be installed in 2026, 2027 and 2028, as such these machines are not assessed in the AIR.
 - Furthermore, during the review by WSP there are no emissions factors available for Rebond machines and as such any related emissions cannot be quantified.

EXTRUSION VENTS

All extrusion vent information was extracted from the Skyside Test Report: STR003, dated 07 November 2022.

DISPERSION MODEL

- Building downwash effects have been accounted for in the dispersion model using building location and building shape visible on Google Earth.
- Area source dimensions for the outside polyol storage area are based on tank dimensions.

- In line with the *Modelling Regulations*, above ground outdoor storage tanks (where applicable) where simulated as point sources with the vent located centrally.
- Indoor tank emissions were summed and modelled as a volume source.
- Volume source dimensions for indoor raw material storage are based on tank dimensions.
- Variable emission rates have been applied as follows:
 - Storage tanks: Emissions are considered continuous (i.e., 24 hours per day for 365 days per year).
 - Extrusion vents: The polyurethane foam block manufacturing process operates for 1 hour per day over 153 days of the year. As a worst-case assessment, this was run as 1 hour a day (10:00 -11:00) every weekday in the dispersion model.
 - \circ Chipfoam Boilers: The chipfoam block production process operates for 9.5 hours per day over 224 days of the year. This was run as 9.5 hours a day (07:30 17:00) every weekday in the dispersion model.

7 COMPLAINTS

There have been no air quality related complaints received in the last two years, as confirmed by Strandfoam.

8 CURRENT OR PLANNED AIR QUALITY MANAGEMENT INTERVENTIONS

There are currently no planned air quality management interventions for the Rosslyn facility.

9 COMPLIANCE AND ENFORCEMENT

There have been no air quality compliance and enforcement actions undertaken against the facility in the last five years.

10 ADDITIONAL INFORMATION

There is no additional information to supply in relation to this AIR.

11 FORMAL DECLARATIONS

11.1 ANNEXURE A: DECLARATION OF ACCURACY OF INFORMATION

DECLARATION OF ACCURACY OF INFORMATION - APPLICANT

Name of Enterprise: Strandfoam Group (Pty) Ltd

Declaration of accuracy of information provided:

Atmospheric Impact Report in terms of section 30 of the Act. WILLEM HENORIK UN DEA I. WESTHUIZEN (duly authorised), declare that the

I. WESTHALZEN (duly authorised), declare that the information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1)(g) of this Act.

Signed at	STRAND	on this	12th	day of	FEBRUARY	2025

SIGNATURE

CEO

CAPACITY OF SIGNATORY

11.2 ANNEXURE B: DECLARATION OF INDEPENDENCE OF PRACTITIONER

DECLARATION OF INDEPENDENCE - PRACTITIONER

Name of Practitioner: Yakeen Kowlas

Name of Registration Body: South African Council for Natural Scientific Professions (SACNASP)

Professional Registration No: 155605

Declaration of independence and accuracy of information provided:

Atmospheric Impact Report in terms of Section 30 of the Act.

I, <u>Yakeen Kowlas</u>, declare that I am independent of the applicant. I have the necessary expertise to conduct the assessments required for the report and will perform the work relating the application in an objective manner, even if this results in views and findings that are not favourable to the applicant. I will disclose to the applicant and the air quality officer all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the air quality officer, The information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1) (g) of this Act.

Signed at Midrand on this 19th day of February 2025

Yakeen Kowlas 2025.02.19 15:02:04 +02'00'

SIGNATURE

Principal Consultant at WSP

CAPACITY OF SIGNATORY

12 REFERENCES

- Australian Government (2021): Lead. Available online at: https://www.dcceew.gov.au/environment/protection/chemicals-management/lead.
- Burdo, H., (2018): The Effects of Air Pollution on Animals. Available online at: <u>https://bizfluent.com/about-5137668-effects-air-pollution-animals.html</u>
- Department of Environmental Affairs (DEA) (2000): Integrated Pollution and Waste Management Policy for South Africa. *Government Notice No. 2270 in Government Gazette No. 20978*.
- Department of Environmental Affairs (DEA) (2009): National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004), National Ambient Air Quality Standards, *Government Notice No. 1210 in Government Gazette No. 32816.*
- Department of Environmental Affairs (DEA) (2010): List of Activities which result in Atmospheric Emissions which have or may have a significant detrimental effect on the environment, including health, social conditions, economic conditions, ecological conditions or cultural heritage. *Government Notice No.248* in Government Gazette No. 33064.
- Department of Environmental Affairs (DEA) (2013): List of Activities which result in atmospheric emissions. Government Notice No. 893 of Government Gazette 36974.
- Department of Environmental Affairs (DEA) (2014). Regulations Regarding Air Dispersion Modelling Government Notice No. 533 of Government Gazette No. 37804.
- Department of Environmental Affairs (DEA) (2018): The 2017 National Framework for Air Quality Management in the Republic of South Africa (No.R.1144 of 2018) Government Gazette, 26 October 2018 (No. 41996).
- Department of Environmental Affairs (DEA) (2019): 2nd South African Environment Outlook. A report on the state of environment. Executive summary. Department of Environmental Affairs, Pretoria, South Africa.
- Harrison, R.M. and R.E. van Grieken (1998): Atmospheric Aerosols. John Wiley: Great Britain.
- Kampa, M. and Castanas, E. (2007): Human health effects of air pollution, Environmental Pollution 151 (2008) 362-367, Elsevier.
- Manahan, E. (1991): Environmental Chemistry.
- Maroni, M., Seifert, B., Lindvall, T., (1995): Indoor air quality a comprehensive reference book, Elsevier, Amsterdam.
- Newman, J. R. (1979). Effects of industrial air pollution on wildlife. Biological conservation, 15(3), 181-190.
- Office of Environmental Health Hazard Assessment (OEHHA) (2015): Air Toxics Hot Spot Program Risk Assessment Guidelines – Guidance Manual for Preparation of Health Risk Assessment. Available online at: <u>https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf</u>.
- Republic of South Africa (2005): National Environmental Management: Air Quality Act (No. R. 39 of 2004) Government Gazette, 24 February 2005 (No. 27318).
- Rudolf, W. (1994): Concentration of air pollutants inside cars driving on highways and in downtown areas.
 Science of the Total Environment, 146, pp 433-444.
- Samaras, Z. and Sorenson, S. (1999): Chapter 5 Mobile Sources in Urban Air Pollution European Aspects.
 Pp. 63-91. J. Fenger, O. Hertel and F. Palmgren (eds). Kluwer Academic Publishers.

- Texas Commission on Environmental Quality (TCEQ) (2017): Effects Screening Levels using in the review of Air Permitting Data. Available online at: <u>https://www.tceq.texas.gov/toxicology/esl/list_main.html</u>.
- Tyson, P. D., Kruger, F. J., and Louw, C. W. (1988). Atmospheric pollution and its implications in the Eastern Transvaal Highveld. National Scientific Programmes Unit: CSIR.
- Sikora EJ, Chappelka AH. 2004. Air Pollution Damage to Plants. Alabama Cooperative Extension System. Available online at: <u>www.aces.edu</u>.
- United States Environmental Protection Agency (USEPA) (2012): Health effects of Hazardous Air Pollutants
 Benzene. Available online at: <u>www.epa.gov/airtoxics</u>.
- United States Environmental Protection Agency (USEPA) (2023): Environmental Issues of Concern for Urban Communities: Resources. Available online at: <u>https://www.epa.gov/newenglandhc/environmental-issues-concern-urban-communities-resources</u>.
- World Health Organisation (WHO) (2000): Ambient Air Quality Guidelines for Europe. Available online at: <u>http://www.euro.who.int/______data/assets/pdf__file/0005/74732/E71922.pdf</u>. Subsequently updated in:

- 2005: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Available online at:

http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=1 120BCE96A81BF3406B2D468337E283D?sequence=1

- 2021: WHO Global Air Quality Guidelines. Available online at: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1.

Wong, B.B.M. and Candolin, U. (2015): Behavioral Responses to Changing Environments, Behavioral Ecology, 26 (3), 665–673. Available online at: https://doi.org/10.1093/beheco/aru.

A TANKS MODEL OUTPUTS

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_01 Rosslyn Gauteng Strandfoam Rosslyn Horizontal Tank Ladderberg Poly 1-6 Polyol
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	17.81 7.61 5 748.38 3.00 17 245.14 N
Paint Characteristics Shell Color/Shade: Shell Condition	Aluminum/Specular Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Rosslyn, Gauteng (Avg Atmospheric Pressure = 12.7 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

GP_01 - Horizontal Tank Rosslyn, Gauteng

		Dai Temp	Liquid Daily Liquid Surf. Bulk Temperature (deg F) Temp		Liquid Bu l k Temp	d k D Vapor Pressure (psia)		(psia)	Vapor Mo l.	Liquid Mass	Vapor Mass	MoL	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyol	A	74.75	62.93	86.57	69.90	0.1987	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = .11603 VP80 = .29
GP_01 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	35.5343
Vapor Space Volume (cu ft):	515.9688
Vapor Density (lb/cu ft):	0.0020
Vapor Space Expansion Factor:	0.0976
Vented Vapor Saturation Factor:	0.9615
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	515.9688
Tank Diameter (ft):	7.6100
Effective Diameter (ft):	13,1398
Vapor Space Outage (ft):	3.8050
Tank She Length (ft):	17.8100
Vapor Density	
Vapor Density (b/cu ft):	0.0020
Vapor Molecular Weight (lb/b-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia);	0.1987
Daily Avg, Liquid Surface Temp, (deg, R):	534,4227
Daily Average Ambient Temp. (deg. E)	68 5600
deal Gas Constant R	00.0000
(nsia cuff / (lb-mol-deg R));	10 731
Liquid Bulk Temperature (deg. R):	529 5700
Tank Paint Solar Absorptance (Shell):	0 3900
Daily Total Solar Insulation	0.5500
Factor (Btu/sqft day):	1 766.4200
Vanor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0976
Daily Vanor Temperature Range (deg. R):	47 2757
Daily Vapor Pressure Range (osia):	0 1740
Breather Vent Press, Setting Range(neia)	0.0600
Vapor Prosouro at Daily Average Liquid	0.0000
Surface Temperature (peia):	0 1987
Vapar Brassura at Daily Minimum Liquid	0.1907
Surface Temporature (osia):	0.1160
Voper Brosouro et Deily Meximum Liquid	0.1100
vapor Pressure at Daily Maximum Liquid	0.0000
Surface Temperature (psia):	0.2900
Daily Avg. Liquid Surface Temp. (deg R):	534.4227
Daily Min. Liquid Surface Temp. (deg R):	522.0038
Daily Max, Liquid Sunace Temp. (deg R):	546.2417
Daily Ambient Temp, Range (deg, R):	38.8700
Vented Vapor Saturation Factor	
vented vapor Saturation Factor:	0.9615
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1987
Vapor Space Outage (ft):	3.8050
Working Loppon (Ph):	4 7057
Vonar Malagular Waight (Ib/Ib mala):	4./30/
vapor Molecular weight (ib/ib-mole):	56.0419
vapor Pressure at Daily Average Liquid	0.4007
Surrace remperature (psia):	0.1987
Annual Net Throughput (gal/yr.):	17 245 1400
Annual Turnovers:	3.0000
Lurnover Factor:	1.0000
Tank Diameter (ft):	7.6100
Working Loss Product Factor:	1.0000
iotal Losses (Ib):	40.2700

Emissions Report for: Annual

GP_01 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Polyol	4.74	35.53	40.27							

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_02 Rosslyn Gauteng Strandfoam Rosslyn Horizontal Tank Laaderberg Filla CaCO3 & Polyol
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	18.04 7.61 5 822.35 16.50 96 068.78 N
Paint Characteristics Shell Color/Shade: Shell Condition	Aluminum/Specular Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_02 - Horizontal Tank Rosslyn, Gauteng

		Dai Temp	ily Liquid Su berature (de	urf. eg F)	Liquid Bu l k Temp	Vapo	r Pressure	(psia)	Vapor Mo l.	Liquid Mass	Vapor Mass	MoL	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyol	A	74.75	62.93	86.57	69.90	0.1987	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = .11603 VP80 = .29

GP_02 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (b):	35,9932
Vapor Space Volume (cu ft):	522.6321
Vapor Density (b/cu ft):	0.0020
Vapor Space Expansion Factor:	0.0976
Vented Vapor Saturation Factor:	0.9615
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	522.6321
Tank Diameter (ft):	7.6100
Effective Diameter (ft):	13.2244
Vapor Space Outage (ft):	3.8050
Tank Shell Length (ft):	18.0400
Vapor Density	
Vapor Density (b/cu ft):	0.0020
Vapor Molecular Weight (lb/lb-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Daily Avg. Liquid Surface Temp. (deg. R):	534,4227
Daily Average Ambient Temp. (deg. F):	68,5600
deal Gas Constant R	00.0000
(psia cuft / (b-mol-deg R));	10.731
Liquid Bulk Temperature (deg. R):	529 5700
Tank Paint Solar Absorptance (Shell):	0.3900
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1 766.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0976
Daily Vapor Temperature Range (deg. R):	47,2757
Daily Vapor Pressure Range (psia);	0.1740
Breather Vent Press, Setting Range(psia);	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0,1160
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.2900
Daily Avg. Liquid Surface Temp. (deg R):	534,4227
Daily Min, Liquid Surface Temp, (deg R):	522,6038
Daily Max, Liquid Surface Temp, (deg R):	546.2417
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9615
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1987
Vapor Space Outage (ft):	3.8050
Working Losses (b):	26.3816
Vapor Molecular Weight (Ib/Ib-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Annual Net Throughput (gal/yr.):	96 068.7750
Annual Turnovers:	16.5000
Turnover Factor:	1.0000
Tank Diameter (ft):	7.6100
Working Loss Product Factor:	1.0000
Total Losses (b):	62.3748

Emissions Report for: Annual

GP_02 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Polyol	26.38	35.99	62.37							

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_03 Rosslyn Gauteng Strandfoam Rosslyn Vertical Fixed Roof Tank Annamarie 9-11 Polyol
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	13.78 12.80 12.40 6.20 11 930.01 3.00 35 790.03 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 12.80
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_03 - Vertical Fixed Roof Tank Rosslyn, Gauteng

		Dai Temp	ly Liquid Su perature (de	urf. g F)	Liquid Bulk Temp Var		Vapor Pressure (psia)		Vapor Mo l.	Liquid Mass	Vapor Mass	MoL	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyol	A	77.35	63.68	91.02	70.80	0.2439	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = .11603 VP80 = .29

GP_03 - Vertical Fixed Roof Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	97.6428
Vapor Space Volume (cu ft):	1 088.3669
Vapor Density (lb/cu ft):	0.0025
Vapor Space Expansion Factor:	0.1110
Vented Vapor Saturation Factor:	0.9014
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1 088.3669
Tank Diameter (ft):	12.8000
Vapor Space Outage (ft):	8,4580
Tank She Height (ft):	13,7800
Average Liquid Height (π):	6.2000
Roor Outage (it):	0.8780
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.8780
Shell Radius (ft):	6.4000
Vapor Density Vapor Density (Ib/cu ft):	0.0025
Vapor Molecular Weight (b/b-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2439
Daily Avg. Liquid Surface Temp. (deg. R):	537.0199
Daily Average Ambient Temp. (deg. F):	68.5600
deal Gas Constant R	
(psia cuft / (Ib-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	530.4700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Factor (Btu/sqft day):	1 766.4200
Vapor Space Expansion Factor	0.4440
Daily Vapor Temperature Bongo (dog. B):	0,1110 64,6047
Daily Vapor Pressure Pange (psia):	0.1740
Breather Vent Press, Setting Range(nsia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	0.2439
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.1160
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.2900
Daily Avg. Liquid Surface Temp. (deg R):	537.0199
Daily Min. Liquid Surface Temp. (deg R):	523.3463
Daily Max. Liquid Surface Temp. (deg R):	550.6936
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9014
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia): Vapor Space Outage (ft):	0.2439 8.4580
Working Losses (Ib):	12.0632
vapor molecular Weight (Ib/Ib-mole):	58.0419
Vapor Pressure at Daily Average Liquid	0.0400
Appual Net Throughout (gol(ur.):	25 700 0200
Annual Turnovers:	30750-0300
Turnover Factor	1 0000
Maximum Liquid Volume (gal):	11 930 0100
Maximum Liquid Height (ft):	12,4000
Tank Diameter (ft):	12,8000
Working Loss Product Factor:	1.0000
Total Losses (lb):	109.7059

Emissions Report for: Annual

GP_03 - Vertical Fixed Roof Tank Rosslyn, Gauteng

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Polyol	12.06	97.64	109.71							

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_04 Rosslyn Gauteng Strandfoam Rosslyn Vertical Fixed Roof Tank New Bulk 1-2 tanks Polyol
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg, Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	19.69 10.70 17.72 8.86 11 906.23 3.00 35 718.69 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Aluminum/Specular Good Aluminum/Specular Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 10.70
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_04 - Vertical Fixed Roof Tank Rosslyn, Gauteng

		Dai Temp	ly Liquid Su perature (de	urf. g F)	Liquid Bulk Temp Vapor Pressure (psia)		(psia)	Vapor Mo l.	Liquid Mass	Vapor Mass	MoL	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyol	A	74.75	62.93	86.57	69.90	0.1987	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = .11603 VP80 = .29

GP_04 - Vertical Fixed Roof Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	66.3956
Vapor Space Volume (cu ft):	1 039.8302
Vapor Density (Ib/cu ft):	0.0020
Vapor Space Expansion Factor:	0.0976
Vented Vapor Saturation Factor:	0.8914
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1 039.8302
Tank Diameter (ft):	10.7000
Vapor Space Outage (ft):	11.5639
Tank She Height (ft):	19.6900
Average Liquid Height (ft): Roof Outage (ft):	8.8600
Nooi Oulage (it).	0.7555
Roof Outage (Dome Roof)	0 7000
Roof Outage (ft):	10,7339
Shell Radius (ft):	5,3500
Vapor Density Vapor Density (Ib/cu ft):	0.0020
Vapor Molecular Weight (Ib/b-mole):	58 0/10
Vapor Pressure at Daily Average Liquid	50.0415
Surface Temperature (psia):	0 1987
Daily Avg, Liquid Surface Temp, (deg, R);	534,4227
Daily Average Ambient Temp. (deg. F):	68,5600
deal Gas Constant R	
(psia cuft / (Ib-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	529.5700
Tank Paint Solar Absorptance (Shell):	0.3900
Tank Paint Solar Absorptance (Roof):	0.3900
Daily Lotal Solar Insulation Eactor (Btu/soft day):	1 766 4200
Factor (Bursqit day).	1700.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0976
Daily Vapor Temperature Range (deg. R):	47.2757
Daily Vapor Pressure Range (psia):	0.1740
Breather Vent Press, Setting Range(psia):	0.0600
Surface Temperature (opin):	0 1097
Vanor Pressure at Daily Minimum Liquid	0.1307
Surface Temperature (nsia):	0.1160
Vapor Pressure at Daily Maximum Liquid	0.1100
Surface Temperature (psia):	0.2900
Daily Avg. Liquid Surface Temp. (deg R):	534.4227
Daily Min. Liquid Surface Temp. (deg R):	522.6038
Daily Max. Liquid Surface Temp. (deg R):	546.2417
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8914
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1987
Vapor Space Outage (ft):	11.5639
Working Losses (b):	9.8088
Vapor Molecular Weight (lb/lb-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Annual Net Throughput (gal/yr.):	35 718.6900
Annual Turnovers:	3.0000
I urnover Hactor:	1.0000
waximum Liquid Volume (gal):	11 906.2300
waximum Liquid Height (π):	17.7200
Working Loss Product Eactor:	1 0000
Working 2000 Froduct Factor.	1.0000
I OTAL LOSSES (ID):	/6.2044

Emissions Report for: Annual

GP_04 - Vertical Fixed Roof Tank Rosslyn, Gauteng

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Polyol	9.81	66.40	76.20							

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_05 Rosslyn Gauteng Strandfoam Rosslyn Horizontal Tank Laaderberg TDI (A-D)	
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	16.60 8.30 6 802.43 8.95 60 881.75 N	
Paint Characteristics Shell Color/Shade: Shell Condition	Aluminum/Specular Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

GP_05 - Horizontal Tank Rosslyn, Gauteng

		Dail Temp	ly Liquid Su erature (de	rf. g F)	Liquid Bu l k Temp	Vapor Pressure (psia)		Vapor Mo l.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Toluene Diisocyanate	All	74.75	62.93	86.57	69.90	0.0003	0.0002	0.0006	174.1600			174.16	Option 1: VP70 = .00024 VP80 = .00041

GP_05 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (b):	0.1704
Vapor Space Volume (cu ft):	572.0770
Vapor Density (b/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0838
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	572.0770
Tank Diameter (ft):	8.3000
Effective Diameter (ft)	13 2482
Vapor Space Outage (ft)	4 1500
Tank Shell Length (ft):	16.6000
Vapor Density	
Vapor Density (b/cu ft):	0.0000
Vapor Molecular Weight (Ib/Ib-mole):	174 1600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (neia):	0.0003
Daily Ava Liquid Surface Tomp. (dog. P):	524 4227
Daily Avg. Liquid Surface Temp. (deg. K).	69 5600
Harl Cas Casatast D	00.0000
ideal Gas Constant R	10 701
(psia cutt / (ib-moi-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	529.5700
Tank Paint Solar Absorptance (Shell):	0.3900
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1 766.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0838
Daily Vapor Temperature Range (deg. R):	47.2757
Daily Vapor Pressure Range (psia):	0.0004
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0003
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0002
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0006
Daily Avg, Liquid Surface Temp, (deg R):	534,4227
Daily Min, Liquid Surface Temp, (deg R):	522,6038
Daily Max, Liquid Surface Temp, (deg R):	546.2417
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0003
Vanor Space Outage (ft):	4 1500
vapor opuce outlage (k).	
Working Losses (lb):	0,0810
Vapor Molecular Weight (Ib/Ib-mole):	174 1600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (nsia):	0.0003
Annual Net Throughput (gal/yr.):	60 881 7495
Annual Turnovore:	9.0500
Annual runiovers.	0.9000
Turnover Factor:	1.0000
Tank Diameter (π):	8.3000
working Loss Product Factor:	1.0000
T (1) (4)	0.0514
I OTAL LOSSES (ID):	0.2514

Emissions Report for: Annual

GP_05 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Toluene Diisocyanate	0.08	0.17	0.25							

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_06 Rosslyn Gauteng Strandfoam Rosslyn Horizontal Tank Annamarie Mixing (12-13) Polyol
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	18.14 5.84 3 444.80 3.00 10 334.40 N
Paint Characteristics Shell Color/Shade: Shell Condition	Aluminum/Specular Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_06 - Horizontal Tank Rosslyn, Gauteng

		Dai Temp	ily Liquid Su berature (de	urf. eg F)	Liquid Bu l k Temp	iquid Bu l k Femp Vapor Pressure (psia)			Vapor Mo l.	Liquid Mass	Vapor Mass	MoL	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyol	A	74.75	62.93	86.57	69.90	0.1987	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = .11603 VP80 = .29

GP_06 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (b):	21,5073
Vapor Space Volume (cu ft):	309.4947
Vapor Density (b/cu ft):	0.0020
Vapor Space Expansion Factor:	0.0976
Vented Vapor Saturation Factor:	0.9702
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	309.4947
Tank Diameter (ft):	5.8400
Effective Diameter (ft):	11.6169
Vapor Space Outage (ft):	2.9200
Tank She Length (ft):	18.1400
Vapor Density	
Vapor Density (lb/cu ft):	0.0020
Vapor Molecular Weight (lb/lb-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Daily Avg. Liquid Surface Temp. (deg. R):	534.4227
Daily Average Ambient Temp. (deg. F):	68.5600
deal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Burk Temperature (deg. R):	529.5700
Tank Paint Solar Absorptance (Snell):	0.3900
Factor (Btu/soft day):	1 766 4200
Vanas Sanaa Evananian Fastas	
Vapor Space Expansion Factor	0.0076
Daily Vapor Tomporaturo Pango (dog. P):	47 2757
Daily Vapor Pressure Range (neia):	0.1740
Breather Vent Press, Setting Range/neia)	0.0600
Vanor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	0 1987
Vanor Pressure at Daily Minimum Liquid	0.1001
Surface Temperature (psia):	0 1160
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.2900
Daily Avg, Liquid Surface Temp, (deg R):	534,4227
Daily Min, Liquid Surface Temp, (deg R):	522,6038
Daily Max, Liquid Surface Temp, (deg R):	546.2417
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9702
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1987
Vapor Space Outage (ft):	2.9200
VVORKING LOSSES (Ib):	2.8380
Vapor Molecular Weight (Ib/Ib-mole):	58.0419
vapor Pressure at Daily Average Liquid	0.4007
Surrace Temperature (psia):	0.1987
Annual Net I nrougnput (gal/yr.):	10 334 4000
Annual rumovers:	3.0000
Turnover Factor:	1.0000
Vark Dianieter (II):	5.8400
WORKING LOSS Product Factor:	1.0000
Total Losson (lb):	24 2452
rotai Losses (ID).	24.0400

Emissions Report for: Annual

GP_06 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)										
Components	Working Loss	Breathing Loss	Total Emissions								
Polyol	2.84	21.51	24.35								

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_07 Rosslyn Gauteng Strandfoam Rosslyn Vertical Fixed Roof Tank Laaderberg MEC
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	7.87 3.84 7.09 3.54 573.25 13.50 7 240.15 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft)	Dome
Radius (ft) (Dome Roof)	3.84
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_07 - Vertical Fixed Roof Tank Rosslyn, Gauteng

		Dai Temp	ly Liquid Su berature (de	urf. Ig F)	Liquid Bu l k Temp	Vapo	r Pressure	(psia)	Vapor Mo l.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methylene chloride	All	77.35	63.68	91.02	70.80	8.3643	6.1410	11.2067	84,9400			84.94	Option 2: A=7.409, B=1325.9, C=252.6
GP_07 - Vertical Fixed Roof Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	990.5280
Vapor Space Volume (cu ft):	53.1968
Vapor Density (Ib/cu ft):	0.1233
Vapor Space Expansion Factor:	1.2564
Vented Vapor Saturation Factor:	0.3293
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	53.1968
Tank Diameter (ft):	3.8400
Vapor Space Outage (ft):	4.5934
Tank She Height (ft):	7.8700
Average Liquid Height (ft):	3.5400
Roof Outage (it):	0.2634
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.2634
Dome Radius (ft):	3.8400
Snell Radius (ft):	1.9200
Vapor Density	
Vapor Density (b/cu ft):	0.1233
Vapor Molecular Weight (Ib/Ib-mole):	84.9400
Surface Temporature (poin)	0 2642
Daily Ava Liquid Surface Temp (deg. R):	6.3043 537.0100
Daily Average Ambient Temp. (deg. K).	68 5600
deal Gas Constant R	00.0000
(psia cuft / (b-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R);	530,4700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	1 700 1000
Factor (Btu/sqft day):	1 /66.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	1.2564
Daily Vapor Temperature Range (deg. R):	54,6947
Daily Vapor Pressure Range (psia):	5.0656
Breatner Vent Press. Setting Range(psia):	0.0600
Surface Temporature (neia):	9 3643
Vapor Pressure at Daily Minimum Liquid	0.0040
Surface Temperature (psia):	6.1410
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	11.2067
Daily Avg. Liquid Surface Temp. (deg R):	537.0199
Daily Min. Liquid Surface Temp. (deg R):	523.3463
Daily Max. Liquid Surface Temp. (deg R):	550.6936
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3293
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	8.3643
vapor Space Outage (it):	4.0934
Working Losses (b):	122.4734
Vapor Molecular Weight (Ib/Ib-mole):	84.9400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	8.3643
Annual Net Throughput (gal/yr.):	7 240.1475
Annual Turnovers:	13.5000
rumover = actor: Maximum Liquid Volume (gol):	1.0000
Maximum Liquid Height (ff):	7 0000
Tank Diameter (ff):	3,8400
Working Loss Product Factor:	1 0000
Tetal Lesses (lk):	1 110 0011
10(a) L03303 (ID).	1 113.0014

Emissions Report for: Annual

GP_07 - Vertical Fixed Roof Tank Rosslyn, Gauteng

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Methylene chloride	122.47	990.53	1 113.00							

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_08 Rosslyn Gauteng Strandfoam Rosslyn Vertical Fixed Roof Tank Polyol
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	12.47 9.84 11.22 5.61 6 386.24 3.00 18 126.94 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Aluminum/Specular Good Aluminum/Specular Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 9.84
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_08 - Vertical Fixed Roof Tank Rosslyn, Gauteng

		Dai Temp	ly Liquid Su perature (de	urf. g F)	Liquid Bu l k Temp	Liquid Bulk Temp Vapor Pressure (psia)			Vapor Mo l.	Liquid Mass	Vapor Mass	MoL	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyol	A	74.75	62.93	86.57	69.90	0.1987	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = .11603 VP80 = .29

GP_08 - Vertical Fixed Roof Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	38.0262
Vapor Space Volume (cu ft):	573.0062
Vapor Density (Ib/cu ft):	0.0020
Vapor Space Expansion Factor:	0.0976
vented vapor Saturation Factor.	0.9205
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	573.0062
Tank Diameter (ft):	9.8400
Vapor Space Outage (ft):	7.5349
Average Liquid Height (ft):	12,4700
Roof Outage (ft):	0.6749
Roof Outage (Dome Roof)	0.6740
Dome Radius (ff):	9.8400
Shell Radius (ft):	4.9200
Marco Descrit	
Vapor Density Vapor Density (Ib/cu ft):	0.0020
Vapor Molecular Weight (b/b-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Daily Avg. Liquid Surface Temp. (deg. R):	534,4227
Daily Average Ambient Temp. (deg. F):	68.5600
deal Gas Constant R	10 701
(psia cutt / (Ib-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R): Tank Paint Salar Absorptance (Shall):	529.5700
Tank Paint Solar Absorptance (Solar).	0.3900
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1 766.4200
Vanor Space Expansion Factor	
Vapor Space Expansion Factor	0.0976
Daily Vapor Temperature Range (deg. R):	47.2757
Daily Vapor Pressure Range (psia):	0.1740
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Vapor Pressure at Daily Minimum Liquid	0.4400
Surrace Temperature (psia):	0.1160
Surface Temperature (psia):	0.2000
Daily Avg Liquid Surface Temp (deg R):	534 4227
Daily Min Liquid Surface Temp. (deg R):	522,6038
Daily Max. Liquid Surface Temp. (deg R):	546.2417
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9265
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1987
Vapor Space Outage (ft):	7.5349
Working Losses (Ib):	4.9779
Vapor Molecular Weight (lb/lb-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1987
Annual Net Throughput (gal/yr.):	18 126.9389
Annual Lurnovers:	3.0000
Turnover Factor: Maximum Liquid Volume (gal):	1,0000
Maximum Liquid Volume (gal):	0 300.2400
Tank Diameter (ft):	9.8400
Working Loss Product Factor:	1.0000
Total Losson (lb):	42.0040
TOTAL LOSSES (ID).	43.0040

Emissions Report for: Annual

GP_08 - Vertical Fixed Roof Tank Rosslyn, Gauteng

	Losses(Ibs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Polyol	4.98	38.03	43.00							

Identification	
User Identification:	GP_09
City:	Rossiyn
Sidle.	Strendform Booolum
Type of Tank:	Horizontal Tank
Description:	Diesel Underground Tanks
Description.	Dieser Onderground Tanks
Tank Dimensions	
Shell Length (ft):	14 62
Diameter (ft):	6.56
Volume (gallons):	3 698.41
Turnovers:	2.30
Net Throughput(gal/yr):	8 599.10
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Y
Paint Characteristics	
Shell Color/Shade:	
Shell Condition	
Breatner vent Settings	0.00
vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

GP_09 - Horizontal Tank Rosslyn, Gauteng

		Da Tem	ily Liquid Si perature (de	urf. eg F)	Liquid Bu l k Temp	Liquid Bulk Temp Vapor Pressure (psia)		Vapor Pressure (psia)		Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	68.00	68.00	68.00	67.56	0.0085	0.0085	0.0085	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009
1,2,4-Trimethylbenzene						0.0280	0.0280	0.0280	120.1900	0.0100	0.0476	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1,4520	1.4520	1.4520	78.1100	0.0000	0.0020	78,11	Option 2: A=6.905, B=1211.033, C=220.79
Ethylbenzene						0.1426	0.1426	0.1426	106.1700	0.0001	0.0032	106,17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.3473	2.3473	2.3473	86.1700	0.0000	0.0004	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Toluene						0.4216	0.4216	0.4216	92.1300	0.0003	0.0230	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0073	0.0068	0.0073	134.4658	0.9866	0.8652	189.60	
Xylene (-m)						0.1191	0.1191	0.1191	106.1700	0.0029	0.0588	106.17	Option 2: A=7.009, B=1462.266, C=215.11

GP_09 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations									
No Standing Losses: Underground Tank									
Working Losses (Ib):	0.2262								
Vapor Molecular Weight (lb/lb-mole):	130.0000								
Vapor Pressure at Daily Average Liquid									
Surface Temperature (psia):	0.0085								
Annual Net Throughput (gal/yr.):	8 599.1000								
Annual Turnovers:	2.3000								
Turnover Factor:	1.0000								
Tank Diameter (ft):	6,5600								
Working Loss Product Factor:	1.0000								
Total Losses (Ib):	0.2262								

Emissions Report for: Annual

GP_09 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)										
Components	Working Loss	Breathing Loss	Total Emissions								
Distillate fuel oil no. 2	0.23	0.00	0.23								
Hexane (-n)	0.00	0.00	0.00								
Benzene	0.00	0.00	0.00								
Toluene	0.01	0.00	0.01								
Ethylbenzene	0.00	0.00	0.00								
Xylene (-m)	0.01	0.00	0.01								
1,2,4-Trimethylbenzene	0.01	0.00	0.01								
Unidentified Components	0.20	0.00	0.20								

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_10 Rosslyn Gauteng Strandfoam Rosslyn Horizontal Tank Diesel Tank - Boiler
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	7.05 3.77 560.04 36.96 20.697.40 N
Paint Characteristics Shell Color/Shade: Shell Condition	Gray/Light Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_10 - Horizontal Tank Rosslyn, Gauteng

		Daily Liquid Surf. Temperature (deg F)			Liquid Bu l k Temp Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	77.35	63.68	91.02	70.80	0.0112	0.0074	0.0166	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
1,2,4-Trimethylbenzene						0.0398	0.0236	0.0648	120.1900	0.0100	0.0514	120.19	Option 2: A=7 04383, B=1573 267, C=208 56
Benzene						1.8543	1,2921	2.6041	78.1100	0.0000	0.0019	78,11	Option 2: A=6.905, B=1211.033, C=220.79
Ethylbenzene						0.1938	0.1232	0.2963	106.1700	0.0001	0.0033	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.9531	2.1038	4.0632	86.1700	0.0000	0.0004	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Toluene						0.5548	0.3698	0.8121	92.1300	0.0003	0.0229	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0095	0.0081	0.0084	134.6111	0.9866	0.8594	189.60	
Xylene (-m)						0.1623	0.1027	0.2493	106.1700	0.0029	0.0607	106.17	Option 2: A=7.009, B=1462.266, C=215.11

GP_10 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (b):	0.4520
Vapor Space Volume (cu ft):	50.1259
Vapor Density (b/cu ft):	0.0003
Vapor Space Expansion Factor:	0.0978
Vented Vapor Saturation Factor:	0.9989
Tank Vapor Space Volume:	
Vanor Space Volume (cu ft):	50 1259
Tank Diameter (ft):	3 7700
Effective Diameter (ft):	5 8188
Vapor Space Outage (ft):	1 8850
Tank Shell Length (ft):	7.0500
Vapor Dopsity	
Vapor Density (Ib/ou ft):	0.0003
Vapor Molecular Weight (Ib/Ib mole):	130,0000
Vapor Brossura at Daily Average Liquid	150.0000
Surface Tomperature (psia):	0.0112
Surface remperature (psia).	527.0100
Daily Avg. Liquid Sunace Temp. (deg. R).	537.0199
Dally Average Ambient Temp. (deg. F):	00.000
deal Gas Constant R	
(psia cutt / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	530.4700
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1 766.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0978
Daily Vapor Temperature Range (deg. R):	54.6947
Daily Vapor Pressure Range (psia):	0.0092
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0112
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0074
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0166
Daily Avg, Liquid Surface Temp, (deg R):	537.0199
Daily Min, Liquid Surface Temp, (deg R):	523.3463
Daily Max, Liquid Surface Temp, (deg R):	550,6936
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9989
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0112
Vanor Snace Outage (ft):	1 8850
vapor opuco odlago (k).	10000
Working Losses (b):	0 7023
Vapor Molecular Weight (Ib/Ib-mole):	130,0000
Vapor Pressure at Daily Average Liquid	100.0000
Surface Temperature (osia):	0.0112
Annual Net Throughout (gal/yr.):	20.697.4000
Annual Turpovore:	20 007.4000
Turnover Easter	0.9000
Turnover Factor.	0.9784
rank Dianleter (IT):	3.7700
working Loss Product Factor:	1.0000
I OTAL LOSSES (ID):	1.1543

Emissions Report for: Annual

GP_10 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	0.70	0.45	1.15						
Hexane (-n)	0.00	0.00	0.00						
Benzene	0.00	0.00	0.00						
Toluene	0.02	0.01	0.03						
Ethylbenzene	0.00	0.00	0.00						
Xylene (-m)	0.04	0.03	0.07						
1,2,4-Trimethylbenzene	0.04	0.02	0.06						
Unidentified Components	0.60	0.39	0.99						

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_12 Rosslyn Gauteng Strandfoam Rosslyn Horizontal Tank Ladderberg Melafine Polyol	
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	6.23 5.87 1 196.70 1.00 1 196.70 N	
Paint Characteristics Shell Color/Shade: Shell Condition	Gray/Medium Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

GP_12 - Horizontal Tank Rosslyn, Gauteng

		Dai Temŗ	ily Liquid Su perature (de	urf. eg F)	Liquid Bu l k Temp	Vapo	r Pressure	(psia)	Vapor Mo l.	Liquid Mass	Vapor Mass	Mol	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Polyo	A	79.77	64.37	95,18	71.64	0.2861	0.1160	0.2900	58.0419			3 000.00	Option 1: VP70 = ,11603 VP80 = ,29

GP_12 - Horizontal Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	13.2833
Vapor Space Volume (cu ft):	107.3877
Vapor Density (lb/cu ft):	0.0029
Vapor Space Expansion Factor:	0.1234
Vented Vapor Saturation Factor:	0.9574
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	107.3877
Tank Diameter (ft):	5.8700
Effective Diameter (ft):	6.8254
Vapor Space Outage (ft):	2,9350
Tank Shell Length (ft):	6.2300
Vapor Density	
Vapor Density (b/cu ft):	0.0029
Vapor Molecular Weight (lb/lb-mole):	58.0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (nsia):	0.2861
Daily Ava Liquid Surface Temp (deg. R):	539.4440
Daily Average Ambient Temp. (deg. F.)	68 5600
Ideal Gas Constant P	00.0000
(nois ouff / (Ib mol dog P));	10 721
(psia cuit / (ib horeagy)).	524 2400
Liquid Bulk Temperature (deg. R):	531.3100
Tank Paint Solar Absorptance (Snell):	0.6800
Factor (Btu/soft day):	1 766.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1234
Daily Vapor Temperature Range (deg. R):	61.6190
Daily Vapor Pressure Range (psia):	0.1740
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2861
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.1160
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.2900
Daily Avg. Liquid Surface Temp. (deg R):	539.4440
Daily Min, Liquid Surface Temp, (deg R):	524.0392
Daily Max, Liquid Surface Temp, (deg R):	554.8488
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9574
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2861
Vapor Space Outage (ft):	2 9350
vapor opuco odilago (it).	2.0000
Working Losses (Ib):	0.4731
Vapor Molecular Weight (Ib/Ib-mole):	58 0419
Vapor Pressure at Daily Average Liquid	
Surface Temperature (nsia):	0 2861
Annual Net Throughput (gal/yr.):	1 196 7000
Annual Turnovers:	1 0000
Turnover Easter	1,0000
Tank Diameter (#):	5.0700
Verking Less Destud Easter	5.8700
WORKING LOSS Product Factor:	1.0000
	10 7504
I OTAL LOSSES (ID):	13.7564

Emissions Report for: Annual

GP_12 - Horizontal Tank Rosslyn, Gauteng

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Polyol	0.47	13.28	13.76					

Identification User Identification: City: State: Company: Type of Tank: Description:	GP_14 Rosslyn Gauteng Strandfoam Rosslyn Vertical Fixed Roof Tank Petrol
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	7.05 3.77 6.35 3.17 530.25 11.14 5 910.80 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 3.77
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

GP_14 - Vertical Fixed Roof Tank Rosslyn, Gauteng

		Da Tem	ily Liquid S perature (d	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 9)	All	77.35	63.68	91.02	70.80	6.4168	4.9546	8.2044	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0398	0.0236	0.0648	120,1900	0.0250	0.0002	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.8543	1.2921	2.6041	78,1100	0.0180	0.0071	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cyclohexane						1,9031	1.3371	2.6524	84,1600	0.0024	0.0010	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1938	0.1232	0.2963	106.1700	0.0140	0.0006	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.9531	2.1038	4.0632	86.1700	0.0100	0.0063	86.17	Option 2: A=6.876, B=1171.17, C=224.41
so-butyl alcohol						0.2031	0.1136	0.3478	74.1200	0.0400	0.0017	74.12	Option 2: A=7.30636, B=1236.991, C=171.622
sopropy benzene						0.0897	0.0551	0.1415	120.2000	0.0050	0.0001	120.20	Option 2: A=6.93666, B=1460.793, C=207.78
Toluene						0.5548	0.3698	0.8121	92.1300	0.0700	0.0083	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						8.3695	8.2821	8.2868	66.5684	0.7456	0.9722	91.44	
Xylene (-m)						0.1623	0.1027	0.2493	106.1700	0.0700	0.0024	106.17	Option 2: A=7.009, B=1462.266, C=215.11

GP_14 - Vertical Fixed Roof Tank Rosslyn, Gauteng

Annual Emission Calcaulations	
Standing Losses (Ib):	318.4866
Vapor Space Volume (cu ft):	46.1981
Vapor Density (Ib/cu ft):	0.0746
Vapor Space Expansion Factor.	0.0095
vened vapor oattration racion	0.4104
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	46.1981
Vanor Space Outage (ft):	3.7700
Tank Shell Height (ft):	7.0500
Average Liquid Height (ft):	3,1700
Roof Outage (ft):	0.2586
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.2586
Dome Radius (ft):	3.7700
Shell Radius (ft):	1.8850
Vapor Density	
Vapor Density (ID/cu ft):	0.0746
Vapor Pressure at Daily Average Liquid	67.0000
Surface Temperature (psia):	6 4168
Daily Avg, Liquid Surface Temp, (deg, R):	537.0199
Daily Average Ambient Temp. (deg. F):	68.5600
deal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	530.4700
Tank Paint Solar Absorptance (Snell). Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	0.0400
Factor (Btu/sqft day):	1 766.4200
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.6095
Daily Vapor Temperature Range (deg. R):	54.6947
Daily Vapor Pressure Range (psia):	3.2497
Breather Vent Press, Setting Range(psia):	0.0600
Surface Temperature (nsia):	6 4168
Vapor Pressure at Daily Minimum Liquid	0.1100
Surface Temperature (psia):	4.9546
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	8.2044
Daily Avg. Liquid Surface Temp. (deg R):	537.0199
Daily Max, Liquid Surface Temp, (deg R):	550 6936
Daily Ambient Temp. Range (deg. R):	38.8700
Vented Vener Seturation Feature	
Vented Vapor Saturation Factor	0.4154
Vapor Pressure at Daily Average Liquid:	0.4104
Surface Temperature (psia):	6.4168
Vapor Space Outage (ft):	4.1386
Working Losses (Ib):	60.5046
Vapor Molecular Weight (Ib/Ib-mole):	67.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	6.4168
Annual Iver I nroughput (gal/yr.): Appual Turpovers:	5 910.8000
Turnover Factor:	1,0000
Maximum Liquid Volume (gal):	530,2486
Maximum Liquid Height (ft):	6.3500
Tank Diameter (ft):	3.7700
Working Loss Product Factor:	1.0000
Total Losses (lb):	378.9913

Emissions Report for: Annual

GP_14 - Vertical Fixed Roof Tank Rosslyn, Gauteng

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 9)	60.50	318.49	378.99						
Hexane (-n)	0.38	2.01	2.40						
Benzene	0.43	2.27	2.71						
Iso-butyl alcohol	0.11	0.55	0.66						
Toluene	0.50	2.65	3.15						
Ethylbenzene	0.04	0.18	0.22						
Xylene (-m)	0.15	0.77	0.92						
Isopropyl benzene	0.01	0.03	0.04						
1,2,4-Trimethylbenzene	0.01	0.07	0.08						
Cyclohexane	0.06	0.31	0.37						
Unidentified Components	58.82	309.63	368.45						

B STACK TEST REPORT

STRANDFOAM, ROSSLYN, GAUTENG

Emission and Fenceline Measurements

SKYSIDE TEST REPORT: STR003

7 NOVEMBER 2022

STR003 Page 001 of 062

info@skyside.co.za | +27 (31) 100 – 1300 /+27 (11) 590 3000 Unit 2, Building 4, Ninian Westmead Estate, 33 Henry Pennington Road, Pinetown / 259 Kent Avenue, Ferndale, Randburg PO Box 1726, Westville, Durban,3630 Skyside (Pty) Ltd 2014/276266/07

Director: Quentin Hurt

Customer:	Strandfoam	
	137 Frans Du Toit St	
	Rosslyn	
	Pretoria, 0020	
Project Contact:	Phillip Laurie	
Date of Testing:	6 to 20 September 2022	
Date of Report:	7 November 2022	
Report Reference:	STR003 Final	

Report Compiled By:Quentin HurtReport Reviewed By:Loren De KokerDesignation:DirectorDesignation:Technical Manager

Report Authorised By: Quentin Hurt Designation: Technical Signatory

Signature: Quenter Hunt

The Technical Signatory hereby declares that, to the best of his/her knowledge, the analytical data was checked for completeness, the results presented in this report are accurate and legible, and analysis was conducted in accordance with the methods in the approved protocol.

Disclaimer:

- 1. The results contained in this report relate only to the streams tested and to the conditions prevalent during such tests.
- 2. In certain instances, generally identified, SKYSIDE relied on information provided by third parties. It was not possible to verify all such information independently.
- 3. The report includes the most pertinent calibration evidence and field data, but further traceability and similar data not considered immediately relevant is available at SKYSIDE offices if required. Signed calibration certificates are available on request.
- 4. This test report may not be reproduced except in full.
- 5. SKYSIDE is accredited for compliance with ISO/IEC 17025:2017.
- 6. Results marked "Not SANAS Accredited" or otherwise marked with [#] in this report are not included in the SANAS Scope of Accreditation for SKYSIDE.
- 7. Opinions and interpretations expressed herein are outside the scope of SANAS accreditation.
- 8. Sample analysis is subcontracted to X-Lab Earth Science.
- 9. This report cancels and supersedes the report STR001 dated 12 February 2021 issued by SKYSIDE. The reason for the re-issue is to include a declaration of normal operating conditions and elaborate on the sampling duration in Section 6: Deviations from method and performance requirements.

Based on SKY-QLT-REP-001 Rev. 09

DECLARATION OF NORMAL OPERATING CONDITIONS

I, Phillip Laurie, Director, hereby declare that Strandfoam, Strand, was operating at normal conditions when SKYSIDE conducted emission testing from **6 to 20 September 2022**.

Signature: ____

Executive Summary

This report covers the work performed by SKYSIDE at Strandfoam, Rossyln, Pretoria between 6 and 20 September 2022. The intention was to

- measure compounds emitted from roof vents during the extrusion process and
- characterise average fenceline concentrations of volatile organic compounds..

The site representative, Phillip Laurie, confirmed that the process was operated in a manner that can be considered representative of the typical operating conditions. No process variations, beyond standard stoppages, were observed during the tests. Testing was paused during stoppages.

The following results were determined:

Emissions monitoring:

Parameter	Front	Back	AEL Limit Value
Total VOCs [via US EPA 18] ^{#,*} mg/dNm ³	0,07	0,10	40 000
Carbon monoxide <i>mg/dNm</i> ³	<1	<1	

#not SANAS accredited

*as per laboratory's full VOC scope target list

Toluene was the predominant component of the emission but was below 0.1 mg/dNm³ in all samples. It is worth noting that the ratio of toluene to benzene is about 7 to 8 times.

Fenceline Monitoring (Passive Monitoring – Benzene only shown):

Location	6-13 September 2022 Benzene [#] (μg/m³)	13-20 September 2022 Benzene [#] (μg/m³)
North	3,0	9,7
East	3,3	8,4
South	3,3	<1,3
West	3,0	1,9

[#]not SANAS accredited

Samples collected on the fenceline detected mainly benzene, ethyl benzene, xylene and toluene (commonly referred to as BTEX) and trimethylbenzenes. The benzene levels in the second week would be considered elevated but it is noteworthy that foam blowing occurred during the first week only and that the ratio of toluene to benzene is closer to unity, suggesting that the source of the benzene is not the foam blowing process.

SKYSIDE considers the result to be a fair reflection of the operation of the process as tested. The testing complied with the standard test methods, except in the instances noted in the report.

Table of Contents

1	INTRODUCTION	6
1.1	Test Overview	6
1.2	Test Method Used	6
1.3	Glossary / Abbreviations	6
2	THEORY OF MEASUREMENT	8
2.1	Velocity Measurement	8
2.2	Volatile Organic Compounds Sampling Procedure (US EPA 18)	8
2.3	Fenceline Ambient Radiello Passive Sampling	9
3	SAMPLING PREPARATION	10
3.1	Sampling Location for Emissions Testing	10
3.2	Sampling Location for Fenceline Testing	11
3.3	Compliance with EN 13284-1: Sampling Strategy requirements	13
4	METHOD	14
4.1	Gases (O ₂ , CO, CO ₂)	14
4.2	Speciated Volatile Organic Compounds	14
5	TEST RESULTS	15
5.1	Front Extrusion Source	15
5.2	Back Extrusion Source	17
5.3	Fenceline Ambient Organic Concentrations	19
6	DEVIATIONS FROM METHOD AND PERFORMANCE REQUIREMENTS	20
6.1	Systematic Method Deviations	20
6.2	Plant-Related Deviations	20
6.3	Process-Related Deviations	20
6.4	Non-Fulfilled Performance Requirements	20
6.5	Deviations from Proposed Measurement Programme	20
7	DISCUSSION OF RESULTS	21
7.1	Emissions	21
7.2	Fenceline ambient concentrations	21
8	APPENDICES	22
A.	Field Data	22
В.	Calibration Sheets	28
C.	Laboratory Results	39

1 INTRODUCTION

1.1 Test Overview

Customer Details	Phillip Laurie
Site	Strandfoam, 137 Frans Du Toit St, Rosslyn, Pretoria, Gauteng
Date of Test	6 to 20 September 2022
Purpose of Test	Emission and fenceline baseline testing
Plant Process	Blown foam extrusion

1.2 Test Method Used

Method Used	Test
US EPA 18 [#]	Volatile organic compound emissions (speciated) by thermal desorption
	to gas chromatograph, mass spectrometer (GS-MS)
Radiello passive	Volatile compounds present in the air by diffusive absorption followed
sampling [#]	by thermal desorption to gas chromatograph, mass spectrometer
EN 16911-1	Gas flow/temperature
EN 15058	Carbon monoxide (CO)

[#]not SANAS accredited

1.3 Glossary / Abbreviations

Test Parameters		
BTEX	Benzene, Toluene, Ethyl benzene, m/p-Xylene, o-Xylene	
СО	Carbon monoxide	
CO ₂	Carbon dioxide	
O ₂	Oxygen	
тиос	Total volatile organic compounds	
VOC	Volatile organic compounds	

Measurement Units		
g	gram	
kg	kilogram	
μg	micrograms	
h	hour	
S	second	
m ³	cubic meter	
mg/dNm ³	milligrams per dry, normal cubic meter (expressed at standard dry conditions: temperature of 273.15 K (0 °C), absolute pressure of 101.3 kPa (1 atm), and zero moisture)	
Ра	pascal	
kPa	kilopascal	
mm	millimeter	
ppm	parts per million	

Other		
ISO 17025	International Standard: General requirements for the competence of testing	
	and calibration laboratories.	
SANAS	South African National Accreditation System, established by Section 3 of the	
	Accreditation for Conformity Assessment, Calibration and Good Laboratory	
	Practice Act, 2006.	
Section 21	Listed activities and associated minimum emission standards identified in	
regulations	terms of section 21 of the National Environmental Management: Air Quality	
	Act, 2004 (Act No. 39 of 2004).	

2 THEORY OF MEASUREMENT

2.1 Velocity Measurement

Velocity and temperature were measured using a mini-vane anemometer. For calibration information, refer to Appendix C.

2.2 Volatile Organic Compounds Sampling Procedure (US EPA 18)

A gas sample of measured quantity is withdrawn from the source and collected in directly onto a prepared thermal desorption tube. The sample is withdrawn use a calibrated-flow pump operating below 200 cc/min. The sample volume was progressively increased (by increasing the sample duration) for each of the three samples This tube is then submitted to the laboratory for VOC analysis via gas chromatography.

The pump is calibrated using a low-flow BIOS Definer both before and after the test. The calibration certificate for the BIOS is available in Appendix C.

A blank sample is collected by using the tube as a sacrificial flow calibration test device at the start and end of the programme.

Figure 1: Gas sampling onto a thermal desorption tube (dry source)

During the tests:

- 1. In order to avoid overloading the sample medium, each sample was collected intermittently over the course of the test hour.
- 2. Where the process was stopped (for instance to re-line the extrusion channel with paper), testing was paused.

2.3 Fenceline Ambient Radiello Passive Sampling

For the measurement of the concentrations of VOCs samples are collected using Radiello[®] passive samplers. Passive samplers are deployed over a period of 7 days. This method does not involve the pumping of any air, instead gases adsorb onto material contained in a collection cartridge which is located behind a diffusive barrier. This sampling method has been validated and is extensively used in Europe and has, following rigorous cross-comparison with continuous equivalent NIOSH methods, been applied by SKYSIDE in Southern African projects since 2001. The suppliers note that:

"... the performance characteristics of the Radiello sampler has been extensively characterised by the Joint Research Centre of the European Union in Ispra, Italy, one of the world's leading environmental laboratories. The device has also been employed in numerous major international field studies for benzene and ozone precursors. For the sampling and analysis of volatile organic compounds in the workplace, it is included as part of the ISO 16200-2 standard."

 Diffusive Surface

 Asial Sampler

Concentration $(\mu g/m^3)$ = sample mass (μg) / sample volume (m^3)

Figure 2: Radiello Passive Sampler. Image on the left shows the principle of operational of the passive diffusive sampler. Image on the right shows the typical deployment in a shelter (sampler evident in the blue casing).

3 SAMPLING PREPARATION

3.1 Sampling Location for Emissions Testing

Figure 3: Two sources above the Extrusion Line. The source on the left is referred to as Front, as it is closest to the raw material feed section. The source on the right is referred to as the Back because it is closest to the finished foam section of the line. The sample points were in approximately the same location on each source and is highlighted with a red circle on the Extrusion source. Shown is the pump analyser setup. Pictures taken towards the East and West, respectively.

3.2 Sampling Location for Fenceline Testing

Figure 4: Location of the samplers located just inside the fenceline (North, East, South and West). The location of the Extrusion Line vents is shown approximately with a red cross.

Figure 5: Location of passive sampler located on the Northern Fence (closest to the Administration offices). Location of sampling shelter indicated with orange arrow.

Figure 6: Location of passive samplers from top: Eastern fenceline (near Extrusion line), Southern fenceline (next to Training Center) and Western Boundary.

3.3 Compliance with EN 13284-1: Sampling Strategy requirements

Stack	Feed	Extrusion
Sampling points conform to EN 13284-1	No	No
Working platform conforms to EN 13284-1	Yes	Yes

Table 1: Sampling site method validation check

Table 2: Sampling gas flow properties method validation check Image: Comparison of the second se

Stack	Feed	Extrusion
Is the angle of gas flow less than 15° with regard to duct axis?	Yes	Yes
Is there positive gas flow?	Yes	Yes
Is the differential pressure (Pitot tube) larger than 5Pa?	Yes	Yes
Is the ratio of the highest to lowest local gas velocities less than 3:1?	Yes	Yes

The customer confirmed the process was operated normally and representatively.

4 METHOD

4.1 Gases (O₂, CO, CO₂)

Probe	Material	Stainless Steel	Length (mm)	400	
Instrument	Testo 350	Testo 350			
Sample Line	Teflon				
Gas Conditioning	Peltier cooler (bypassed)				
Vacuum Pump	Built into Testo instrument				
O ₂ Measurement	Electrochemical cell				
CO ₂ Measurement	Non-dispersive infrared (NDIR)				
CO Measurement	Electrochemical cell				
TVOC Measurement	Non-dispersive infrared (NDIR)				

Table 3: Characteristics of sampling equipment

Table 4: Sampling procedure and equipment validation check

Stack	FRONT	ВАСК
Above configuration conforms to EN 14789 and EN 15058:		
Description of Measuring Equipment, ISO 12039: Sampling,	Yes	Yes
& US EPA 25B: Equipment and Supplies		
Sampling method in accordance with EN 14789 and EN		
15058: Field Operation, ISO 12039: Test procedures, & US	Voc	Vac
EPA 25B: Sample Collection, Preservation, Storage, and	res	res
Transport		

4.2 Speciated Volatile Organic Compounds

Filter	Material	Sorbent tube	Diameter (mm)	3
Sample Line	Teflon			
Gas Conditioning	Direct			
Sorbent Trap	Tenax TA 6	0/80		
Vacuum Pump	GilAir Plus L	ow Flow Pump		
Calibration	BIOS Define	er 220		
Hydrocarbon Measurement	Gas Chroma	atography using N	lass Spectrometer (laboratory)

Table 6: Sampling procedure and equipment validation check

Stack	Feed	Extruder
Above configuration conforms to US EPA Method 18: Equipment and Supplies	Yes	Yes
Sampling method in accordance with US EPA Method 18: Sample Collection, Preservation, Storage, and Transport	Yes	Yes

5 TEST RESULTS

5.1 Front Extrusion Source

5.1.1 Flow, CO

Stack		FROM	NT	
Source Code		Extrusior	n Line	
Date		7 Septemb	er 2022	
Responsible Technician		Quentin	Hurt	
Run Number	1	2	3	AVG
Stack diameter (mm)		720		-
Retrieval of diameter information	Ν	/leasured		-
Start time	08:25	09:25	10:25	-
End time	09:25	10:25	11:56	-
Gas velocity (m/s)	8,2	5,8	7,5	7,2
Gas flow (m³/h)	12011	8533	10942	10495
Expressed as standard dry gas (dNm³/h)	9545	6781	8695	8340
Gas temperature (°C)	20,7	22,8	25,5	23
Barometric pressure (kPa)	87,3	87,3	87,3	87,3
Moisture content (%)	0,8	0,8	0,8	0,8
Sample volume (L)	1,512	1,512	1,512	1,512
O ₂ (vol%) ¹	20,9	20,9	20,9	20,9
CO ₂ (vol%) ¹	0,4	0,4	0,4	0,4
CO (ppm)	<1	<1	<1	<1
Expressed as standard dry gas (mg/dNm ³)	<1	<1	<1	<1
Expanded uncertainty at 95% Cl (mg/dNm ³)	± 4	± 4	± 4	± 4
CO emission (g/h)	<13	<9	<12	<11

Table 7: Raw and average results for Feed Stack

¹reported on a dry basis

5.1.2 Total Volatile Organic Compounds

Stack		FRC	DNT	
Source Code		Extrusio	on Line	
Date		7 Septem	ber 2022	
Responsible Technician		Quenti	n Hurt	
Run Number	1	2	3	AVG
Total Speciated VOC emission (mg/dNm ³)	0,05	0,09	0,07	0.07
AEL Limit Value (mg/dNm ³)		40	000	
Speciated analysis [#] (µg/dNm³)				
1,2,4-trimethylbenzene	0,6	0,6	4,1	1,8
Benzene	5,5	6,0	8,0	6,5
Trichloromethane (Chloroform)	11,7	1,7	15,2	9,5
Ethylbenzene	1,6	4,0	8,5	4,7
m/p-xylene	3,7	9,2	6,7	6,5
o-xylene	1,5	3,4	3,3	2,7
Toluene	25,4	64,1	21,6	37,0

Table 8: Summary of Results for Feed Stack

[#]not SANAS accredited

Results in Blue represent non-detected compounds at the test detection limit. For a full list of other compounds not detected, please refer to Appendix 3 Laboratory Results.

Table 9: Uncertainty Values for Feed Stack

Measurement uncertainty at 95%	confidence level (k = 2)
Gas content (%)	4 % or 4 mg/dNm ³ , whichever is greater
Speciated VOCs (%)	20
Circumstances influencing the u	uncertainty of results
None.	

5.2 Back Extrusion Source

5.2.1 Flow, CO

Stack		BA	СК	
Source Code		Extrusi	on Line	
Date		7 Septem	ber 2022	
Responsible Technician		Quenti	n Hurt	
Run Number	1	2	3	AVG
Stack diameter (mm)		720		-
Retrieval of diameter information		Measured		-
Start time	08:25	09:25	10:25	-
End time	09:25	10:25	11:56	-
Gas velocity (m/s)	8,6	8,6	6,7	8,0
Gas flow (m³/h)	12592	12672	9802	11689
Expressed as standard dry gas (dNm³/h)	10007	10070	7789	9288
Gas temperature (°C)	21	23	25	23
Barometric pressure (kPa)	87,3	87,3	87,3	87,3
Moisture content (%)	0,7	0,7	0,7	0,7
Sample volume (L)	0,76	0,76	0,76	0,76
O ₂ (vol%) ¹	20,9	20,9	20,9	20,9
CO ₂ (vol%) ¹	0,4	0,4	0,4	0,4
CO (ppm)	<1	<1	<1	<1
Expressed as standard dry gas (mg/dNm³)	<1	<1	<1	<1
Expanded uncertainty at 95% CI (mg/dNm³)	± 4	± 4	± 4	± 4
CO emission (g/h)	<14	<14	<11	<13

Table 10: Raw and average results for Extrusion Line Back Stack

¹reported on a dry basis

5.2.2 Total Volatile Organic Compounds

Stack		BA	CK	
Source Code		Extrusio	on Line	
Date		7 Septem	ber 2022	
Responsible Technician		Quenti	n Hurt	
Run Number	1 2 3 AVC			AVG
Start time	08:25	09:25	10:25	-
End time	09:25 10:25 11:56			-
Total Speciated VOC emission (mg/dNm ³)	0,17	0,02	0,11	0,10
AEL Limit Value (mg/dNm ³)		40	000	
Speciated analysis [#] (µg/dNm³)				
1,2,4-trimethylbenzene	1,0	1,0	7,9	3,3
Benzene	9,7	1,3	14,4	8,5
Trichloromethane (Chloroform)	2,6	2,6	8,5	4,6
Ethylbenzene	4,5	1,0	6,8	4,1
m/p-xylene	9,4	1,0	21,0	10,5
o-xylene	3,7	1,0	9,3	4,7
Toluene	134,4	9,2	46,5	63,4

Table 11: Summary of Results for Extrusion Stack

[#]not SANAS accredited

Results in Blue represent non-detected compounds at the test detection limit. For a full list of other compounds not detected, please refer to Appendix 3 Laboratory Results.

Table 12: Validation of Results and Uncertainty Values for Extrusion Stack

Measurement uncertainty at 95	% confidence level (k = 2)
Gas content (%)	4 % or 4 mg/dNm ³ , whichever is greater
Speciated VOCs (%)	20
Circumstances influencing the	e uncertainty of results
None.	

5.3 Fenceline Ambient Organic Concentrations

	Location	North	West	East	South
	Compounds	μg/m³	µg/m³	µg/m³	µg/m³
5	Benzene	3,0	3,0	3,3	3,3
nbe	Ethylbenzene	3,1	1,7	2,2	3,8
oter	m/p-xylene	5,7	4,2	5,4	8,1
Sep	o-xylene	2,9	1,8	2,1	3,4
-13	Toluene	9,2	6,6	9,0	8,5
ف	1,2,4-trimethylbenzene	<1,6	4,4	6,7	<1,6
	Benzene	9,7	1,9	8,4	<1,3
her	Ethylbenzene	2,6	1,2	2,4	2,6
tem	m/p-xylene	9,0	4,3	8,7	6,9
e pt	o-xylene	3,0	1,3	3,3	2,7
20.5	Toluene	7,7	7,5	7,7	5,7
13-1	1,2,4-trimethylbenzene	2,3	<1,5	2,0	2,0
	1,3,5-trimethylbenzene	2,1	<1,1	2,3	<1,1
	Benzene	6,3	2,5	5,8	3,3
	Ethylbenzene	2,8	1,4	2,3	3,2
GE	m/p-xylene	7,3	4,2	7,0	7,5
ERA	o-xylene	3,0	1,6	2,7	3,0
A	Toluene	8,4	7,1	8,4	7,1
	1,2,4-trimethylbenzene	2,3	4,4	4,4	2,0
	1,3,5-trimethylbenzene	2,1	<1,1	2,3	<1,1

Table 13: Average ambient concentrations of measured VOC# on Strandfoam Fenceline between6 and 20 September 2022

[#]tests not SANAS accredited

6 DEVIATIONS FROM METHOD AND PERFORMANCE REQUIREMENTS

6.1 Systematic Method Deviations

- 1. The vents draw gas from above the extrusion line and do not encapsulate the source. The emission is therefore substantially diluted with ambient air.
- 2. The sample point was not optimally located for flow measurement. Flow measurements were repeated at intervals across the duct as there was a distinct distribution and even this distribution appeared to vary with external wind conditions. The flow was proportioned according to the area that each point across the diameter represented.

6.2 Plant-Related Deviations

None.

6.3 Process-Related Deviations

None.

6.4 Non-Fulfilled Performance Requirements

None.

6.5 Deviations from Proposed Measurement Programme

None.

7 DISCUSSION OF RESULTS

7.1 Emissions

7.1.1 Carbon monoxide

No carbon monoxide was detected during the test measurements. As there is no combustion source associated with the process, this result is not unexpected. During the Strandfoam Strand testing (Skyside STR001 February 2021), up to 1 ppm (part per million of gas by volume) CO only was detected during the measurements, a similar result.

7.1.2 Volatile organic compounds

Total concentrations of the speciated volatile organic compounds are substantially below the emission limit for total VOC.

Toluene was the predominant compound detected. In contrast to the results measured at Strandfoam Strand where benzene and toluene concentrations in the vents were similar, the ratio of toluene to benzene was between 7 and 8 to 1 for the Rosslyn samples. Total concentrations were similar but the Front and Back stacks exhibited similar concentrations and profiles for the Rosslyn site (with the highest emissions observed in the Back vent for Strand). It is possible that this associated with the windy conditions during sampling leading to mixing of the gas above the extrusion line.

7.2 Fenceline ambient concentrations

The fenceline samples were exposed for a week each over two consecutive weeks. The first week coincided with foam blowing.

The first week's samples showed broadly consistent values for all samples. The second week showed higher concentrations for the North and the East fencelines. Of particular note were the benzene concentrations. For the North and East Fences these reported 9,7 and 8,4 μ g/m³ during Week 2. These results are over the value set for the annual rolling average guideline of 5 μ g/m³. In itself, this result does not indicate that the benzene limit would be exceeded.

The ratio of toluene to benzene in the fenceline samples was close to 1 (as opposed to 7/8:1 in the Strandfoam source). This suggests that the source of ambient benzene is unlikely to be the foamblowing process. Benzene is also not a raw material used by Strandfoam.

8 **APPENDICES**

A. Field Data

				C BEARIN CLARALT CL	CTChA	_			ACE OLT FOR 034
			SHE	U IVIAINAGEIVIEN I SY:	SIEW			Doc. Number: Revision:	AUS-ULI-FUN-US4 00
SKVCIDE			RADIELLO	D PASSIVE SAMPLI	ING SHEET			Date Issued:	02-Sep-21
								Effective From:	03-Sep-21
Date:	Ģ						Project Name:	STRAND FO	AM ROSSLYN
Month:	LP TEMB	el r	1				Project Code:	572002	
Operator 1:	QUENTIN	HUN	1						
Sampling Location	A C. BTEX Sample ID	NO ₂ /SO ₂ /HF	H ₂ S Sample ID	Start Date	Start Time	Finish Date	Finish Time		Comments
NORTH				11/11	15:40	13/9/22	12:12	25037'51"5	28°05'25"E
EAST	7		2	27/6/9	15:50	13/9/22	12:23	· · · 5165	" 25A E
South	7			11/6/0	16:00	13/9/22	11:4-2	" 38' 01'S	~ 20'6
WEST	7			22/6/9	16:10	13/4/22	11:59	. 37,55" 5	2,61 ~
-									
								-	
Acknowledgement of Reporter(Name)	0-14.(11)		Signature	Sale				Date	
		Contract Contract				1			
Comments: (Any description or even that	t can affect the quality of re	esults) code	1231 BTEX and VOCs	cont white diffusive body	ains and cartridge code RAD	130			
		RAD	1232 BTEX and VOCs 1233 NO ₂ , SO ₂ and HF	yolow diffusive body a blue diffusive body a	/ and cartridge code RAD1 and cartridge code RAD1	0145 66			
		RAD	1233 Aldehydes 1235 ozone	blue diffusive body a blue diffusive body a	and cartridge code RAD1 and cartridge code RAD1	65 72			
		RAD	1236 hydrogen sulfida	white diffusive body	and cartridge code RAD	170			
		RAD	1238 HCI	white diffusive body a	and cartridge code RAD	169			

Doc. Number:	SKY-QLT-FOR-008
Revision:	00
Date Issued:	12-May-17
Effective From:	19-Mav-17

Site	Strandfoam Rosslyn	Date	07-Sep-22
Project code	STR002	Source name	Extruder FRONT
			-
Sampling method	EPA 17	Thomas pump ID	NA
Pre-sampling purge duration	0	Gilian pump ID	21211721

Run 1	Sampling time	Start time: 8:25	End time: 9:25	
	Ambient pressure (hPa)	873		
	Ambient temperature (°C)		19	
	Pre cal flow	252		
	Post cal flow Stack temperature (°C) Stack pressure (hPa) Transfer Time	251		
		21		
		873		
		Start time: NA	End time: NA	

Run 2	Sampling time	Start time: 9:25	End time: 10:25
	Ambient pressure (hPa)	873	
	Ambient temperature (°C) Pre cal flow Post cal flow Stack temperature (°C) Stack pressure (hPa) Transfer time	21	
		251	
		252	
		23	
		873	
		Start time: NA	End time: NA

Run 3	Sampling time	Start time: 10:25	End time: 11:30
	Ambient pressure (hPa)	873	
	Ambient temperature (°C) Pre cal flow Post cal flow Stack temperature (°C)	23	
		252	
		252	
		25	
	Stack pressure (hPa)	873	
	Transfer time	Start time: NA	End time: NA

Field Sample List

Run 1: test tube label	1125547
Run 2: test tube label	1125221
Run 3: test tube label	1125394
Sample blank: test tube label	1126594

Notes:

Extrusion paused between 10:35 and 11:06. Sampling was paused during this time.

Technician Quentin Hurt

Signed Quertin Hul

Manager

Signed_____

Site	Strandfoam Rosslyn	Date	07-Sep-22
Project code	STR002	Source name	Extruder BACK
Sampling method	EPA 17	Thomas pump ID	NA
Pre-sampling purge duration	0	Gilian pump ID	0211718

Run 1	Sampling time	Start time: 8:25	End time: 9:25
	Ambient pressure (hPa)	873	
	Ambient temperature (°C)	19	
	Pre cal flow Post cal flow Stack temperature (°C) Stack pressure (hPa) Transfer Time	160	
		160	
		20,7	
		873	
		Start time: NA	End time: NA

Run 2	Sampling time	Start time: 9:25	End time: 10:25
	Ambient pressure (hPa) Ambient temperature (°C) Pre cal flow Post cal flow Stack temperature (°C)	873	
		21	
		161	
		160	
		22,8	
	Stack pressure (hPa)	873	
	Transfer time	Start time: NA	End time: NA

Run 3	Sampling time	Start time: 10:25	End time: 11:30
	Ambient pressure (hPa) Ambient temperature (°C) Pre cal flow Post cal flow Stack temperature (°C) Stack pressure (hPa) Transfer time	873	
		23	
		160	
		160	
		25,5	
		873	
		Start time: NA	End time: NA

Field Sample List

Run 1: test tube label	1125175
Run 2: test tube label	1125982
Run 3: test tube label	1124144
Sample blank: test tube label	1126594

Notes:

Extrusion paused between 10:35 and 11:06. Sampling was paused during this time.

Technician Quentin Hurt

Signed Quertin Hur

Manager

Signed_____

Flow measurement

	FRONT	BACK
Stack diameter	0,72 m	0,72 m
Stack area	0,41 m2	0,41 m2

Point across duct		Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
С	m	m/s	m/s	m/s	m/s	m/s	m/s
	5	10	7,8	11,7	12,5	10	6,5
1	10	8	4,8	11,4	13,2	7,6	3,7
1	15	7,1	8,4	10,6	10,3	8,9	6,4
2	20	4	7,4	8,8	8	6,9	1,5
2	25	4,5	3	5,4	6,4	1	1,2
3	30	1,4	2,4	3,8	2,8	1,7	3,5
3	35	0,7	3,4	1	3,7	2,5	3,5
4	40	0,9	4,4	1,9	2,1	2,2	5,5
4	45	3	3,6	3,3	2,5	4	8
5	50	5,4	3,9	4	5	6,5	9,1
5	55	7,8	4,8	5,2	6,8	6,1	10,6
6	50	9,1	5,8	4,8	7,2	10	10,6
6	65	10,6	5	4	6	11,6	8,5

Flow measurement

	Flow-adjus	ted measurem	ents					
		FR	ONT			BA	CK	
Point across duct	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
cm								
5	2,04	6 1,596	2,394		2,558	2,046	1,330	
10	0,88	0 0,528	1,254		1,452	0,836	0,407	
15	0,63	1 0,746	0,942		0,915	0,791	0,569	
20	0,27	1 0,501	0,596		0,541	0,467	0,102	
25	0,20	9 0,140	0,251		0,298	0,047	0,056	
30	0,04	3 0,073	0,116		0,086	0,052	0,107	
35	0,00	4 0,018	0,005		0,019	0,013	0,018	
40	0,00	1 0,007	0,003		0,003	0,003	0,009	
45	0,04	9 0,058	0,053		0,040	0,065	0,129	
50	0,20	6 0,148	0,152		0,190	0,247	0,346	
55	0,46	2 0,284	0,308		0,403	0,361	0,628	
60	0,73	1 0,466	0,386		0,579	0,804	0,852	
65	2,66	2 1,256	1,005		1,507	2,913	2,135	
Average (m/s)	8,	2 5,8	7,5	7,2	8,6	8,6	6,7	8,0
Volumetric (m3/s)	3,	3 2,4	3,0	2,9	3,5	3,5	2,7	3,2
Volumetric (m3/h)	1201	1 8533	10942	10495	12592	12672	9802	11689
0	87,	3 87,3	87,3	87,3	87,3	87,3	87,3	87,3
Temperature (°C)	20,	7 22,8	25,5	23	21	23,2	25	23
Relative humidity (%)	0,	8 0,8	0,8	1	0,7	0,7	0,7	1
Volumetric flow (STP)	1285	1 9065	11519	11145	13473	13457	10347	12426

B. Calibration Sheets

Certificate of Calibration

ANSI National Accreditation Board (ANAB) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Agreement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide. For more information on the arrangement please consult www.ilac.org. The accuracies of all measurements were traceable to the SI (International System of Units) through NIST, NMISA, PTB or International Measuring Standards, unless otherwise noted. The uncertainties of measurement were estimated for a coverage factor of k=2 which approximates to a 95% confidence level.

Certificate No	L85077	As Found/As Left	Rev 0	American Standard Calibration Laboratory Measurement Science Laboratory
Manufacturer	Dios international C	5010		
Description	Primary Air Flow C	alibrator - Low Flow	(GOLDILUX
Model No	Defender 510-L			
Serial No	112452			kg
Plant No	EE225			S to h 3
Calibrated for	Skyside South Afric	ca (Pty) Ltd		σzSI A
Address	2 Samantha Street	, Strydompark, Randburg, 2169		E A e
Temperature	(21.7 ± 2) °C			A A
Relative humidity	(30 ± 5) %rh			
Date of calibration	08 July 2022			
Expiry date	08 July 2023	Issue Date	08 July 2022	

Calibrated by

This certificate is issued without alteration, and in accordance with the conditions of accreditation granted by ANAB Copyright of this certificate is owned by Technology Solutions & American Standard Calibration Laboratory and may not be reproduced other than in full, except with the prior written approval. It is a correct record of the measurements performed at the time of calibration. Subsequently the accuracy will depend on factors such as care exercised in handling the instrument and frequency of use. Recalibration should be performed after a period which has been chosen to ensure that, under normal circumstances, the instruments accuracy remains within the desired limits. The results relate to the device under calibration.

Technical Signatory

Page 1 of 3

Hards Laboratories cc T/A Technology Solutions C3 Prospect Close 43 Regency Drive R21 Corporate Park, Irene Tel: +27 (0) 12 345 5358 Fax +27 (0) 12 345 3263

Technology Solutions Measurement Science Laboratory

Certificate of Calibration

Certificate No L85077 As

As Found/As Left

Rev 0

Standards and Equipment used

Description	Asset No	Cal due
Electronic Base; Dry Flow Cells	TS283	14 October 2023
Thermo-Hygrometer	TS294	09 May 2023
Bios DryCal	TS278	Source Only

Procedure

TS PL 024

Results

Measurement U	nits	LPM		Range	0.5	LPM			
Nominal Flow	STD Reading	STD Temperature (°C)	STD Pressure (psi)	UUT Reading	UUT Temperature (°C)	UUT Pressure (psi)	UUT Correction factor	Specification	Measurement Uncertainty (±)
0.10	0.103	21.3	12.50	0.113			0.91	0.01	0.01
0.20	0.204	21.3	12.50	0.218			0.94	0.01	0.01
0.30	0.301	21.3	12.50	0.318			0.95	0.01	0.01
0.40	0.404	21.4	12.50	0.424			0.95	0.01	0.01
0.50	0.502	21.3	12.50	0.522			0.96	0.01	0.01

Status	Instrument Received in Good Physical and Functional Condition.
Comments	The correction must be multiplied with the UUT reading to obtain the corrected value. The readings presented above are averaged data. LPM conditions are stated for prevailing gas temperature and pressure. (Volume Flow)

Page 2 of 3

Hards Laboratories cc T/A Technology Solutions C3 Prospect Close 43 Regency Drive R21 Corporate Park, Irene Tel: +27 (0) 12 345 5358 Fax +27 (0) 12 345 3263

STR003 Page 030 of 062

Certificate of Calibration

 Certificate No
 L85077
 As Found/As Left
 Rev 0

 Repeatability
 Repeatability is defined as the closeness of the agreement between the results of successive measurements of the same measurand carried out under the same measurement conditions.

Compliance with Specifications - ILAC-G8

The laboratory implements the shared risk approach as defined in ILAC-G8:09/2019, Section 4.2.1 - Binary Statement for Simple Acceptance Rule (w = 0) when making statements of conformity.

Statements of conformity are reported as:

Pass - the measured value is within the specification. Fail - the measured value is outside the specification.

U = 95% expanded measurement uncertainty

End of Calibration Data

Hards Laboratories cc T/A Technology Solutions C3 Prospect Close 43 Regency Drive R21 Corporate Park, Irene Tel: +27 (0) 12 345 5358 Fax +27 (0) 12 345 3263

5TR003 Page 031 of 062

GAS CALIBRATIONS					SK۱	-QLT-FOR-014	REV
Gas analyser	Г	esto 350		Asset/serial n	umber	EE	194
Zero gas serial number				Clean filter?		Y	es
				Data file num	ber		
					1		-
Checks		NO	NO ₂	SO ₂	со	CO2	02
Gas analyser measurement concentrat	tion range (ppm/%)	0-4000	0-500	0-5000	0-10000	0-50	0-25
Gas standard serial number					M55 5707	M55 5707	M55 5707
Gas standard concentration (ppm/%)					100,2	15,01	5,136
Zero pre-sampling response					0	0	0,03
Span response pre-calibration					96		5,2
Span response post-calibration							
Pre-sampling deviation from standard	(Limit <2%)				4,2%		-0,7%
Span response time (sec)							
Zero post sampling response					0		0
Span response post sampling					97		5,19
Post-test drift at span point (%) (Limit	<15% after 3-hr test)				1,0%		0,4%
Post-test drift at zero (%)					0,0%		-0,6%
			Check dur	ing calibration	On-site pre	e-test check	[
Operating temperature							ĺ
Gas analyser maximum ambient opera	tion temperature (°C)			45		15	ļ
Analyser case temperature (°C)				23,2			
Sample flow							Í
Leak test on conditioning system (pass	/fail)			Pass			(
Gas analyser flow rate (I/min)				0,43			(
Method							Í
Sampling train complies with method?							[
Sampling procedure complies with me	thod?						[
Please describe deviations in Commen	nts section below						
Comments							
RESPONSIBLE PERSON							
Form completed by	Thabang				Date	25/10/2022	
Form reviewed by	Quentin Hurt				Date	25/10/2022	

Certificate of Analysis

Private Bag X34, Lynnwood Ridge, Pretoria, 0040 CSIR Campus, Meiring Naude Road, Brummeria, 0184 Calibration office: +27 12 841 4623 Reception: +27 12 841 4152 Fax: +27 12 841 4458 E-mail enquiries: info@nmisa.org

Facility Accreditation Number: Name and Customer Address:

RMP002 SKYSIDE (PTY) LTD Ninian Westmead Estate Unit 2, Building 4 33 Henry Pennington Rd Pinetown Durban South Africa Strijdom Park Gauteng South Africa

Description: Primary Reference Gas Mixture (PRGM), cylinder number M55 5707 containing a mixture of carbon dioxide (CO₂), carbon monoxide (CO) and oxygen (O₂) in nitrogen (N₂) prepared on 06 July 2022.

Method of
Preparation:Gravimetric preparation in accordance with the International Organization for Standardization,
ISO 6142 (Gas Analysis – Preparation of calibration gas mixtures – Gravimetric Method). After
preparation, the composition was verified using non-dispersive infrared spectroscopy for CO
and CO2, and gas chromatography coupled with thermal conductivity detection for O2.

- Intended use: The material can be used to validate and/or calibrate analytical methods or for the calibration of measurement systems used to determine the amount fraction of CO₂, CO and O₂ in N₂.
- Result:The amount fraction of CO2: $(15,01 \pm 0,15)$ % mol/molThe amount fraction of CO: $(100,2 \pm 1,0)$ µmol/molThe amount fraction of O2: $(5,136 \pm 0,052)$ % mol/mol
- **Uncertainty:** The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by a coverage factor, k = 2, which for a normal distribution approximates a level of confidence of 95,45 %.
- **Traceability**: The amount fraction is traceable to the national standard of mass and, by comparison, to NMISA primary standard gas mixtures (PSGMs).
- **Homogeneity**: The homogeneity of the mixture has been assured by rolling the cylinder on a roller bench for a minimum of 2 hours after preparation.

Analysed by Prelly Marebane Metrologist	Checked by Mphara Mogale Metrologist	For Chief Executive Officer
Date of Issue 2022/08/01	Page 1 of 2	Certificate Number NMISA-GAS-2022-2238

Your measure of excellence

Analysis of CO₂, CO and O₂-in-N₂ (PRGM certificate number: PRGM0200555707)

- Stability: The certification of the gas mixture is valid until 06 July 2024, provided the cylinder pressure does not drop below 500 kPa.
- Storage:Store away from direct heat between temperatures of 10 to 40 °C in a well-ventilated area.More guidance on the use of calibration gas mixtures can be found in ISO 16664 (Gas Analysis
– Handling of calibration gases and gas mixtures Guidelines).
- Safety: The cylinder should be handled with care and by experienced personnel in a laboratory environment suitably equipped for the safe handling of gaseous materials.
- Cylinder: The PRGM is contained in a passivated aluminium cylinder. The cylinder has a water capacity of 5 l and is pressurised to 9,7 MPa. The outlet connection of the cylinder valve conforms to BS3 specifications.
- Remarks: The reported uncertainties of measurements were calculated in accordance with the BIPM, IEC, ISO, IUPAP, OIML document entitled "Guidance to the Expression of Uncertainty in Measurement" (International Organization for Standardization, Geneva, Switzerland, 2008).

The national measurement standards are monitored for stability at intervals of 3 months, 6 months, 9 months and then annually after preparation. Customers will be notified of any stability problems and mixtures will be recertified free of charge if such problems are encountered.

Certain of the NMISA certificates are consistent with the capabilities that are included in appendix C of the MRA (Mutual Recognition Arrangement) drawn up by the CIPM. Under the MRA, all participating institutes recognise the validity of each other's calibration and measurement certificates for the quantities and ranges and measurement uncertainties specified in Appendix C. For details see <u>http://www.bipm.org</u>.

-----end of certificate-----

Analysed by Prelly Marebane Metrologist	Checked by Mphara Mogale Metrologist	For Chief Executive Officer
Date of Issue 2022/08/01	Page 2 of 2	Certificate Number NMISA-GAS-2022-2238

GravCalc Version 2.3.1

Gravimetric composition of cylinder PRGM0200555707

Date: 15/07/2022 Time: 10:58:41 Operator: PM Mixture prepared by: PM Lab book: weighing formula

OUTPUTS

======

Component	µmol/mol	uncertainty	% u/c
N2	798381.6402	7.75074647	0.001
C02	150149.7865	4.62903918	0.003
02	51362.02028	2.54101844	0.005
CO	100.2072297	0.03366202	0.034
Ar	13.67128351	0.27644958	2.022
H2	3.25783425	0.18234397	5.597
CH4	1.54178155	0.22857474	14.825
H20	0.06342389	0.03004794	47.376
C2H6	0.01306452	0.00541077	41.416
N20	0.00001089	0.0000627	57.547

INPUTS

=====

File	Mass (g)	u/c (g)
History\NMISA010	38.16400	0.00200
02UHP334129.txt	44.73700	0.00200
PURECO209122.txt	179.8600	0.00200
BIPN2BATCH220217	570.4230	0.00200

INPUT DATA FILES

Component	mol/mol	uncertainty
N2	0.9979358981	0.0000029906
СО	0.0020000000	0.0000001223
Ar	0.0000635130	0.0000029770
H2	0.000004990	0.000002704

International Chemical Safety Cards

CARBON DIOXIDE

ICSC: 0021

CARBON DIOXIDE Carbonic acid gas Carbonic anhydride (cylinder) CO ₂							
Molecular mass: 44.0 CAS # 124-38-9 RTECS # FF6400000 ICSC # 0021 UN # 1013							
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS		PREVENTION		FIRST AID/ FIRE FIGHTING		
FIRE	Not combustible.			In case of fire in the surroundings: all extinguishing agents allowed.			
EXPLOSION	Containers may burst in the heat of a fire!				In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.		
EXPOSURE							
• INHALATION	Dizziness. Headache. Elevated blood pressure. Tachycardia.		Ventilation.		Fresh air, rest. Artificial respiration if indicated. Refer for medical attention.		
• SKIN	ON CONTACT WITH LIQUID: FROSTBITE.		Cold-insulating gloves. Protective clothing.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.		
• EYES	On contact with lic frostbite.	luid:	Safety goggles, or face sh	nield.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.		
 INGESTION 							
SPILLAGE DISPOSAL		5	STORAGE		PACKAGING & LABELLING		
Ventilation. NEVER direct water jet on liquid (extra personal protection: self-contained breathing apparatus).		Fireproof if i	eproof if in building. Cool. UN H		lazard Class: 2.2		
SEE IMPORTANT INFORMATION ON BACK							
ICSC: 0021 Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993							

Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

CARBON DIOXIDE

ICSC: 0021

file://I:\Laboratories\Gas Metrology\QUALITY\MSDSs\Carbon dioxide.htm

Safety Data Sheet

Product :	Oxygen	Page :1/4 Date : 31/07/2002				
MSDS Nr : 097A_AL	Version: 1.01					
1 IDENTIFICATION OF THE S	UBSTANCE/PREPARATION AND OF THE COMPANY					
ISDS Nr 097A_AL						
Product name	Oxygen					
Chemical formula	02					
Company identification	see heading and/or footer					
	see paragraph 16 "OTHER INFORMATION"					
Emergency phone numbers	see heading and/or footer					
	see paragraph 16 "OTHER INFORMATION"					
2 COMPOSITION/INFORMATI	ON ON INGREDIENTS					
Substance/Preparation	bstance/Preparation Substance.					
Components/Impurities	Contains no other components or impurities which will influence the classification of the					
	product.					
CAS Nr	07782-44-7					
EEC Nr (from EINECS)	231-956-9					
3 HAZARDS IDENTIFICATION Hazards identification	Compressed gas					
	Oxidant. Strongly supports combustion, May react violently with combust	tible materials.				
4 FIRST AID MEASURES						
Inhalation	Continuous inhalation of concentrations higher than 75% may cause nause	a, dizziness,				
	respiratory difficulty and convulsion.					
	Remove victim to uncontaminated area.					
5 FIRE FIGHTING MEASURES		0 - 1900 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19				
Specific hazards	Supports combustion.					
	Exposure to fire may cause containers to rupture/explode.					
	Non flammable					
	None					
Hazardous combustion products						
Hazardous combustion products Suitable extinguishing media	All known extinguishants can be used					
Hazardous combustion products Suitable extinguishing media Specific methods	All known extinguishants can be used.					

AIR LIQUIDE S.A.

••

. 75 Quai d'Orsay, Paris FRANCE
Safety Data Sheet

	Product : Oxygen		Page :3/4	
	MSDS Nr : 097A_AL	Version : 1.01	Date : 31/07/2002	
	Relative density, liquid	1.1 (water=1)		
	Vapour Pressure 20°C	Not applicable.		
	Solubility mg/l water	39 mg/l		
	Appearance/Colour	Colourless gas		
	Odour	No odour warning properties.		
	Autoignition temperature	Not applicable		
	Flammability range	Oxidiser.		
	Other data	Gas/vapour heavier than air. May accumulate in confined spaces, particularly at	or below	
		ground level.		
10	STABILITY AND REACTIVITY			
	Stability and reactivity	May react violently with combustible materials		
		May react violently with reducing agents.		
		Violently oxidises organic material.		
11	TOXICOLOGICAL INFORMATION			
	General	No tovicological officets from this product		
		No toxicological enects from this product.		
12	ECOLOGICAL INFORMATION			
	General	No ecological damage caused by this product.		
13	DISPOSAL CONSIDERATIONS			
	General	To atmosphere in a well ventilated place		
		Do not discharge into any place where its accumulation could be dangerous		
		Contact supplier if guidance is required.		
14	TRANSPORT INFORMATION		and the second	
1.4	Proper shipping name	Owner compressed		
	TIN Nr	1072		
	Class/Div	10/2		
	Subsidiary risk	5.1		
	ADD/DUD Classifications I	2.1		
	the second state is a second s	2,1° 0		
	ADK/KID Classification code			
	ADR/RID Hazard Nr	25		
	ADR/RID Hazard Nr Labelling ADR	25 Label 2: non flammable non toxic gas		

AIR LIQUIDE S.A.

1158

. 75 Quai d'Orsay, Paris FRANCE

C. Laboratory Results

SHEO	MANAG	EMENT	SYSTEM
~			

REQUEST FOR LABORATORY SERVICES AND CHAIN OF

CUSTODY FORM

skyside

Doc Number:SKY-QLT-FOR-011Revision:01Date Issued:29 January 2019Effective From:04 February 2019

From:	Quentin Hurt	Contact No:	082 444-9320
Company:	Skyside	E-mail:	qh@skyside.co.za
Date:	9/922	PO Number:	STR002
No. Samples:	7	Project No:	STR002
Mode of Transport:	By Hand		

#	Sample ID	Date of Collection	Matrix	Storage container	Analysis Required
1	1125547 🗸	7/9/22	Gas	TD Tube	VOC (Method 17)
2	1125221 🗸	7/9/22	Gas	TD Tube	VOC (Method 17)
3	1125394 🗸	7/9/22	Gas	TD Tube	VOC (Method 17)
4	ب 1126594	7/9/22	Gas	TD Tube	VOC (Method 17)
5	1125175 🛩	7/9/22	Gas	TD Tube	VOC (Method 17)
6	1125982	7/9/22	Gas	TD Tube	VOC (Method 17)
7	1124144 🗸	7/9/22	Gas	TD Tube	VOC (Method 17)
8					
9					
10					
11					
12					
13					
14					
15					
Spe	cial Instructions:				

Relinquished by	Date	Time	Received by	Date	Time
Quentin Hurt	9/9/22	10:00	Thembi Mtshali	9/9/22	10:00
Quentin Hunt					
62					
Comments:					
<u>H</u>					

Page 1 of 1

SHEQ MANAGEMENT SYSTEM

 Doc Number:
 LAB-QLT-FOR-001B

 Revision:
 03

 Date Issued:
 15 February 2021

 Effective From:
 16 February 2021

REQUEST	FOR	LABORATO	RY	SERVICES	AND	CHAIN	OF
		CUSTO	DY	FORM			

THERMAL DESORPTION AND RADIELLO SAMPLES Quentin Hurt Name: Skyside Industrial Company: 082 444 9320 Contact No: Quentin @ skyside. (0.29 E-mail: 2022 Date: 13 09 No. Samples: STR 002 **PO Number:** STROOZ **Project No:**

Condition of Samples:

			Analysis Required				Exposure Time			
#	Sample ID	Matrix	NH3	H2S	BTEX +	NO2/SO2	Start Date	Start Time	End Date	End Time
1	CH595-North	RAD 130			V		6/9/22	15:40	13/9/22	12:12
2	CH596 - WEST	RAD 130			V		6/9/22	16:10	13/9/22	11:59
3	CH598- EAST	RAD BO			1	11	6/9/22	15:50	13/9/22	12:23
4	CH597-Saith	RAD 130			V		6/9/22	16:00	13/9/22	11:47
5									1-1	
6	-									
7										
8										
9							2			
10				-						
11										
12										
13										
Com	ments:									
Relin	quished by:	Date		Tim	ie		Received by	/: Date	9	Time
Ten	naswati	13/9/	22	14	1:53			*	11	
		M 4 53						DATE []	<u>+- 09</u>	26
				0.7		- 044 -5		JAME:	INUM	01
				31	Page.	I of 1		SIGNATUR	E. 11/1	nali

91

SHEQ MANAGEMENT SYSTEM

REQUEST FOR LABORATORY SERVICES AND CHAIN OF CUSTODY FORM

Doc Number: LAB-QLT-FOR-001B **Revision:** 03 Date Issued: 15 February 2021 Effective From: 16 February 2021

-	<u></u>	THERM	IAL D	ESOR	PTION	AND	RADIFUO	SAMO	c			
	Name	Quenti	n Hurt					JAIVIFLE				
	Company	: Skyside	Skyside Industrial									
	Contact No:	082 444	1 9320									
	E-mail:	Quentir	n@sky	side.co	.za							
1	Date:	20	109	1202	22	T	No. Sampler					
÷.	PO Number:	STROOZ	57	PRO	2		Project No:	STROOP				
C	Condition of Samples:			100	<u> </u>		Hoject NO:	51R003				
#	Sample ID		Analysis Required				Analysis Required			Ехро	sure Time	la contra da contra da Califar da Califar da Califar da Califar da
	ounipie ID	Matrix	NH ₃	H₂S	BTEX + Full VOC	NO ₂ /SO ₂	Start Date	Start Time	End Date	nd Time		
	NO969 - North 🗸	RAD 130			5		13/9/2022	12.12	01.1			
	NO971 - West	RAD 130			~		13/9/2022	11:59	2010912022	11:35		
_	NO968 - East 🗸	RAD 130			5-	_	13/9/2022	12:23	0 1 1	11:44		
_	NO970 - South	RAD 130			~		13/9/2022	11.42	20/09/2022	11:50		
_	W555E-Blank	RADBU			V				20109/2022	11:50		
4									2010712022	12:00		
_					-							
-												

Comments:

12

13

Relinquished by: Date Time **Received by:** Date Time Thabang 20/09 2022 14:29 9 20

ູ່ວິດີຈ

DATE:

NAME

11 3

5

ĩ

r. 11'.

0

1th

TEST REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Quentin Hurt	Laboratory	X-Lab Earth Science
Client	SKYSIDE (PTY) LTD	Address	2 Samantha Street, Strydompark, Randburg, 2169
Address	2 Samantha Street Strydompark Randburg	Telephone	+27 (0)11 590 3000
Tolophono		Laboratory Manager	Mrs Tasneem Tagari
Facsimile		Lab Reference	JBX22-12840
Email		Report Number	0000049491
		Date Received	09/09/2022 13:14
Order Number	STR003	Date Started	19/10/2022 8:51
Samples Sample matrix	7 AIR	Date Reported	20/10/2022 16:00

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0775.

Samples received at ambient temp good condition. #Samples outsourced to Chemtech Laboratory as instrument is down.

SIGNATORIES

Tasneem Tagari

General Manager/Technical Signatory

X-Lab Earth Science (Pty) Ltd

www.xlab.earth

LAB-QLT-REP-001

STR003 Page 044 of 062

Report number 0000049491 Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12840.001 1125547	JBX22-12840.002 1125221	JBX22-12840.003 1125394	JBX22-12840.004 1126594
_						
Parameter	Units	LOR				
Volatile Organic Compour	nds (VOC) in Air	Method: ME	E-AN-061			
Trichloromethane (Chloroform) *	ng/tube	2	14	<2.0	18	<2.0
1,1,1-trichloroethane *	ng/tube	0.95	<0.95	<0.95	<0.95	< 0.95
1,2-dichloroethane *	ng/tube	0.65	<0.65	< 0.65	<0.65	<0.65
Benzene	ng/tube	1	6.6	7.2	9.5	<1.0
1,2-dichloropropane *	ng/tube	0.85	< 0.85	<0.85	<0.85	< 0.85
Trichloroethene *	ng/tube	0.5	< 0.50	<0.50	<0.50	<0.50
Dibromomethane *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
cis-1,3-dichloropropene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
Toluene	ng/tube	1	32	78	27	10
trans-1,3-dichloropropene *	ng/tube	0.9	<0.90	<0.90	<0.90	<0.90
1,1,2-trichloroethane *	ng/tube	0.9	< 0.90	<0.90	<0.90	<0.90
1,3-dichloropropane *	ng/tube	0.65	<0.65	<0.65	<0.65	<0.65
Tetrachloroethene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
Bromodichloromethane *	ng/tube	1	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane *	ng/tube	0.75	<0.75	<0.75	<0.75	<0.75
1,2-dibromoethane *	ng/tube	0.95	< 0.95	<0.95	<0.95	< 0.95
Chlorobenzene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
1,1,1,2-tetrachloroethene *	ng/tube	0.9	<0.90	<0.90	<0.90	<0.90
Carbon tetrachloride *	ng/tube	1	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	ng/tube	0.75	1,9	4.8	10	<0.75
m/p-xylene	ng/tube	0.8	4.5	11	7.9	<0.80
o-xylene	ng/tube	0.75	1.8	4.0	3.9	<0.75
Styrene *	ng/tube	0.85	<0.85	<0.85	<0.85	<0.85
Bromoform *	ng/tube	2	<2.0	<2.0	<2.0	<2.0
Isopropylbenzene (Cumene) *	ng/tube	0.75	<0.75	<0.75	<0.75	<0.75
1,1,2,2-tetrachloroethane *	ng/tube	0.9	< 0.90	<0.90	<0.90	<0.90
1,2,3-trichloropropane *	ng/tube	0.9	<0.90	<0.90	<0.90	<0.90

10/20/22

STR003 Page 045 of 062

Report number 0000049491 Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12840.001 1125547	JBX22-12840.002 1125221	JBX22-12840.003 1125394	JBX22-12840.004 1126594
Doromotor	Unite					
Parameter	Units	LOR				
Volatile Organic Compour	nds (VOC) in Air	Method: ME	E-AN-061 (cor	tinued)		
n-propylbenzene *	ng/tube	2	<2.0	<2.0	<2.0	<2.0
Bromobenzene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
2-chlorotoluene *	ng/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,3,5-trimethylbenzene *	ng/tube	0.55	<0.55	<0.55	<0.55	<0.55
4-chlorotoluene *	ng/tube	0.7	<0.70	<0.70	<0.70	<0.70
1,3-dichlorobenzene *	ng/tube	1	<1.0	<1.0	<1.0	<1.0
tert-butylbenzene *	ng/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2,4-trichlorobenzene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
sec-butylbenzene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
p-Isopropyltoluene (p-Cymene) *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80
1,4-dichlorobenzene *	ng/tube	0.75	<0.75	<0.75	<0.75	<0.75
n-butylbenzene *	ng/tube	2	<2.0	<2.0	<2.0	<2.0
1,2-dichlorobenzene *	ng/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2-dibromo-3-chloropropane *	ng/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2,4-trimethylbenzene *	ng/tube	0.75	2.5	<0.75	8.2	3.4
Hexachlorobutadiene *	ng/tube	0.5	<0.50	<0.50	<0.50	<0.50
Naphthalene *	ng/tube	0.5	<0.50	<0.50	<0.50	<0.50
1,2,3-trichlorobenzene *	ng/tube	0.8	<0.80	<0.80	<0.80	<0.80

0000049491

Report number Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12840.005 1125175	JBX22-12840.006 1125982	JBX22-12840.007 1124144
Parameter	Units	LOR			
Volatile Organic Compoun	ids (VOC) in Air	Method: ME	E-AN-061		
Trichloromethane (Chloroform) *	ng/tube	2	<2.0	<2.0	6.5
1,1,1-trichloroethane *	ng/tube	0.95	<0.95	< 0.95	< 0.95
1,2-dichloroethane *	ng/tube	0.65	<0.65	< 0.65	< 0.65
Benzene	ng/tube	1	7.4	<1.0	11
1,2-dichloropropane *	ng/tube	0.85	<0.85	<0.85	<0.85
Trichloroethene *	ng/tube	0.5	< 0.50	<0.50	<0.50
Dibromomethane *	ng/tube	0.8	<0.80	<0.80	<0.80
cis-1,3-dichloropropene *	ng/tube	0.8	<0.80	<0.80	<0.80
Toluene	ng/tube	1	104	8.5	36
trans-1,3-dichloropropene *	ng/tube	0.9	<0.90	<0.90	<0.90
1,1,2-trichloroethane *	ng/tube	0.9	<0.90	<0.90	<0.90
1,3-dichloropropane *	ng/tube	0.65	<0.65	<0.65	<0.65
Tetrachloroethene *	ng/tube	0.8	<0.80	<0.80	<0.80
Bromodichloromethane *	ng/tube	1	<1.0	<1.0	<1.0
Dibromochloromethane *	ng/tube	0.75	<0.75	<0.75	<0.75
1,2-dibromoethane *	ng/tube	0.95	<0.95	< 0.95	<0.95
Chlorobenzene *	ng/tube	0.8	<0.80	<0.80	<0.80
1,1,1,2-tetrachloroethene *	ng/tube	0.9	<0.90	<0.90	<0.90
Carbon tetrachloride *	ng/tube	1	<1.0	<1.0	<1.0
Ethylbenzene	ng/tube	0.75	3.4	<0.75	5.2
m/p-xylene	ng/tube	0.8	7.2	<0.80	16
o-xylene	ng/tube	0.75	2.8	<0.75	7.1
Styrene *	ng/tube	0.85	<0.85	<0.85	<0.85
Bromoform *	ng/tube	2	<2.0	<2.0	<2.0
Isopropylbenzene (Cumene) *	ng/tube	0.75	<0.75	<0.75	<0.75
1,1,2,2-tetrachloroethane *	ng/tube	0.9	<0.90	<0.90	<0.90
1,2,3-trichloropropane *	ng/tube	0.9	<0.90	< 0.90	< 0.90

10/20/22

Report number 0000049491 Client reference: STR003

TEST REPORT

	Sample Number Sample Name	JBX22-12840.005 1125175	JBX22-12840.006 1125982	JBX22-12840.007 1124144
Units	LOR			
ls (VOC) in Air	Method: ME	-AN-061 (con	tinued)	
ng/tube	2	<2.0	<2.0	<2.0
ng/tube	0.8	<0.80	<0.80	<0.80
ng/tube	0.85	< 0.85	<0.85	<0.85
ng/tube	0.55	< 0.55	<0.55	<0.55
ng/tube	0.7	<0.70	<0.70	<0.70
ng/tube	1	<1.0	<1.0	<1.0
ng/tube	0.85	< 0.85	<0.85	<0.85
ng/tube	0.8	<0.80	<0.80	<0.80
ng/tube	0.8	<0.80	<0.80	<0.80
ng/tube	0.8	<0.80	<0.80	<0.80
ng/tube	0.75	<0.75	<0.75	<0.75
ng/tube	2	<2.0	<2.0	<2.0
ng/tube	0.85	<0.85	<0.85	<0.85
ng/tube	0.85	<0.85	<0.85	<0.85
ng/tube	0.75	3.3	<0.75	9.4
ng/tube	0.5	<0.50	<0.50	<0.50
ng/tube	0.5	<0.50	<0.50	<0.50
ng/tube	0.8	<0.80	<0.80	<0.80
	Units Is (VOC) in Air ng/tube	Sample Number Sample NameUnitsLORIs (VOC) in AirMethod: MEng/tube0.8ng/tube0.8ng/tube0.85ng/tube0.7ng/tube0.7ng/tube0.85ng/tube0.85ng/tube0.85ng/tube0.85ng/tube0.8ng/tube0.8ng/tube0.8ng/tube0.75ng/tube0.75ng/tube0.75ng/tube0.85ng/tube0.85ng/tube0.75ng/tube0.75ng/tube0.75ng/tube0.5ng/tube0.5ng/tube0.5ng/tube0.5ng/tube0.5ng/tube0.8	Sample Number Sample Name IBX22-12840.005 1125175 Units LOR Is (VOC) in Air Method: ME-AN-061 (con ng/tube ng/tube 0.8 ng/tube 0.8 ng/tube 0.85 ng/tube 0.7 ng/tube 0.7 ng/tube 0.7 ng/tube 0.85 ng/tube 0.85 ng/tube 0.70 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.8 ng/tube 0.8 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.85 ng/tube 0.5 ng/tube 0.5 ng/tube 0.5 ng/tube 0.5 <tr< td=""><td>Sample Name IBX22-12840.005 1125175 IBX22-12840.006 1125982 Units LOR Image: I</td></tr<>	Sample Name IBX22-12840.005 1125175 IBX22-12840.006 1125982 Units LOR Image: I

METHOD SUMMARY

METHOD ME-AN-061 METHOD SUMMARY

This method is used to determine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which have been actively or passively sampled onto an adsorbent thermal desorption tube. The sample tubes are loaded onto the thermal desorption unit autosampler and the compounds are desorbed at 300°C for 7 minutes with a flow of Helium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the analytical capillary column in the gas chromatograph which separates the compounds. Each compound is then identified and quantified by the mass spectrometer which is operated in full scan mode over a 50 – 300amu range. Identification of analytes is accomplished by comparing their mass spectra with the mass spectra of authentic standards and elution times. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using an appropriate calibration curve.

STR003 Page 048 of 062

JBX22-12840

0000049491

Client reference: STR003

Report number

IS	Insufficient sample for analysis.	*	The sample was not analysed for this analyte			
LNR	Sample listed, but not received.		Results marked "Not SANAS Accredited" in this report are not			
^	Performed by outside laboratory.		included in the SANAS Schedule of Accreditation for this laboratory			
LOR	Limit of Reporting		/ certification body / inspection body".			
Sample:	s analysed as received.	Unles	s otherwise indicated, samples were received in containers fit for se.			
Solid sa	mples expressed on a dry weight basis.	purpc				
This doo	This document is issued by the Company under its General Conditions of Service.					
Attentic	Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.					
WARNI	WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a					
third pa	hird party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to					
the sam	he sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.					
Any una	Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted					
to the fu	o the fullest extent of the law.					
X-Lab Earth Science is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za . The document is issued in accordance with SANAS's accreditation requirements and shall not be reproduced, except in full, without written approval of the laboratory						
			LAB-QLT-REP-001			

___ FOOTNOTES ___

STR003 Page 049 of 062

Signature Request			
Signature Request ID:	602aecb6-c94a-4621-81aa- 424104a5555a	Timestamp:	2022-10-20 14:04:40 GMT
Signee Name:	Tasneem Tagari	Sender Name:	Tasneem Tagari
Request Type:	WebSigning	Request Status:	WEBVIEWER SIGNED
Original Document			
Document Name:	JBX2212840_0000033189PDF.pdf	Document Size:	146.4 KB
Email Evidence			
Signee Email:	tt@xlab.earth	Email Subject:	Not available in Silent Mode
Email Sent Timestamp:	Not available in Silent Mode	Email Opened Timestamp:	Not available in Silent Mode
Web Evidence			
Signee IP Address:	41.79.81.146	Request Timestamp:	2022-10-20 14:04:02 GMT
Signee GPS (if shared):	ZA: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36	Terms Accepted Timestamp:	2022-10-20 14:04:16 GMT
Annotations and Modifications			
Signature Count:	1	Form Fields Filled Count:	0
Text Annotation Count:	0	Initial All Pages Count:	0
Single Initial Count:	0		
Signing Evidence			
Signee Mobile:	+27834449137	Sign Type:	WebSigning
Security Challenge:	NONE	Part of Workflow:	NONE
Chain Of Custody Generation			
Attached Document Name:	20221020T140440.690954Z JBX2212840_0000033189PDF.pdf	Attached Timestamp:	2022-10-20 14:04:40 GMT

www.impression-signatures.com Copyright © 2022 Impression Signatures (Pty) Ltd STR003 Page 050 of 062

TEST REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Quentin Hurt	Laboratory	X-Lab Earth Science
Client	SKYSIDE (PTY) LTD	Address	2 Samantha Street, Strydompark, Randburg, 2169
Address	2 Samantha Street Strydompark Randburg	Telephone	+27 (0)11 590 3000
Tolophono		Laboratory Manager	Mrs Tasneem Tagari
Facsimile		Lab Reference	JBX22-12883
Email		Report Number	0000048905
		Date Received	14/09/2022 15:03
Order Number	STR003	Date Started	19/09/2022 12:53
Samples Sample matrix	4 AIR	Date Reported	06/10/2022 14:11

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0775.

Samples received at ambient temp good condition.

SIGNATORIES

Tasneem Tagari

General Manager/Technical Signatory

X-Lab Earth Science (Pty) Ltd

www.xlab.earth

LAB-QLT-REP-001

STR003 Page 051 of 062

0000048905

Report number Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12883.001 CH595-North	JBX22-12883.002 CH596-West	JBX22-12883.003 CH598-East	JBX22-12883.004 CH597-South
Parameter	Units	LOR				

BTEX on Radiello RAD130

Benzene *	ug/tube	1	2.3	2.3	2.5	2.5
Toluene *	ug/tube	1	6.5	4.7	6.4	6.0
Ethylbenzene *	ug/tube	0.75	2.0	1.1	1.4	2.5
m/p-xylene *	ug/tube	0.8	3.8	2.8	3.6	5.4
o-xylene *	ug/tube	0.75	1.8	1.1	1.3	2.1

Volatile Organic Compounds (VOC) in Air Method: ME-AN-061

Trichloromethane (Chloroform) *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
1,1,1-trichloroethane *	ug/tube	0.95	< 0.95	< 0.95	< 0.95	<0.95
1,2-dichloroethane *	ug/tube	0.65	<0.65	<0.65	<0.65	<0.65
1,2-dichloropropane *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
Trichloroethene *	ug/tube	0.5	<0.50	< 0.50	< 0.50	<0.50
Dibromomethane *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
cis-1,3-dichloropropene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
trans-1,3-dichloropropene *	ug/tube	0.9	< 0.90	<0.90	<0.90	<0.90
1,1,2-trichloroethane *	ug/tube	0.9	< 0.90	<0.90	<0.90	<0.90
1,3-dichloropropane *	ug/tube	0.65	<0.65	<0.65	<0.65	<0.65
Tetrachloroethene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
Bromodichloromethane *	ug/tube	1	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane *	ug/tube	0.75	<0.75	<0.75	<0.75	<0.75
1,2-dibromoethane *	ug/tube	0.95	< 0.95	<0.95	<0.95	< 0.95
Chlorobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
1,1,1,2-tetrachloroethene *	ug/tube	0.9	< 0.90	<0.90	<0.90	<0.90
Carbon tetrachloride *	ug/tube	1	<1.0	<1.0	<1.0	<1.0
Styrene *	ug/tube	0.85	< 0.85	<0.85	<0.85	< 0.85
Bromoform *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
Isopropylbenzene (Cumene) *	ug/tube	0.75	<0.75	<0.75	<0.75	<0.75
1,1,2,2-tetrachloroethane *	ug/tube	0.9	<0.90	<0.90	<0.90	<0.90

10/6/22

STR003 Page 052 of 062

Report number 0000048905 Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12883.001 CH595-North	JBX22-12883.002 CH596-West	JBX22-12883.003 CH598-East	JBX22-12883.004 CH597-South
Parameter	Units	LOR				
Volatile Organic Compoun	ids (VOC) in Air	Method: ME	-AN-061 (cor	itinued)		
1,2,3-trichloropropane *	ug/tube	0.9	< 0.90	<0.90	<0.90	< 0.90
n-propylbenzene *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
Bromobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
2-chlorotoluene *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,3,5-trimethylbenzene *	ug/tube	0.55	<0.55	<0.55	0.80	< 0.55
4-chlorotoluene *	ug/tube	0.7	<0.70	<0.70	<0.70	<0.70
1,3-dichlorobenzene *	ug/tube	1	<1.0	<1.0	<1.0	<1.0
tert-butylbenzene *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2,4-trichlorobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
sec-butylbenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
p-Isopropyltoluene (p-Cymene) *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
1,4-dichlorobenzene *	ug/tube	0.75	<0.75	<0.75	<0.75	<0.75
n-butylbenzene *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
1,2-dichlorobenzene *	ug/tube	0.85	<0.85	<0.85	<0.85	< 0.85
1,2-dibromo-3-chloropropane *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2,4-trimethylbenzene *	ug/tube	0.75	<0.75	2.1	3.2	<0.75
Hexachlorobutadiene *	ug/tube	0.5	< 0.50	<0.50	<0.50	< 0.50
Naphthalene *	ug/tube	0.5	< 0.50	<0.50	<0.50	< 0.50
1,2,3-trichlorobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80

JBX22-12883

0000048905

Report number Client reference: STR003

METHOD SUMMARY

METHOD	METHOD SOMMART
ME-AN-061	This method is used to determine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which have been actively or passively sampled onto an adsorbent thermal desorption tube. The sample tubes are loaded onto the thermal desorption unit autosampler and the compounds are desorbed at 300°C for 7 minutes with a flow of Helium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the analytical capillary column in the gas chromatograph which separates the compounds. Each compound is then identified and quantified by the mass spectrometer which is operated in full scan mode over a 50 – 300amu range. Identification of analytes is accomplished by comparing their mass spectra with the mass spectra of authentic standards and elution times. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using an appropriate calibration curve.

FOOTNOTES					
 Insufficient sample for analysis. LNR Sample listed, but not received. ^ Performed by outside laboratory. LOR Limit of Reporting 	 The sample was not analysed for this analyte Results marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory / certification body / inspection body". 				
Samples analysed as received. Solid samples expressed on a dry weight basis.	Unless otherwise indicated, samples were received in containers fit for purpose.				
This document is issued by the Company under its General Conditions of Service. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.					
X-Lab Earth Science is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at <u>http://sanas.co.za.</u> The document is issued in accordance with SANAS's accreditation requirements and shall not be reproduced, except in full, without written approval of the laboratory					
	LAB-QLT-REP-001				

STR003 Page 054 of 062

Signature Request			
Signature Request ID:	dce58d27-68ff-43cc-8364- 8e5ff9349c48	Timestamp:	2022-10-06 12:18:02 GMT
Signee Name:	Tasneem Tagari	Sender Name:	Tasneem Tagari
Request Type:	WebSigning	Request Status:	WEBVIEWER SIGNED
Original Document			
Document Name:	JBX2212883_0000033015PDF.pdf	Document Size:	141.3 KB
Email Evidence			
Signee Email:	tt@xlab.earth	Email Subject:	Not available in Silent Mode
Email Sent Timestamp:	Not available in Silent Mode	Email Opened Timestamp:	Not available in Silent Mode
Web Evidence			
Signee IP Address:	41.79.81.146	Request Timestamp:	2022-10-06 12:17:35 GMT
Signee GPS (if shared):	ZA: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36	Terms Accepted Timestamp:	2022-10-06 12:17:50 GMT
Annotations and Modifications			
Signature Count:	1	Form Fields Filled Count:	0
Text Annotation Count:	0	Initial All Pages Count:	0
Single Initial Count:	0		
Signing Evidence			
Signee Mobile:	+27834449137	Sign Type:	WebSigning
Security Challenge:	NONE	Part of Workflow:	NONE
Chain Of Custody Generation			
Attached Document Name:	20221006T121802.287434Z JBX2212883_0000033015PDF.pdf	Attached Timestamp:	2022-10-06 12:18:02 GMT

STR003 Page 055 of 062

AMENDED REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Quentin Hurt	Laboratory	X-Lab Earth Science
Client	SKYSIDE (PTY) LTD	Address	2 Samantha Street, Strydompark, Randburg, 2169
Address	2 Samantha Street Strydompark Randburg	Telephone	+27 (0)11 590 3000
Talaphana		Laboratory Manager	Mrs Tasneem Tagari
Facsimile		Lab Reference	JBX22-12930 RO 01
Email		Report Number	0000049839
		Date Received	20/09/2022 15:18
Order Number	STR003	Date Started	6/10/2022 13:48
Samples Sample matrix	5 AIR	Date Reported	26/10/2022 13:53

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0775.

Samples received at ambient temp good condition.

This report cancels and supersedes Report No: 0000048907 issued by X-Lab Earth Science on 06/10/2022. The reason for re-issue is that the Client queried samples NO968-East and W555E-Blank, as results appear to have been swapped. Samples were rerun and it was determined that the samples had indeed been swapped by the analyst and the results were corrected accordingly.

SIGNATORIES

Tasneem Tagari

General Manager/Technical Signatory

X-Lab Earth Science (Pty) Ltd

www.xlab.earth

LAB-QLT-REP-001

STR003 Page 056 of 062

Report number 0000049839 Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12930.001 NO969-North	JBX22-12930.002 NO971-West	JBX22-12930.003 NO968-East	JBX22-12930.004 NO970-South
Parameter	Units	LOR				

BTEX on Radiello RAD130

Benzene *	ug/tube	1	7.5	1.5	6.5	<1.0
Toluene *	ug/tube	1	5.5	5.4	5.5	4.1
Ethylbenzene *	ug/tube	0.75	1.7	0.76	1.6	1.7
m/p-xylene *	ug/tube	0.8	6.1	2.9	5.9	4.7
o-xylene *	ug/tube	0.75	1.9	0.84	2.1	1.7

Volatile Organic Compounds (VOC) in Air Method: ME-AN-061

Trichloromethane (Chloroform) *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
1,1,1-trichloroethane *	ug/tube	0.95	< 0.95	<0.95	<0.95	<0.95
1,2-dichloroethane *	ug/tube	0.65	< 0.65	< 0.65	<0.65	<0.65
1,2-dichloropropane *	ug/tube	0.85	< 0.85	<0.85	<0.85	<0.85
Trichloroethene *	ug/tube	0.5	<0.50	<0.50	<0.50	<0.50
Dibromomethane *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
cis-1,3-dichloropropene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
trans-1,3-dichloropropene *	ug/tube	0.9	< 0.90	< 0.90	<0.90	< 0.90
1,1,2-trichloroethane *	ug/tube	0.9	< 0.90	<0.90	<0.90	< 0.90
1,3-dichloropropane *	ug/tube	0.65	< 0.65	<0.65	<0.65	<0.65
Tetrachloroethene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
Bromodichloromethane *	ug/tube	1	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane *	ug/tube	0.75	<0.75	<0.75	<0.75	<0.75
1,2-dibromoethane *	ug/tube	0.95	< 0.95	< 0.95	<0.95	<0.95
Chlorobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
1,1,1,2-tetrachloroethene *	ug/tube	0.9	< 0.90	<0.90	<0.90	<0.90
Carbon tetrachloride *	ug/tube	1	<1.0	<1.0	<1.0	<1.0
Styrene *	ug/tube	0.85	< 0.85	<0.85	<0.85	<0.85
Bromoform *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
Isopropylbenzene (Cumene) *	ug/tube	0.75	<0.75	<0.75	<0.75	<0.75
1,1,2,2-tetrachloroethane *	ug/tube	0.9	<0.90	<0.90	<0.90	<0.90

10/26/22

Report number 0000049839 Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12930.001 NO969-North	JBX22-12930.002 NO971-West	JBX22-12930.003 NO968-East	JBX22-12930.004 NO970-South
Parameter	Units	LOR				
Volatile Organic Compoun	ds (VOC) in Air	Method: ME	-AN-061 (cor	ntinued)		
1,2,3-trichloropropane *	ug/tube	0.9	<0.90	<0.90	<0.90	<0.90
n-propylbenzene *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
Bromobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
2-chlorotoluene *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,3,5-trimethylbenzene *	ug/tube	0.55	1.0	<0.55	<0.55	<0.55
4-chlorotoluene *	ug/tube	0.7	<0.70	<0.70	<0.70	<0.70
1,3-dichlorobenzene *	ug/tube	1	<1.0	<1.0	<1.0	<1.0
tert-butylbenzene *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2,4-trichlorobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
sec-butylbenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
p-Isopropyltoluene (p-Cymene) *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80
1,4-dichlorobenzene *	ug/tube	0.75	<0.75	<0.75	<0.75	<0.75
n-butylbenzene *	ug/tube	2	<2.0	<2.0	<2.0	<2.0
1,2-dichlorobenzene *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2-dibromo-3-chloropropane *	ug/tube	0.85	<0.85	<0.85	<0.85	<0.85
1,2,4-trimethylbenzene *	ug/tube	0.75	1.1	<0.75	<0.75	0.98
Hexachlorobutadiene *	ug/tube	0.5	<0.50	< 0.50	<0.50	< 0.50
Naphthalene *	ug/tube	0.5	< 0.50	< 0.50	<0.50	< 0.50
1,2,3-trichlorobenzene *	ug/tube	0.8	<0.80	<0.80	<0.80	<0.80

JBX22-12930 RO 01

0000049839 Report number Client reference: STR003

TEST REPORT

Sample Number Sample Name

JBX22-12930.005 W555E BLANK

Parameter	Units	LOR

BTEX on Radiello RAD130

Benzene *	ug/tube	1	<1.0
Toluene *	ug/tube	1	<1.0
Ethylbenzene *	ug/tube	0.75	<0.75
m/p-xylene *	ug/tube	0.8	<0.80
o-xylene *	ug/tube	0.75	<0.75

Volatile Organic Compounds (VOC) in Air Method: ME-AN-061

Trichloromethane (Chloroform) *	ug/tube	2	<2.0
1,1,1-trichloroethane *	ug/tube	0.95	< 0.95
1,2-dichloroethane *	ug/tube	0.65	< 0.65
1,2-dichloropropane *	ug/tube	0.85	< 0.85
Trichloroethene *	ug/tube	0.5	<0.50
Dibromomethane *	ug/tube	0.8	<0.80
cis-1,3-dichloropropene *	ug/tube	0.8	<0.80
trans-1,3-dichloropropene *	ug/tube	0.9	< 0.90
1,1,2-trichloroethane *	ug/tube	0.9	< 0.90
1,3-dichloropropane *	ug/tube	0.65	<0.65
Tetrachloroethene *	ug/tube	0.8	<0.80
Bromodichloromethane *	ug/tube	1	<1.0
Dibromochloromethane *	ug/tube	0.75	<0.75
1,2-dibromoethane *	ug/tube	0.95	< 0.95
Chlorobenzene *	ug/tube	0.8	<0.80
1,1,1,2-tetrachloroethene *	ug/tube	0.9	< 0.90
Carbon tetrachloride *	ug/tube	1	<1.0
Styrene *	ug/tube	0.85	< 0.85
Bromoform *	ug/tube	2	<2.0
Isopropylbenzene (Cumene) *	ug/tube	0.75	<0.75
1,1,2,2-tetrachloroethane *	ug/tube	0.9	<0.90

STR003 Page 059 of 062

Report number 0000049839 Client reference: STR003

TEST REPORT

		Sample Number Sample Name	JBX22-12930.005 W555E BLANK
Parameter	Units	LOR	
Volatile Organic Compound	ds (VOC) in Air	Method: ME	-AN-061 (continued)
1,2,3-trichloropropane *	ug/tube	0.9	<0.90
n-propylbenzene *	ug/tube	2	<2.0
Bromobenzene *	ug/tube	0.8	<0.80
2-chlorotoluene *	ug/tube	0.85	<0.85
1,3,5-trimethylbenzene *	ug/tube	0.55	1.1
4-chlorotoluene *	ug/tube	0.7	<0.70
1,3-dichlorobenzene *	ug/tube	1	<1.0
tert-butylbenzene *	ug/tube	0.85	<0.85
1,2,4-trichlorobenzene *	ug/tube	0.8	<0.80
sec-butylbenzene *	ug/tube	0.8	<0.80
p-Isopropyltoluene (p-Cymene) *	ug/tube	0.8	<0.80
1,4-dichlorobenzene *	ug/tube	0.75	<0.75
n-butylbenzene *	ug/tube	2	<2.0
1,2-dichlorobenzene *	ug/tube	0.85	<0.85
1,2-dibromo-3-chloropropane *	ug/tube	0.85	<0.85
1,2,4-trimethylbenzene *	ug/tube	0.75	0.98
Hexachlorobutadiene *	ug/tube	0.5	<0.50
Naphthalene *	ug/tube	0.5	<0.50
1,2,3-trichlorobenzene *	ug/tube	0.8	< 0.80

METHOD

ME-AN-061

JBX22-12930 RO 01

0000049839 Report number Client reference: STR003

METHOD SUMMARY

METHOD SUMMARY

ME-AN-061	This method is used to det have been actively or pass loaded onto the thermal d minutes with a flow of Heli analytical capillary column then identified and quantif 300amu range. Identificati spectra of authentic stand of a major (quantitation) io	termine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which sively sampled onto an adsorbent thermal desorption tube. The sample tubes are esorption unit autosampler and the compounds are desorbed at 300°C for 7 ium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the n in the gas chromatograph which separates the compounds. Each compound is fied by the mass spectrometer which is operated in full scan mode over a 50 – ion of analytes is accomplished by comparing their mass spectra with the mass ards and elution times. Quantitation is accomplished by comparing the response on relative to an internal standard using an appropriate calibration curve.
FOOTNOTES		
IS Insufficient sample for analy LNR Sample listed, but not recein Performed by outside labora LOR Limit of Reporting	ysis ved. * atory.	The sample was not analysed for this analyte Results marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory / certification body / inspection body".
Samples analysed as received. Solid samples expressed on a dry w	ueight basis. p	nless otherwise indicated, samples were received in containers fit for urpose.
This document is issued by the Com Attention is drawn to the limitation of WARNING: The sample(s) to which third party acting at the Client's dir the sample(s). The Company accept Any unauthorized alteration, forger to the fullest extent of the law.	pany under its General Condit of liability, indemnification and the findings recorded herein ection. The Findings constitute s no liability with regard to the y or falsification of the conten	ions of Service. Jurisdiction issues defined therein. (the "Findings") relate was(were) draw and / or provided by the Client or by a e no warranty of the sample's representativity of all goods and strictly relate to e origin or source from which the sample(s) is/are said to be extracted. t or appearance of this document is unlawful and offenders may be prosecuted
X-Lab Earth Science is accredited by scope of accreditation to be found a The document is issued in accordan approval of the laboratory	/ SANAS and conforms to the t <u>http://sanas.co.za.</u> ce with SANAS's accreditation	requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the requirements and shall not be reproduced, except in full, without written
		LAB-QLT-REP-001

Signature Request			
Signature Request ID:	082a491d-eaa1-4678-97e6- 93ccda0e99b8	Timestamp:	2022-10-26 11:55:29 GMT
Signee Name:	Tasneem Tagari	Sender Name:	Tasneem Tagari
Request Type:	WebSigning	Request Status:	WEBVIEWER SIGNED
Original Document			
Document Name:	JBX2212930_0000033409PDF.pdf	Document Size:	146.1 KB
Email Evidence			
Signee Email:	tt@xlab.earth	Email Subject:	Not available in Silent Mode
Email Sent Timestamp:	Not available in Silent Mode	Email Opened Timestamp:	Not available in Silent Mode
Web Evidence			
Signee IP Address:	41.79.81.146	Request Timestamp:	2022-10-26 11:54:55 GMT
Signee GPS (if shared):	ZA: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36	Terms Accepted Timestamp:	2022-10-26 11:55:10 GMT
Annotations and Modifications			
Signature Count:	1	Form Fields Filled Count:	0
Text Annotation Count:	0	Initial All Pages Count:	0
Single Initial Count:	0		
Signing Evidence			
Signee Mobile:	+27834449137	Sign Type:	WebSigning
Security Challenge:	NONE	Part of Workflow:	NONE
Chain Of Custody Generation			
Attached Document Name:	20221026T115529.703887Z JBX2212930_0000033409PDF.pdf	Attached Timestamp:	2022-10-26 11:55:29 GMT

www.impression-signatures.com Copyright © 2022 Impression Signatures (Pty) Ltd STR003 Page 062 of 062